CSE 5243 INTRO. TO DATA MINING

Mining Frequent Patterns and Associations: Basic Concepts (Chapter 6) Huan Sun, CSE@The Ohio State University

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods
\square Basic Concepts
\square Efficient Pattern Mining Methods
\square Pattern Evaluation
\square Summary

Pattern Discovery: Basic Concepts

\square What Is Pattern Discovery? Why Is It Important?
\square Basic Concepts: Frequent Patterns and Association Rules
\square Compressed Representation: Closed Patterns and Max-Patterns

What Is Pattern Discovery?

\square Motivation examples:
\square What products were often purchased together?
\square What are the subsequent purchases after buying an iPad?
\square What code segments likely contain copy-and-paste bugs?
\square What word sequences likely form phrases in this corpus?

What Is Pattern Discovery?

\square Motivation examples:
\square What products were often purchased together?
\square What are the subsequent purchases after buying an iPad?
\square What code segments likely contain copy-and-paste bugs?
\square What word sequences likely form phrases in this corpus?
\square What are patterns?

- Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
\square Patterns represent intrinsic and important properties of datasets

What Is Pattern Discovery?

\square Motivation examples:

- What products were often purchased together?
\square What are the subsequent purchases after buying an iPad?
\square What code segments likely contain copy-and-paste bugs?
\square What word sequences likely form phrases in this corpus?
\square What are patterns?
- Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
\square Patterns represent intrinsic and important properties of datasets
\square Pattern discovery: Uncovering patterns from massive data sets

Pattern Discovery: Why Is It Important?

\square Finding inherent regularities in a data set
\square Foundation for many essential data mining tasks

- Association, correlation, and causality analysis
\square Mining sequential, structural (e.g., sub-graph) patterns
\square Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
\square Classification: Discriminative pattern-based analysis
\square Cluster analysis: Pattern-based subspace clustering

Pattern Discovery: Why Is It Important?

\square Finding inherent regularities in a data set
\square Foundation for many essential data mining tasks

- Association, correlation, and causality analysis
\square Mining sequential, structural (e.g., sub-graph) patterns
\square Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
\square Classification: Discriminative pattern-based analysis
\square Cluster analysis: Pattern-based subspace clustering
\square Broad applications
- Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

Basic Concepts: k-Itemsets and Their Supports

\square Itemset:A set of one or more items

Basic Concepts: k-Itemsets and Their Supports

\square Itemset: A set of one or more items
\square k-itemset: $X=\left\{x_{1}, \ldots, x_{k}\right\}$
\square Ex. \{Beer, Nuts, Diaper\} is a 3 -itemset

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Basic Concepts: k-Itemsets and Their Supports

\square Itemset:A set of one or more items
\square k-itemset: $X=\left\{x_{1}, \ldots, x_{k}\right\}$
\square Ex. \{Beer, Nuts, Diaper\} is a 3-itemset
\square (absolute) support (count) of $\mathrm{X}, \sup \{\mathrm{X}\}$:

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

\square Ex. sup\{Beer\} $=3$
\square Ex. $\sup \{$ Diaper $\}=4$
\square Ex. sup\{Beer, Diaper\} $=3$
\square Ex. sup\{Beer, Eggs $\}=1$

Basic Concepts: k-Itemsets and Their Supports

\square Itemset: A set of one or more items
\square k-itemset: $X=\left\{x_{1}, \ldots, x_{k}\right\}$
\square Ex. \{Beer, Nuts, Diaper\} is a 3-itemset
\square (absolute) support (count) of $\mathrm{X}, \sup \{\mathrm{X}\}$:

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

\square Ex. $\sup \{$ Beer $\}=3$
$\square E x . \sup \{$ Diaper $\}=4$
\square Ex. sup $\{$ Beer, Diaper $\}=3$
\square Ex. sup\{Beer, Eggs $\}=1$

- (relative) support, s\{X\}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- Ex. $s\{$ Beer $\}=3 / 5=60 \%$
\square Ex. s\{Diaper\} $=4 / 5=80 \%$
\square Ex. s\{Beer, Eggs $\}=1 / 5=20 \%$

Basic Concepts: Frequent Itemsets (Patterns)

