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Two Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short signatures, while 

preserving similarity

Host of follow up applications

e.g. Similarity Search

Data Placement

Clustering etc.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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The Big Picture

Document

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarity Search

Data Placement

Clustering etc.



SHINGLING

Step 1: Shingling: Convert documents to sets

Document

The set

of strings

of length k

that appear

in the document
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Define: Shingles

 A k-shingle (or k-gram) for a document is a sequence of k tokens 

that appears in the doc

 Tokens can be characters, words or something else, depending on the 

application

 Assume tokens = characters for examples

 Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Similarity Metric for Shingles

 Document D1 is a set of its k-shingles C1=S(D1)

 Equivalently, each document is a 0/1 vector in the space of k-shingles

 Each unique shingle is a dimension

 Vectors are very sparse

 A natural similarity measure is the Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Motivation for Minhash/LSH

 Suppose we need to find similar documents among 𝑵 = 𝟏 million 

documents

 Naïvely, we would have to compute pairwise Jaccard similarities for 

every pair of docs

 𝑵(𝑵− 𝟏)/𝟐 ≈ 5*1011 comparisons

 At 105 secs/day and 106 comparisons/sec, 

it would take 5 days

 For 𝑵 = 𝟏𝟎 million, it takes more than a year…

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



MINHASHING

Step 2: Minhashing: Convert large variable length sets to 

short fixed-length signatures, while preserving similarity

Docu-

ment

The set

of strings

of length k

that appear

in the document

Signatures:

short integer

vectors that 

represent the

sets, and reflect 

their similarity



10

From Sets to Boolean Matrices

 Rows = elements (shingles)

 Columns = sets (documents)

 1 in row e and column s if and only if e is a valid shingle of 

document represented by s

 Column similarity is the Jaccard similarity of the corresponding 

sets (rows with value 1)

 Typical matrix is sparse!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 So far:

 A documents → a set of shingles

 Represent a set as a boolean vector in a matrix

 Next goal: Find similar columns while computing 

small signatures

 Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 Next Goal: Find similar columns based on small signatures

 Naïve approach:

 1) Signatures of columns: small summaries of columns

 2) Examine pairs of signatures to find similar columns

◼ Essential: Similarities of signatures and columns are related

 3) Optional: Check that columns with similar signatures are really similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 Next Goal: Find similar columns based on small signatures

 Naïve approach:

 1) Signatures of columns: small summaries of columns

 2) Examine pairs of signatures to find similar columns

◼ Essential: Similarities of signatures and columns are related

 3) Optional: Check that columns with similar signatures are really similar

 Warnings:

 Comparing all pairs may take too much time: Job for LSH

◼ These methods can produce false negatives, and even false positives (if the optional check is 

not made) J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

 If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Hash docs into buckets. Expect that “most” pairs of near duplicate docs 

hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Goal: Find a hash function h(·) such that:

 if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on the similarity metric:

 Not all similarity metrics have a suitable hash function

 There is a suitable hash function for the Jaccard similarity: It is called 

Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Imagine the rows of the boolean matrix permuted under random 

permutation 

 Define a “hash” function h(C) = the index of the first (in the 

permuted order ) row in which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash functions (that is, 

permutations) to create a signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Imagine the rows of the boolean matrix permuted under random 

permutation 

 Define a “hash” function h(C) = the index of the first (in the 

permuted order ) row in which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash functions (that is, 

permutations) to create a signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

4

5

1

6

7

3

2

2nd element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation 

is the first to map to a 1

4th element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation 

is the first to map to a 1

4th element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

Note: Another (equivalent) way is to 

store row indexes
or raw shingles
(e.g. mouse, lion):

1 5 1 5

2 3 1 3

6 4 6 4

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hash Signatures

 Pick K=100 random permutations of the rows

 Think of sig(C) as a column vector

 sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column 

C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is small  ~𝟏𝟎𝟎 bytes!

 We achieved our goal! We “compressed” long bit vectors into short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Key Fact 

For two sets A, B, and a min-hash function mhi():

Unbiased estimator for Sim using K hashes (notation policy – this 

is a different K from size of shingle)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Key Fact 

For two sets A, B, and a min-hash function mhi():

Unbiased estimator for Sim using K hashes (notation policy – this 

is a different K from size of shingle)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

The similarity of  two signatures is the fraction of the hash functions in which they agree
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Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:

1-3      2-4    1-2     3-4

Col/Col 0.75    0.75    0        0

Sig/Sig ?          ?       ?        ?

