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Elements of Probability

Sample space ⌦: the set of all the outcomes of
an experiment

Event space F : a collection of possible
outcomes of an experiment. F ✓ ⌦.

Probability measure: a function P : F ! R
that satisfies the following properties:

P(A) � 0 8 A 2 F
P(⌦) = 1
If A1,A2, . . . are disjoint events, then

P([iAi) =
P
i
P(Ai)
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Properties of Probability

If A ✓ B =) P(A)  P(B)

P(A \ B)  min (P(A),P(B))

P(A [ B)  P(A) + P(B) (Union Bound)

P(⌦ \ A) = 1� P(A)

If A1, . . . ,Ak is a disjoint partition of ⌦, then
kP

i=1
P(Ak) = 1
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Conditional Probability

A conditional probability P(A|B)
measures the probability of an event A

after observing the occurrence of event B

P(A|B) = P(A\B)
P(B)

Two events A and B are independent i↵

P(A|B) = P(A) or equivalently,
P(A \ B) = P(A)P(B)
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Conditional Probability Examples

A math teacher gave her class two tests. 25%
of the class passed both tests and 42% of the
class passed the first test. What percent of
those who passed the first test also passed the
second test?

In New England, 84% of the houses have a
garage and 65% of the houses have a garage
and a back yard. What is the probability that a
house has a backyard given that it has a
garage?
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Independent Events Examples

What’s the probability of getting a sequence of
1,2,3,4,5,6 if we roll a dice six times?

A school survey found that 9 out of 10
students like pizza. If three students are chosen
at random with replacement, what is the
probability that all three students like pizza?
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Random Variable

A random variable X is a function that maps a
sample space ⌦ to real values. Formally,

X : ⌦ �! R

Examples:

Rolling one dice
X = number on the dice at each roll

Rolling two dice at the same time
X = sum of the two numbers
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Random Variable

A random variable can be continuous. E.g.,

X = the length of a randomly selected phone
call
(What’s the ⌦?)

X = amount of coke left in a can marked 12oz
(What’s the ⌦?)
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Probability Mass Function

If X is a discrete random variable, we can specify a
probability for each of its possible values using the
probability mass function (PMF ). Formally, a PMF
is a function p: ⌦ �! R such that

p(x) = P(X = x)

Rolling a dice:
p(X = i) = 1

6 i = 1, 2, . . . , 6

Rolling two dice at the same time:
X = sum of the two numbers
p(X = 2) = 1

36
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Probability Mass Function

X ⇠ Bernoulli(p), p 2 [0, 1]

p(x) =

⇢
p if x = 1
1� p if x = 0

X ⇠ Binomial(n, p), p 2 [0, 1] and n 2 Z+

p(x) =
�n
x

�
px(1� p)n�x

X ⇠ Geometric(p), p > 0

p(x) = p(1� p)x�1

X ⇠ Poisson(�), � > 0

p(x) = e���x

x!
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Probability Density Function

If X is a continuous random variable, we can
NOT specify a probability for each of its
possible values (why?)

We use a probability density function PDF to
describe the relative likelihood for a random
variable to take on a given value

A (PDF ) specifies the probability of X takes a
value within a range. Formally, a PDF is a
function f (x): ⌦ �! R such that

P(a < X < b) =

Z b

a
f (x)dx
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Probability Density Function

X ⇠ uniform on [a, b]:

 

f (x) = 1
b�a

X ⇠ N(µ, �) :

 

f (x) = 1
�
p
2⇡
e�

1
2�2

(x�µ)2
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Joint Probability Mass Function

If we have two discrete random variables X ,Y , we
can define their joint probability mass function
(PMF ) pXY : R2 �! [0, 1] as:

p(x , y) = P(X = x ,Y = y)

where p(x , y)  1 and
P
x2X

P
y2Y

p(x , y) = 1

X ,Y : rolling two dice
p(x , y) = 1

36 x , y = 1, 2, . . . , 6

X : rolling one dice Y : drawing a colored ball
p(6, green) =? p(5, red) =?
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Joint Probability Density Function

If we have two continuous random variables X ,Y ,
we can define their joint probability density function
(PDF ) fXY : R2 �! [0, 1] as:

P(a < X < b, c < Y < d) =

Z d

c

Z b

a
f (x , y)dxdy

2D Gaussian
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Marginal Probability Mass Function

How does the joint PMF over two discrete variables
relate to the PMF for each variable separately? It
turns out that

p(x) =
X

y2Y

p(x , y)