\square An itemset (or a pattern) X is frequent if the support of X is no less than a minsup threshold σ

Basic Concepts: Frequent Itemsets (Patterns)

\square An itemset (or a pattern) X is frequent if the support of X is no less than a minsup threshold σ
\square Let $\sigma=50 \%$ (σ : minsup threshold) For the given 5-transaction dataset
\square All the frequent 1-itemsets:

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Beer: 3/5 (60\%); Nuts: 3/5 (60\%)

■ Diaper: 4/5 (80\%); Eggs: 3/5 (60\%)
\square All the frequent 2-itemsets:
\square \{Beer, Diaper\}: 3/5 (60\%)
\square All the frequent 3-itemsets?

- None

Basic Concepts: Frequent Itemsets (Patterns)

\square An itemset (or a pattern) X is frequent if the support of X is no less than a minsup threshold σ
\square Let $\sigma=50 \%$ (σ : minsup threshold) For the given 5-transaction dataset
\square All the frequent 1-itemsets:

- Beer: 3/5 (60\%); Nuts: 3/5 (60\%)
- Diaper: 4/5 (80\%); Eggs: 3/5 (60\%)
\square All the frequent 2-itemsets:
- \{Beer, Diaper\}: 3/5 (60\%)
\square All the frequent 3-itemsets?
■ None

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Do these itemsets (shown on the left) form the complete set of frequent k itemsets (patterns) for any k ?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

\square Comparing with itemsets, rules can be more telling
\square Ex. Diaper \rightarrow Beer

- Buying diapers may likely lead to buying beers

From Frequent Itemsets to Association Rules

\square Ex. Diaper \rightarrow Beer : Buying diapers may likely lead to buying beers
\square How strong is this rule? (support, confidence)
\square Measuring association rules: $X \rightarrow Y(\mathrm{~s}, \mathrm{c})$

- Both X and Y are itemsets

From Frequent Itemsets to Association Rules

\square Ex. Diaper \rightarrow Beer: Buying diapers may likely lead to buying beers
\square How strong is this rule? (support, confidence)
\square Measuring association rules: $X \rightarrow Y(\mathrm{~s}, \mathrm{c})$
\square Both X and Y are itemsets
\square Support, s : The probability that a transaction

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Ex. s\{Diaper, Beer\} $=3 / 5=0.6$ (i.e., 60\%)

From Frequent Itemsets to Association Rules

\square Ex. Diaper \rightarrow Beer : Buying diapers may likely lead to buying beers
\square How strong is this rule? (support, confidence)
\square Measuring association rules: $X \rightarrow Y(s, c)$
\square Both X and Y are itemsets
\square Support, s : The probability that a transaction

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Ex. s\{Diaper, Beer\} $=3 / 5=0.6$ (i.e., 60\%)
\square Confidence, c : The conditional probability that a transaction containing X also contains Y
- Calculation: $c=\sup (X \cup Y) / \sup (X)$

Mining Frequent Itemsets and Association Rules

\square Association rule mining
\square Given two thresholds: minsup, minconf
\square Find all of the rules, $X \rightarrow Y(\mathrm{~s}, \mathrm{c})$
\square such that, $s \geq$ minsup and $c \geq$ minconf

Mining Frequent Itemsets and Association Rules

\square Association rule mining

\square Given two thresholds: minsup, minconf
\square Find all of the rules, $X \rightarrow Y(\mathrm{~s}, \mathrm{c})$
\square such that, $s \geq$ minsup and $c \geq$ minconf

- Let minsup $=50 \%$
- Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

\square Freq. 2-itemsets: \{Beer, Diaper\}: 3

Mining Frequent Itemsets and Association Rules

\square Association rule mining
\square Given two thresholds: minsup, minconf
\square Find all of the rules, $X \rightarrow Y(\mathrm{~s}, \mathrm{c})$
\square such that, $s \geq$ minsup and $c \geq$ minconf

- Let minsup $=50 \%$
- Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

\square Freq. 2-itemsets: \{Beer, Diaper\}: 3

- Let minconf $=50 \%$
- Beer \rightarrow Diaper ($60 \%, 100 \%$)
\square Diaper \rightarrow Beer ($60 \%, 75 \%$)

