CSE 5243 INTRO. TO DATA MINING

Mining Frequent Patterns and Associations: Basic Concepts (Chapter 6) Huan Sun, CSE@The Ohio State University

Slides adapted from Prof. Jiawei Han @UIUC, Prof. Srinivasan Parthasarathy @OSU

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Efficient Pattern Mining Methods
- Pattern Evaluation

Pattern Discovery: Basic Concepts

What Is Pattern Discovery? Why Is It Important?

Basic Concepts: Frequent Patterns and Association Rules

Compressed Representation: Closed Patterns and Max-Patterns

What Is Pattern Discovery?

- Motivation examples:
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

What Is Pattern Discovery?

Motivation examples:

- What products were often purchased together?
- What are the subsequent purchases after buying an iPad?
- What code segments likely contain copy-and-paste bugs?
- What word sequences likely form phrases in this corpus?

□ What are patterns?

- Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
- Patterns represent intrinsic and important properties of datasets

What Is Pattern Discovery?

Motivation examples:

- What products were often purchased together?
- What are the subsequent purchases after buying an iPad?
- What code segments likely contain copy-and-paste bugs?
- What word sequences likely form phrases in this corpus?

□ What are patterns?

- Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
- Patterns represent intrinsic and important properties of datasets
- Pattern discovery: Uncovering patterns from massive data sets

Pattern Discovery: Why Is It Important?

- Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering

Pattern Discovery: Why Is It Important?

- Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering

□ Broad applications

Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

□ **Itemset**: A set of one or more items

- □ **Itemset**: A set of one or more items
- □ **k-itemset**: $X = \{x_1, ..., x_k\}$
 - **Ex.** {Beer, Nuts, Diaper} is a 3-itemset

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Itemset: A set of one or more items
- □ **k-itemset**: $X = \{x_1, ..., x_k\}$
 - Ex. {Beer, Nuts, Diaper} is a 3-itemset
- (absolute) support (count) of X, sup{X}: Frequency or the number of occurrences of an itemset X
 - Ex. sup{Beer} = 3
 - Ex. sup{Diaper} = 4
 - Ex. sup{Beer, Diaper} = 3
 - Ex. sup{Beer, Eggs} = 1

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Itemset: A set of one or more items
- □ **k-itemset**: $X = \{x_1, ..., x_k\}$
 - Ex. {Beer, Nuts, Diaper} is a 3-itemset
- (absolute) support (count) of X, sup{X}:
 Frequency or the number of occurrences of an itemset X
 - **Ex.** sup{Beer} = 3
 - Ex. sup{Diaper} = 4
 - Ex. sup{Beer, Diaper} = 3
 - Ex. sup{Beer, Eggs} = 1

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- (relative) support, s{X}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
 - **Ex.** s{Beer} = 3/5 = 60%
 - **Ex.** $s{Diaper} = 4/5 = 80\%$
 - **Ex.** s{Beer, Eggs} = 1/5 = 20%

Basic Concepts: Frequent Itemsets (Patterns)

 An itemset (or a pattern) X is *frequent* if the support of X is no less than a *minsup* threshold σ

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a *minsup* threshold σ
- Let σ = 50% (σ: minsup threshold)
 For the given 5-transaction dataset
 All the frequent 1-itemsets:
 - Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - [Beer, Diaper]: 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a *minsup* threshold σ
- Let σ = 50% (σ: minsup threshold)
 For the given 5-transaction dataset
 All the frequent 1-itemsets:
 - Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - [Beer, Diaper]: 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Do these itemsets (shown on the left) form the complete set of frequent kitemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

Comparing with itemsets, rules can be more telling

- \square Ex. Diaper \rightarrow Beer
 - Buying diapers may likely lead to buying beers

- Ex. Diaper → Beer : Buying diapers may likely lead to buying beers
- □ How strong is this rule? (support, confidence)
 - Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both X and Y are itemsets