X ,Y : rolling two dice

p(x , y) = 1
36 x , y = 1, 2, . . . , 6

p(x) =
6P

y=1
p(x , y) = 1

6

Yijun Zhao DATA MINING TECHNIQUES Review of Probability Theory



Marginal Probability Density Function

Similarly, we can obtain a marginal PDF (also
called marginal density) for a continuous random
variable from a joint PDF :

f (x) =

Z 1

�1
f (x , y)dy

Integrating out one variable in the 2D Gaussian
gives a 1D Gaussian in either dimension
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Conditional Probability Distribution

A conditional probability distribution defines

the probability distribution over Y when we

know that X must take on a certain value x

Discrete case: conditional PMF

p(y |x) = p(x ,y)
p(x) () p(x , y) = p(y |x)p(x)

Continuous case: conditional PDF

f (y |x) = f (x ,y)
f (x) () f (x , y) = f (y |x)f (x)
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Marginal vs. Conditional

x Marginal probability:  

 

x Conditional probability: probability of rolling a 2 
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Bayes Rule

We can express the joint probability in

two ways:

p(x , y) = p(y |x)p(x)
p(x , y) = p(x |y)p(y)

Bayes rule:

p(y |x) = p(x |y)p(y)
p(x) (discrete)

f (y |x) = f (x |y)f (y)
f (x) (continuous)
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Bayes Rule Application

A patient underwent a HIV test and got a positive
result. Suppose we know that

Overall risk of having HIV in the population is
0.1%

The test can accurately identify 98% of HIV
infected patients

The test can accurately identify 99% of healthy
patients

What’s the probability the person indeed infected
HIV?
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Bayes Rule - Application

We have two random variables here:

X 2 {+,�}: the outcome of the HIV test

C 2 {Y,N}: the patient has HIV or not

We want to know: P(C=Y|X=+)?

Apply Bayes rule:

P(C=Y|X=+) = P(X=+|C=Y)P(C=Y)
P(X=+)

P(X=+|C=Y) = 0.98 P(C=Y) = 0.001

P(X=+) = 0.98⇤0.001+(1-0.99)⇤0.999 = 0.01097

Answer: 0.98 ⇤ 0.001/0.01097 = 8.9%
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Bayes Rule Terminology

P(Y |X ) =
P(X |Y )P(Y )

P(X )

P(Y ): prior probability or, simply, prior

P(X |Y ): conditional probability or, likelihood

P(X ): marginal probability

P(Y |X ): posterior probability or, simply, posterior
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Independence

Two random variables X and Y are independent i↵

For discrete random variables
p(x , y) = p(x)p(y) 8x 2 X , y 2 Y

For discrete random variables
p(y |x) = p(y) 8y 2 Y and p(x) 6= 0

For continuous random variables
f (x , y) = f (x)f (y) 8x , y 2 R

For continuous random variables
f (y |x) = f (y) 8y 2 R and f (x) 6= 0
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Multiple Random Variables

Extend to multiple random variables :

Joint Distribution (discrete):

p(x1, . . . , xn) = P(X1 = x1, . . . ,Xn = xn)

Conditional Distribution (chain rule - discrete)

p(x1, . . . , xn) = p(xn|x1, . . . , xn�1)p(x1, . . . , xn�1)

= p(xn|x1, . . . , xn�1)p(xn�1|x1, . . . , xn�2)p(x1, . . . , xn�2)

= p(x1)
nQ

i=2
p(xi |x1, . . . , xi�1)

(continuous case can be defined similarly using PDF )
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Multiple Random Variables

Independence:

Discrete case: X1, . . . ,Xn are independent i↵

p(x1, . . . , xn) =
nQ

i=1
p(xi)

Continuous case: X1, . . . ,Xn are independent i↵

f (x1, . . . , xn) =
nQ

i=1
f (xi)
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Multiple Random Variables

Bayes rule:

Discrete case:

p(xn|x1, . . . , xn�1) =
p(x1,...,xn�1|xn)p(xn)

p(x1,...,xn�1)

Continuous case:

f (xn|x1, . . . , xn�1) =
f (x1,...,xn�1|xn)f (xn)

f (x1,...,xn�1)
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Probabilistic View of a Dataset

What about a dataset S = {(x1, y1), . . . , (xN , yN)}?
We can view S as d + 1 random variables
where d is the number of attributes in x, i.e.

X1, X2, . . . , Xd , Y

Uncover(model) p(x1, x2, . . . , xd , y) from the
training data

For ANY (x1, x2, . . . , xn), we will compute:

P(y = 0|x1, x2, . . . , xn) ?
P(y = 1|x1, x2, . . . , xn) ?