Mining Frequent Itemsets and Association Rules

\square Association rule mining
\square Given two thresholds: minsup, minconf
\square Find all of the rules, $X \rightarrow Y(\mathrm{~s}, \mathrm{c})$
\square such that, $s \geq$ minsup and $c \geq$ minconf

- Let minsup $=50 \%$
- Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

\square Freq. 2-itemsets: \{Beer, Diaper\}: 3

- Let minconf $=50 \%$
- Beer \rightarrow Diaper ($60 \%, 100 \%$)
\square Diaper \rightarrow Beer ($60 \%, 75 \%$)

Mining Frequent Itemsets and Association Rules

\square Association rule mining
\square Given two thresholds: minsup, minconf

- Find all of the rules, $X \rightarrow Y(\mathrm{~s}, \mathrm{c})$
- such that, $\mathrm{s} \geq$ minsup and $c \geq$ minconf
- Let minsup $=50 \%$
- Freq. 1 -itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
- Freq. 2-itemsets: \{Beer, Diaper\}: 3
- Let minconf $=50 \%$
$\square \quad$ Beer \rightarrow Diaper (60%, 100\%)Diaper \rightarrow Beer (60\%, 75\%)

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

ㅁ Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

Challenge: There Are Too Many Frequent Patterns!

\square A long pattern contains a combinatorial number of sub-patterns
\square How many frequent itemsets does the following TDB $_{1}$ contain?
$\square \operatorname{TDB}_{1:} \quad T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
\square Assuming (absolute) minsup $=1$

- Let's have a try

1-itemsets: $\left\{\mathrm{a}_{1}\right\}: 2,\left\{\mathrm{a}_{2}\right\}: 2, \ldots,\left\{\mathrm{a}_{50}\right\}: 2,\left\{\mathrm{a}_{51}\right\}: 1, \ldots,\left\{\mathrm{a}_{100}\right\}: 1$,
2-itemsets: $\left\{a_{1}, a_{2}\right\}: 2, \ldots,\left\{a_{1}, a_{50}\right\}: 2,\left\{a_{1}, a_{51}\right\}: 1 \ldots, \ldots,\left\{a_{99}, a_{100}\right\}: 1$,
..., ..., ..., ...
99-itemsets: $\left\{a_{1}, a_{2}, \ldots, a_{99}\right\}: 1, \ldots,\left\{a_{2}, a_{3}, \ldots, a_{100}\right\}: 1$
100-itemset: $\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}: 1$

Challenge: There Are Too Many Frequent Patterns!

\square A long pattern contains a combinatorial number of sub-patterns
\square How many frequent itemsets does the following TDB $_{1}$ contain?
$\square \operatorname{TDB}_{1:} \quad T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$

- Assuming (absolute) minsup = 1
- Let's have a try

1-itemsets: $\left\{\mathrm{a}_{1}\right\}: 2,\left\{\mathrm{a}_{2}\right\}: 2, \ldots,\left\{\mathrm{a}_{50}\right\}: 2,\left\{\mathrm{a}_{51}\right\}: 1, \ldots,\left\{\mathrm{a}_{100}\right\}: 1$,
2-itemsets: $\left\{a_{1}, a_{2}\right\}: 2, \ldots,\left\{a_{1}, a_{50}\right\}: 2,\left\{a_{1}, a_{51}\right\}: 1 \ldots, \ldots,\left\{a_{99}, a_{100}\right\}: 1$,
..., ..., ..., ...
99-itemsets: $\left\{a_{1}, a_{2}, \ldots, a_{99}\right\}: 1, \ldots,\left\{a_{2}, a_{3}, \ldots, a_{100}\right\}: 1$
100-itemset: $\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}: 1$
\square The total number of frequent itemsets:

A too huge set for any one to compute or store!

$$
\binom{100}{1}+\binom{100}{2}+\binom{100}{3}+\cdots+\binom{100}{100}=2^{100}-1
$$

Expressing Patterns in Compressed Form: Closed Patterns

\square How to handle such a challenge?
\square Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y J X, with the same support as X

Expressing Patterns in Compressed Form: Closed Patterns

\square How to handle such a challenge?
\square Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y J X, with the same support as X
\square Let Transaction DB TDB ${ }_{1}: T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
\square Suppose minsup $=1$. How many closed patterns does TDB 1 contain?