- Ex. Diaper → Beer: Buying diapers may likely lead to buying beers
- □ How strong is this rule? (support, confidence)
 - Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both X and Y are itemsets
 - Support, s: The probability that a transaction contains X \cup Y
 - Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Ex. Diaper → Beer : Buying diapers may likely lead to buying beers
- □ How strong is this rule? (support, confidence)
 - Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both X and Y are itemsets
 - Support, s: The probability that a transaction contains X \cup Y
 - Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
 - Confidence, c: The conditional probability that a transaction containing X also contains Y
 - Calculation: c = sup(X \cup Y) / sup(X)
 - Ex. c = sup{Diaper, Beer}/sup{Diaper} = ¾ = 0.75

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Association rule mining

- Given two thresholds: *minsup, minconf*
- **•** Find all of the rules, $X \rightarrow Y$ (s, c)
 - such that, $s \ge minsup$ and $c \ge minconf$

Association rule mining

- Given two thresholds: *minsup, minconf*
- **\square** Find all of the rules, $X \rightarrow Y$ (s, c)
 - such that, $s \ge minsup$ and $c \ge minconf$
- \Box Let minsup = 50%
 - Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - □ Freq. 2-itemsets: {Beer, Diaper}: 3

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Association rule mining

- Given two thresholds: *minsup, minconf*
- **The Find all of the rules**, $X \rightarrow Y$ (s, c)
 - such that, $s \ge minsup$ and $c \ge minconf$
- $\Box \quad \text{Let } minsup = 50\%$
 - Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - □ Freq. 2-itemsets: {Beer, Diaper}: 3
- $\Box \quad \text{Let minconf} = 50\%$
 - $\square \quad Beer \rightarrow Diaper (60\%, 100\%)$
 - $\Box \quad \text{Diaper} \rightarrow \text{Beer} \quad (60\%, 75\%)$

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Association rule mining

- Given two thresholds: *minsup, minconf*
- **The Find all of the rules**, $X \rightarrow Y$ (s, c)
 - such that, $s \ge minsup$ and $c \ge minconf$
- $\Box \quad \text{Let } minsup = 50\%$
 - Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - □ Freq. 2-itemsets: {Beer, Diaper}: 3
- $\Box \quad \text{Let minconf} = 50\%$
 - Beer → Diaper (60%, 100%)
 - $\Box \quad \text{Diaper} \rightarrow \text{Beer} \quad (60\%, 75\%)$

(Q: Are these all rules?)

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Association rule mining

- Given two thresholds: *minsup, minconf*
- **•** Find all of the rules, $X \rightarrow Y$ (s, c)
 - such that, $s \ge minsup$ and $c \ge minconf$
- \Box Let minsup = 50%
 - Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - □ Freq. 2-itemsets: {Beer, Diaper}: 3
- $\Box \quad \text{Let minconf} = 50\%$
 - $\square \quad Beer \rightarrow Diaper (60\%, 100\%)$
 - $\Box \quad \text{Diaper} \rightarrow \text{Beer} \quad (60\%, 75\%)$

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

Challenge: There Are Too Many Frequent Patterns!

□ A long pattern contains a combinatorial number of sub-patterns

- □ How many frequent itemsets does the following TDB₁ contain?
 - **TDB**_{1:} $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Assuming (absolute) minsup = 1
 - Let's have a try
 - 1-itemsets: $\{a_1\}$: 2, $\{a_2\}$: 2, ..., $\{a_{50}\}$: 2, $\{a_{51}\}$: 1, ..., $\{a_{100}\}$: 1,

2-itemsets: {a₁, a₂}: 2, ..., {a₁, a₅₀}: 2, {a₁, a₅₁}: 1 ..., ..., {a₉₉, a₁₀₀}: 1,

..., ..., ..., ... 99-itemsets: {a₁, a₂, ..., a₉₉}: 1, ..., {a₂, a₃, ..., a₁₀₀}: 1 100-itemset: {a₁, a₂, ..., a₁₀₀}: 1

Challenge: There Are Too Many Frequent Patterns!