That is predicting y from x !
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Estim
ate

A
n estim

ate is a num
erical value of the unknow
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ator) to a particular sam

ple.

If 𝜃𝜃
is a param

eter, �𝜃𝜃
denotes its estim

ate
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Estim
ator

�
A

 rule used to estim
ate a num

erical value is 
called estim

ator.

The estim
ator of m

ean is given below
:

�𝑋𝑋
=
�𝑖𝑖=
1 𝑛𝑛
𝑋𝑋
𝑖𝑖𝑛𝑛

E.g., 𝑋𝑋
𝑖𝑖

is the height of person i. 
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Estim
ate vs. Estim

ator

Exam
ple: Let a sam

ple of size 5 be 2, 4, 5, 9, 
10. Then an estim

ate of the population m
ean µ, 

obtained by applying an estim
ator, is:

�𝑋𝑋
=
∑
𝑖𝑖=
1

𝑛𝑛
𝑋𝑋
𝑖𝑖𝑛𝑛

Estim
ator

�𝑋𝑋
=
2
+
4
+
5
+
9
+
10

5
�𝑋𝑋
=

305
=

6                
Estim

ate



10

Point Estim
ation Sum

m
ary

�
Point Estim

ate:to estim
ate a population param

eter.
�

M
ay be m

ade by calculating the param
eter for a 

sam
ple.



11

Point Estim
ation Sum

m
ary

�
Point Estim

ate:to estim
ate a population param

eter.
�

M
ay be m

ade by calculating the param
eter for a 

sam
ple.

�
M

ay be used to predict values for the m
issing data.

�
E.g., 
�

A
 com

pany contains 100 em
ployees

�
99 have salary inform

ation
�

M
ean salary of these is $50,000

�
U

se $50,000 as value of rem
aining em

ployee’s salary. 



12

Point Estim
ation Sum

m
ary

�
Point Estim
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M
ay be m

ade by calculating the param
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�
M

ay be used to predict values for the m
issing data.

�
E.g., 
�

A
 com

pany contains 100 em
ployees

�
99 have salary inform

ation
�

M
ean salary of these is $50,000

�
U

se $50,000 as value of rem
aining em

ployee’s salary. 

Is this a good idea?



13

Review
 of Basic Statistical C

oncepts
�

Statistical Inference
�

Point Estim
ation

�
Estim

ation Error
�

M
axim

um
 Likelihood Estim

ate
�

Expectation-M
axim

ization (EM
)

�
Bayes Theorem

�
Sim

ilarity and Evaluation M
easures



14

Estim
ation Error

�
Bias: D

ifference betw
een expected value and actual 

value.



15

Estim
ation Error

�
Bias: D

ifference betw
een expected value and actual 

value.

�
M

ean Squared Error (M
SE):expected value of the 

squared difference betw
een the estim

ate and the 
actual value:



16

Estim
ation Error

�
Bias: D

ifference betw
een expected value and actual 

value.

�
M

ean Squared Error (M
SE):expected value of the 

squared difference betw
een the estim

ate and the 
actual value:

�
W

hy square?



17

Estim
ation Error

�
Bias: D

ifference betw
een expected value and actual 

value.

�
M
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�
W

hy square?
�

Root M
ean Square Error (RM

SE)
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M
axim

um
 Likelihood Estim

ate (M
LE)

�
O

btain param
eter estim

ates that m
axim

ize the 
probability that the sam

ple data occurs for the specific 
m

odel.
�

Joint probability for observing the sam
ple data by 

m
ultiplying the individual probabilities.  

Likelihood function:

�
M

axim
ize L.

There is an assum
ption here. W

hat is it? 
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�
A
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ing a perfect coin w

ith H
 and T equally likely, 

the likelihood of this sequence is: 

�
H

ow
ever if the probability of a H

 is 0.8 then:

H
ow

 do w
e estim

ate the probability of a H
? 
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Expectation-M
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�
Solves estim

ation w
ith incom

plete data.

�
Key Idea:
�

O
btain initial estim

ates for param
eters.