- Two: P_{1} : " $\left\{a_{1}, \ldots, a_{50}\right\}: 2 " ; P_{2}$: "\{ $\left.a_{1}, \ldots, a_{100}\right\}: 1 "$

Expressing Patterns in Compressed Form: Closed Patterns

\square How to handle such a challenge?
\square Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern $\mathrm{Y} \supset \mathrm{X}$, with the same support as X
\square Let Transaction DB TDB ${ }_{1}: T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
\square Suppose minsup $=1$. How many closed patterns does TDB 1 contain?

- Two: P_{1} : "\{ $\left.a_{1}, \ldots, a_{50}\right\}: 2 " ; P_{2}$: "\{ $\left.a_{1}, \ldots, a_{100}\right\}: 1 "$
\square Closed pattern is a lossless compression of frequent patterns
\square Reduces the \# of patterns but does not lose the support information!
\square You will still be able to say: "\{ $\left.a_{2}, \ldots, a_{40}\right\}: 2 "$ ", "\{ $\left.a_{5}, a_{51}\right\}$: 1 "

Expressing Patterns in Compressed Form: Max-Patterns

\square Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y Ј X

Expressing Patterns in Compressed Form: Max-Patterns

\square Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern $\mathrm{Y} \supset \mathrm{X}$
\square Difference from close-patterns?
\square Do not care the real support of the sub-patterns of a max-pattern

- Let Transaction DB TDB : $\mathrm{T}_{1}:\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{50}\right\} ; \mathrm{T}_{2}:\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{100}\right\}$
\square Suppose minsup $=1$. How many max-patterns does TDB ${ }_{1}$ contain?
- One: P: "\{a $\left.a_{1}, \ldots, a_{100}\right\}$: 1 "

Expressing Patterns in Compressed Form: Max-Patterns

\square Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern $\mathrm{Y} \supset \mathrm{X}$
\square Difference from close-patterns?
\square Do not care the real support of the sub-patterns of a max-pattern

- Let Transaction DB TDB ${ }_{1}: T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
\square Suppose minsup $=1$. How many max-patterns does TDB ${ }_{1}$ contain?
- One: P: "\{a $\left.a_{1}, \ldots, a_{100}\right\}: 1 "$
\square Max-pattern is a lossy compression!
\square We only know $\left\{a_{1}, \ldots, a_{40}\right\}$ is frequent
\square But we do not know the real support of $\left\{a_{1}, \ldots, a_{40}\right\}, \ldots$, any more!
\square Thus in many applications, close-patterns are more desirable than max-patterns

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

\square Basic ConceptsEfficient Pattern Mining Methods
\square The Apriori Algorithm

- Application in Classification
\square Pattern Evaluation
\square Summary

Efficient Pattern Mining Methods

\square The Downward Closure Property of Frequent Patterns
\square The Apriori Algorithm
\square Extensions or Improvements of AprioriMining Frequent Patterns by Exploring Vertical Data Format
\square FPGrowth: A Frequent Pattern-Growth Approach
\square Mining Closed Patterns

The Downward Closure Property of Frequent Patterns

- Observation: From TDB T $_{1}: T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
- We get a frequent itemset: $\left\{a_{1}, \ldots, a_{50}\right\}$
- Also, its subsets are all frequent: $\left\{a_{1}\right\},\left\{a_{2}\right\}, \ldots,\left\{a_{50}\right\},\left\{a_{1}, a_{2}\right\}, \ldots,\left\{a_{1}, \ldots\right.$, $\left.a_{49}\right\}, \ldots$
- There must be some hidden relationships among frequent patterns!