- A long pattern contains a combinatorial number of sub-patterns
- □ How many frequent itemsets does the following TDB₁ contain?
 - **TDB**_{1:} $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Assuming (absolute) minsup = 1
 - Let's have a try
 - 1-itemsets: $\{a_1\}$: 2, $\{a_2\}$: 2, ..., $\{a_{50}\}$: 2, $\{a_{51}\}$: 1, ..., $\{a_{100}\}$: 1,
 - 2-itemsets: {a₁, a₂}: 2, ..., {a₁, a₅₀}: 2, {a₁, a₅₁}: 1 ..., ..., {a₉₉, a₁₀₀}: 1,

••••, ••••, ••••, •••

99-itemsets: {a₁, a₂, ..., a₉₉}: 1, ..., {a₂, a₃, ..., a₁₀₀}: 1 100-itemset: {a₁, a₂, ..., a₁₀₀}: 1

The total number of frequent itemsets:

$$\binom{100}{1} + \binom{100}{2} + \binom{100}{3} + \dots + \binom{100}{100} = 2^{100} - 1$$

A too huge set for any one to compute or store!

Expressing Patterns in Compressed Form: Closed Patterns

- □ How to handle such a challenge?
- Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y Color X, with the same support as X

Expressing Patterns in Compressed Form: Closed Patterns

- □ How to handle such a challenge?
- Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y Color X, with the same support as X
 - **Let Transaction DB TDB**₁: $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?
 - Two: P_1 : "{ a_1 , ..., a_{50} }: 2"; P_2 : "{ a_1 , ..., a_{100} }: 1"

Why?

Expressing Patterns in Compressed Form: Closed Patterns

- □ How to handle such a challenge?
- Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y Contribution X, with the same support as X
 - **Let Transaction DB TDB**₁: $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?

• Two:
$$P_1$$
: "{ a_1 , ..., a_{50} }: 2"; P_2 : "{ a_1 , ..., a_{100} }: 1"

- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

Expressing Patterns in Compressed Form: Max-Patterns

Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y Columbba X

Expressing Patterns in Compressed Form: Max-Patterns

- Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - **Let Transaction DB TDB**₁: $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - One: P: "{a₁, ..., a₁₀₀}: 1"

Expressing Patterns in Compressed Form: Max-Patterns

- Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - **Let Transaction DB TDB**₁: $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - We only know $\{a_1, ..., a_{40}\}$ is frequent
 - **D** But we do not know the real support of $\{a_1, \ldots, a_{40}\}, \ldots, any more \}$
 - Thus in many applications, close-patterns are more desirable than max-patterns

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

Efficient Pattern Mining Methods

The Apriori Algorithm

Application in Classification

Pattern Evaluation

Summary

Efficient Pattern Mining Methods

- The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

The Downward Closure Property of Frequent Patterns

- Observation: From $TDB_{1:}T_1$: { $a_1, ..., a_{50}$ }; T_2 : { $a_1, ..., a_{100}$ }
 - We get a frequent itemset: $\{a_1, ..., a_{50}\}$
 - Also, its subsets are all frequent: {a₁}, {a₂}, ..., {a₅₀}, {a₁, a₂}, ..., {a₁, ..., a₄₉}, ...
 - There must be some hidden relationships among frequent patterns!

The Downward Closure Property of Frequent Patterns

- Observation: From $TDB_{1:}T_1$: { $a_1, ..., a_{50}$ }; T_2 : { $a_1, ..., a_{100}$ }
 - We get a frequent itemset: {a₁, ..., a₅₀}
 - Also, its subsets are all frequent: {a₁}, {a₂}, ..., {a₅₀}, {a₁, a₂}, ..., {a₁, ..., a₄₉}, ...
 - There must be some hidden relationships among frequent patterns!
- □ The downward closure (also called "Apriori") property of frequent patterns
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - Apriori: Any subset of a frequent itemset must be frequent

A sharp knife for pruning!

The Downward Closure Property of Frequent Patterns

- Observation: From $TDB_{1:}T_1$: { $a_1, ..., a_{50}$ }; T_2 : { $a_1, ..., a_{100}$ }
 - We get a frequent itemset: {a₁, ..., a₅₀}
 - Also, its subsets are all frequent: {a₁}, {a₂}, ..., {a₅₀}, {a₁, a₂}, ..., {a₁, ..., a₄₉}, ...
 - There must be some hidden relationships among frequent patterns!
- □ The downward closure (also called "Apriori") property of frequent patterns
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - Apriori: Any subset of a frequent itemset must be frequent
- Efficient mining methodology

A sharp knife for pruning!