�
Iteratively use estim

ates for m
issing data and continue 

until convergence.
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Bayes Theorem
 Exam

ple

�
C

redit authorizations (hypotheses):  h
1 =

authorize 
purchase, h

2 =
 authorize after further 

identification, h
3 =

do not authorize,    h
4 =

 do not 
authorize but contact police

�
Task: A

ssign a label for each com
bination of credit 

(col.) and incom
e (row

):
   

 
1
 

2
 

3
 

4
 

E
x
c
e
l
l
e
n
t
 

x
1  

x
2  

x
3  

x
4  

G
o
o
d
 

x
5  

x
6  

x
7  

x
8  

B
a
d
 

x
9  

x
1
0  

x
1
1  

x
1
2  
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Bayes Exam
ple(cont’d)

�
Training D

ata:
ID

 
Incom

e 
C

redit 
C

lass 
x

i  
1 

4 
Excellent h

1  
x

4  
2 

3 
G

ood 
h

1  
x

7  
3 

2 
Excellent h

1  
x

2  
4 

3 
G

ood 
h

1  
x

7  
5 

4 
G

ood 
h

1  
x

8  
6 

2 
Excellent h

1  
x

2  
7 

3 
Bad 

h
2  

x
11  

8 
2 

Bad 
h

2  
x

10  
9 

3 
Bad 

h
3  

x
11  

10 
1 

Bad 
h

4  
x

9 
    

From
 training data:  

P(h
1 ) =

 ?;  P(h
2 )=

?;  P(h
3 )=

?; P(h
4 )=

?.



36

Bayes Exam
ple(cont’d)

�
Training D

ata:
ID

 
Incom

e 
C

redit 
C

lass 
x

i  
1 

4 
Excellent h

1  
x

4  
2 

3 
G

ood 
h

1  
x

7  
3 

2 
Excellent h

1  
x

2  
4 

3 
G

ood 
h

1  
x

7  
5 

4 
G

ood 
h

1  
x

8  
6 

2 
Excellent h

1  
x

2  
7 

3 
Bad 

h
2  

x
11  

8 
2 

Bad 
h

2  
x

10  
9 

3 
Bad 

h
3  

x
11  

10 
1 

Bad 
h

4  
x

9 
    

From
 training data:  

P(h
1 ) =

 60%
;  P(h

2 )=
20%

;  P(h
3 )=

10%
; P(h

4 )=
10%

.
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ple(cont’d)

�
H

ow
 to predict the class for X

4 ? 
ID

 
Incom

e 
C

redit 
C

lass 
x

i  
1 

4  
Excellent h

1  
x

4  
2 

3 
G

ood 
h

1  
x

7  
3 

2 
Excellent h

1  
x

2  
4 

3 
G

ood 
h

1  
x

7  
5 

4 
G

ood 
h

1  
x

8  
6 

2 
Excellent h

1  
x

2  
7 

3 
Bad 

h
2  

x
11  

8 
2 

Bad 
h

2  
x

10  
9 

3 
Bad  

h
3  

x
11  

10 
1 

Bad 
h

4  
x

9 
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Bayes Exam
ple(cont’d)

�
H

ow
 to predict the class for X

4 ? 
�

C
alculate P(h

j |X
4 ) for all h

j . 
�

Place X
4 in class w

ith largest value.

ID
 

Incom
e 

C
redit 

C
lass 

x
i  

1 
4  

Excellent h
1  

x
4  

2 
3 

G
ood 

h
1  

x
7  

3 
2 

Excellent h
1  

x
2  

4 
3 

G
ood 

h
1  

x
7  

5 
4 

G
ood 

h
1  

x
8  

6 
2 

Excellent h
1  

x
2  

7 
3 

Bad 
h

2  
x

11  
8 

2 
Bad 

h
2  

x
10  

9 
3 

Bad  
h

3  
x
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Bayes Exam
ple(cont’d)
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Bayes Exam
ple(cont’d)
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H

ow
 to predict the class for X
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�

C
alculate P(h

j |X
4 ) for all h
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Place X
4 in class w

ith largest value.

�
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Bayes Theorem
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Review
 of Basic Statistical C

oncepts
�

Statistical Inference
�

Point Estim
ation

�
Estim

ation Error
�

M
axim

um
 Likelihood Estim

ate
�

Expectation-M
axim

ization (EM
)

�
Bayes Theorem

�
Sim

ilarity and Evaluation M
easures
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Sim
ilarity M

easures

�
D

eterm
ine sim

ilarity betw
een tw

o objects.
�

Sim
ilarity characteristics:

�
A

lternatively, distance m
easure m

easures how
 unlike 

or dissim
ilar objects are.
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Sim
ilarity M

easures
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D
istance M

easures

�
M

easure dissim
ilarity betw

een objects
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D
istance M

easures

�
M

easure dissim
ilarity betw

een objects

W
hy is it called M

anhattan distance?
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