The Downward Closure Property of Frequent Patterns

- Observation: From TDB T $_{1}: T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
- We get a frequent itemset: $\left\{a_{1}, \ldots, a_{50}\right\}$
- Also, its subsets are all frequent: $\left\{a_{1}\right\},\left\{a_{2}\right\}, \ldots,\left\{a_{50}\right\},\left\{a_{1}, a_{2}\right\}, \ldots,\left\{a_{1}, \ldots\right.$, $\left.a_{49}\right\}, \ldots$
- There must be some hidden relationships among frequent patterns!
\square The downward closure (also called "Apriori") property of frequent patterns
- If \{beer, diaper, nuts\} is frequent, so is \{beer, diaper\}
- Every transaction containing \{beer, diaper, nuts\} also contains \{beer, diaper\}
- Apriori: Any subset of a frequent itemset must be frequent $\mathbb{\Sigma}$

A sharp knife for pruning!

The Downward Closure Property of Frequent Patterns

- Observation: From TDB T $_{1}: T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
- We get a frequent itemset: $\left\{a_{1}, \ldots, a_{50}\right\}$
- Also, its subsets are all frequent: $\left\{a_{1}\right\},\left\{a_{2}\right\}, \ldots,\left\{a_{50}\right\},\left\{a_{1}, a_{2}\right\}, \ldots,\left\{a_{1}, \ldots\right.$, $\left.a_{49}\right\}, \ldots$
- There must be some hidden relationships among frequent patterns!
\square The downward closure (also called "Apriori") property of frequent patterns
- If \{beer, diaper, nuts\} is frequent, so is \{beer, diaper\}
- Every transaction containing \{beer, diaper, nuts\} also contains \{beer, diaper\}
- Apriori: Any subset of a frequent itemset must be frequent $\mathbb{\Sigma}$
\square Efficient mining methodology A sharp knife for pruning!
- If any subset of an itemset S is infrequent, then there is no chance for S to be frequent-why do we even have to consider S!?

Apriori Pruning and Scalable Mining Methods

\square Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated!

- (Agrawal \& Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
\square Scalable mining Methods: Three major approaches
\square Level-wise, join-based approach:
- Apriori (Agrawal \& Srikant@VLDB'94)
\square Vertical data format approach:
- Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
\square Frequent pattern projection and growth:
- FPgrowth (Han, Pei, Yin @SIGMOD’00)

Apriori: A Candidate Generation \& Test Approach

\square Outline of Apriori (level-wise, candidate generation and test)
\square Initially, scan DB once to get frequent 1-itemset

- Repeat
- Generate length- $(k+1)$ candidate itemsets from length-k frequent itemsets
- Test the candidates against DB to find frequent ($k+1$)-itemsets
- Set $\mathrm{k}:=\mathrm{k}+1$
- Until no frequent or candidate set can be generated
\square Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

C_{k} : Candidate itemset of size k
F_{k} : Frequent itemset of size k
$\mathrm{K}:=1$;

While $\left(F_{k}!=\varnothing\right.$) do \{ $/ /$ when F_{k} is non-empty
$C_{k+1}:=$ candidates generated from $F_{k i} / /$ candidate generation Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup; $\mathrm{k}:=\mathrm{k}+1$
\}
return $\cup_{k} F_{k} \quad / /$ return F_{k} generated at each level

The Apriori Algorithm—An Example

The Apriori Algorithm—An Example

Database TDB		minsup $=2$	$\begin{gathered} \hline \text { Itemset } \\ \hline\{\mathrm{A}\} \end{gathered}$	$\frac{\sup }{2}$			sup
		F_{1}			Itemset		
Tid	Items		$1^{\text {st }} \operatorname{scan}$	\{B\}	3	\{A\}	2
10	A, C, D			\{C\}	3	\{B\}	3
20	B, C, E	\{D		1		\{C\}	3
30	A, B, C, E	\{E\}		3		\{E\}	3
40	B, E						

F_{2}| Itemset | sup |
| :---: | :---: |
| | $\{\mathrm{A}, \mathrm{C}\}$ |
| $\{\mathrm{B}, \mathrm{C}\}$ | 2 |
| | $2 \mathrm{~B}, \mathrm{E}\}$ |
| | 3 |
| $\{\mathrm{C}, \mathrm{E}\}$ | 2 |