If any subset of an itemset S is infrequent, then there is no chance for S to be frequent—why do we even have to consider S!?

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated!
 - (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach:
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach:
 - Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth:
 - FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: A Candidate Generation & Test Approach

Outline of Apriori (level-wise, candidate generation and test)

Initially, scan DB once to get frequent 1-itemset

Repeat

- Generate length-(k+1) candidate itemsets from length-k frequent itemsets
- Test the candidates against DB to find frequent (k+1)-itemsets
- Set k := k +1
- Until no frequent or candidate set can be generated
- Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

```
C<sub>k</sub>: Candidate itemset of size k
F_k: Frequent itemset of size k
K := 1;
F_k := \{ \text{frequent items} \}; // \text{frequent 1-itemset} 
While (F_k != \emptyset) do \{ // \text{when } F_k \text{ is non-empty} \}
    C_{k+1} := candidates generated from F_k; // candidate generation
    Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup;
    k := k + 1
return \cup_{\nu} F_{\nu}
                          // return F_{k} generated at each level
```

The Apriori Algorithm—An Example

The Apriori Algorithm—An Example

Apriori: Implementation Tricks

- □ How to generate candidates?
 - **Step 1:** self-joining F_k
 - Step 2: pruning

Apriori: Implementation Tricks

- □ How to generate candidates?
 - **D** Step 1: self-joining F_k
 - Step 2: pruning
- Example of candidate-generation
 - $\blacksquare F_3 = \{abc, abd, acd, ace, bcd\}$
 - Self-joining: $F_3 * F_3$
 - abcd from abc and abd
 - acde from acd and ace

Apriori: Implementation Tricks

- How to generate candidates?
 - **Step 1:** self-joining F_k
 - Step 2: pruning
- Example of candidate-generation
 - $\blacksquare F_3 = \{abc, abd, acd, ace, bcd\}$
 - **Self-joining:** $F_3 * F_3$
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in F_3
 - $\Box C_4 = \{ abcd \}$

Candidate Generation: An SQL Implementation

Apriori Adv/Disadv

Advantages:

- Uses large itemset property
- Easily parallelized
- Easy to implement

Disadvantages:

- Assumes transaction database is memory resident
- Requires up to m database scans

Classification based on Association Rules (CBA)

□ Why?

- Can effectively uncover the correlation structure in data
- AR are typically quite scalable in practice
- Rules are often very intuitive
 - Hence classifier built on intuitive rules is easier to interpret
- □ When to use?
 - On large dynamic datasets where class labels are available and the correlation structure is unknown.
 - Multi-class categorization problems
 - E.g. Web/Text Categorization, Network Intrusion Detection

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Efficient Pattern Mining Methods
- Pattern Evaluation

Summary

- Basic Concepts
 - What Is Pattern Discovery? Why Is It Important?
 - Basic Concepts: Frequent Patterns and Association Rules
 - Compressed Representation: Closed Patterns and Max-Patterns
- Efficient Pattern Mining Methods
 - The Downward Closure Property of Frequent Patterns
 - The Apriori Algorithm
 - Extensions or Improvements of Apriori
 - Mining Frequent Patterns by Exploring Vertical Data Format
 - FPGrowth: A Frequent Pattern-Growth Approach
 - Mining Closed Patterns
- Pattern Evaluation
 - Interestingness Measures in Pattern Mining
 - Interestingness Measures: Lift and χ²
 - Null-Invariant Measures
 - Comparison of Interestingness Measures

Recommended Readings (Basic Concepts)

- R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- □ J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

Recommended Readings

(Efficient Pattern Mining Methods)

- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00
- □ M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014

Recommended Readings (Pattern Evaluation)

- C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo.
 Finding interesting rules from large sets of discovered association rules. CIKM'94
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
- T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010