C_{2}	Itemset	sup	$2^{\text {nd }} \operatorname{scan} C_{2}$	Itemset
	$\{\mathrm{A}, \mathrm{B}\}$	1		\{A, B $\}$
	$\{\mathrm{A}, \mathrm{C}\}$	2		\{A, C $\}$
	$\{\mathrm{A}, \mathrm{E}\}$	1		$\{\mathrm{A}, \mathrm{E}\}$
	\{B, C $\}$	2		$\{\mathrm{B}, \mathrm{C}\}$
	\{B, E\}	3		$\{\mathrm{B}, \mathrm{E}\}$
				\{C, E\}

> | | C_{3} |
| :---: | :---: |
| | Itemset |
| | $\{\mathrm{B}, \mathrm{C}, \mathrm{E}\}$ |
| | $3^{\text {rd }} \mathrm{scan}$ |
| | F_{3}Itemset sup
 $\{\mathrm{B}, \mathrm{C}, \mathrm{E}\}$ |

Apriori: Implementation Tricks

\square How to generate candidates?
\square Step 1: self-joining F_{k}
\square Step 2: pruning

Apriori: Implementation Tricks

\square How to generate candidates?
self-join
self-join
\square Step 1: self-joining F_{k}
\square Step 2: pruning
\square Example of candidate-generation
$\square F_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
\square Self-joining: $F_{3}{ }^{*} F_{3}$
■ abcd from abc and abd
\square acde from acd and ace

Apriori: Implementation Tricks

\square How to generate candidates?
self-join
self-join
\square Step 1: self-joining F_{k}
\square Step 2: pruning
\square Example of candidate-generation
$\square F_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
\square Self-joining: $F_{3}{ }^{*} F_{3}$

- abcd from abc and abd

- acde from acd and ace
\square Pruning:
\square acde is removed because ade is not in F_{3}
$\square C_{4}=\{a b c d\}$

Candidate Generation: An SQL Implementation

\square Suppose the items in F_{k-1} are listed in an order
\square Step 1: self-joining F_{k-1} insert into C_{k}
select p.item ${ }_{1}$, p.item $_{2}, \ldots$, p.item $_{k-1}$, q.item $_{k-1}$ from F_{k-1} as p, F_{k-1} as q

${\text { where } \text { p.item }_{I}=\text { q.item }}_{1^{\prime}} \ldots$, p.item $_{k-2}=$ q.item ${ }_{k-2}$ p.item $_{k-1}<$ q.item ${ }_{k-1}$
\square Step 2: pruning
for all itemsets \mathbf{c} in \mathbf{C}_{k} do
for all ($k-1$)-subsets s of c do if (s is not in F_{k-1}) then delete c from C_{k}

Apriori Adv/Disadv

\square Advantages:
\square Uses large itemset property
\square Easily parallelized
\square Easy to implement
\square Disadvantages:
\square Assumes transaction database is memory resident
\square Requires up to m database scans

Classification based on Association Rules (CBA)

\square Why?
\square Can effectively uncover the correlation structure in data
\square AR are typically quite scalable in practice

- Rules are often very intuitive
- Hence classifier built on intuitive rules is easier to interpret
\square When to use?
\square On large dynamic datasets where class labels are available and the correlation structure is unknown.
- Multi-class categorization problems
\square E.g. Web/Text Categorization, Network Intrusion Detection

Mining Frequent Patterns, Association and Correlations:

 Basic Concepts and Methods\square Basic Concepts
\square Efficient Pattern Mining Methods
\square Pattern Evaluation
\square Summary

Summary

Basic Concepts

- What Is Pattern Discovery? Why Is It Important?
- Basic Concepts: Frequent Patterns and Association Rules
- Compressed Representation: Closed Patterns and Max-PatternsEfficient Pattern Mining Methods
- The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns
- Pattern Evaluation
- Interestingness Measures in Pattern Mining
- Interestingness Measures: Lift and χ^{2}
- Null-Invariant Measures
- Comparison of Interestingness Measures

Recommended Readings (Basic Concepts)

\square R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
\square R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
\square N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
\square J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

Recommended Readings
 (Efficient Pattern Mining Methods)

\square R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
\square A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
\square J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
\square S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
\square M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
\square J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'OO
\square M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
\square J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
\square C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014

Recommended Readings (Pattern Evaluation)

\square C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
\square S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
\square M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
$\square \quad$ E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03
\square P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
\square T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371397, 2010