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation 
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Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:

1-3      2-4    1-2     3-4

Col/Col 0.75    0.75    0        0

Sig/Sig 0.67    1.00     0        0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation 
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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The Min-Hash Property 

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Given a set X, the probability that any one element is the min-

hash under  is 1/|X|  (0)

◼ It is equally likely that any y X is mapped to the min element 

 Given a set X, the probability that one of any k elements is the 

min-hash under  is k/|X|     (1)
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Given a set X, the probability that any one element is the min-

hash under  is 1/|X|  (0)

◼ It is equally likely that any y X is mapped to the min element 

 Given a set X, the probability that one of any k elements is the 

min-hash under  is k/|X|     (1)

 For C1  C2, the probability that any element is the min-hash 

under  is 1/|C1  C2| (from 0)  (2)

 For any C1 and C2, the probability of choosing the same min-hash 

under  is |C1C2|/|C1  C2|  from (1) and (2)
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Similarity for Signatures

 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)

 Now generalize to multiple hash functions

 The similarity of  two signatures is the fraction of the hash functions in 

which they agree

 Note: Because of the Min-Hash property, the similarity of columns is 

the same as the expected similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:

1-3      2-4    1-2     3-4

Col/Col 0.75    0.75    0        0

Sig/Sig 0.67    1.00     0        0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation 
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Min-Hash Signatures

 Pick K=100 random permutations of the rows

 Think of sig(C) as a K*1 column vector

 sig(C)[i] = according to the i-th permutation, the index of the first 

row that has a 1 in column C

sig(C)[i] = min (i(C))

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hash Signatures

 Pick K=100 random permutations of the rows

 Think of sig(C) as a K*1 column vector

 sig(C)[i] = according to the i-th permutation, the index of the first 

row that has a 1 in column C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is small  ~𝟏𝟎𝟎 bytes!

 We achieved our goal! We “compressed” long bit vectors into 

short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Implementation Trick

 Permuting rows even once is prohibitive

 Row hashing!

 Pick K = 100 hash functions ki

 Ordering under ki gives a random row permutation!

 One-pass implementation

 For each column C and hash-func. ki keep a “slot” for the min-hash value

 Initialize all sig(C)[i] = 

 Scan rows looking for 1s

◼ Suppose row J has 1 in column C

◼ Then for each ki :

◼ If ki(J) < sig(C)[i], then sig(C)[i]  ki(J)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)

Page 13: http://infolab.stanford.edu/~ullman/mmds/ch3.pdf

http://infolab.stanford.edu/~ullman/mmds/ch3.pdf
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Summary: Two Key Steps

 Shingling: Convert documents to sets

 We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short signatures, while preserving similarity

 We used similarity preserving hashing to generate signatures with property Pr[h(C1) = h(C2)] 

= sim(C1, C2)

 We used hashing to get around generating random permutations

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



LOCALITY SENSITIVE HASHING

Step 3: Locality-Sensitive Hashing: Focus on pairs of signatures likely to 

be from similar documents

Document

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity
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LSH: First Cut

 Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, 

e.g., s=0.8)

 LSH – General idea: Use a function f(x,y) that tells whether x and y is a candidate pair:

a pair of elements whose similarity must be evaluated

 For Min-Hash matrices: 

 Hash columns of signature matrix M to many buckets

 Each pair of documents that hashes into the same bucket is a candidate pair

1212

1412

2121

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Candidates from Min-Hash

 Pick a similarity threshold s (0 < s < 1)

 Columns x and y of M are a candidate pair if their signatures 

agree on at least fraction s of their rows: 

M (i, x) = M (i, y) for at least frac. s values of I

 We expect documents x and y to have the same (Jaccard) similarity as 

their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121



42

LSH for Min-Hash

 Big idea: Hash columns of 

signature matrix M several times

 Arrange that (only) similar columns are likely to hash to the 

same bucket, with high probability

 Candidate pairs are those that hash to the same bucket

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121
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Partition M into b Bands

Signature matrix  M

r rows

per band

b bands

One

signature

1212

1412

2121
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Partition M into Bands

 Divide matrix M into b bands of r rows

 For each band, hash its portion of each column to a hash 

table with k buckets

 Make k as large as possible



45

Partition M into Bands

 Divide matrix M into b bands of r rows

 For each band, hash its portion of each column to a hash 

table with k buckets

 Make k as large as possible

 Candidate column pairs are those that hash to the same 

bucket for ≥ 1 band

 Tune b and r to catch most similar pairs, but few non-similar 

pairs
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Matrix M

r rows b bands

Buckets
Columns 2 and 6 are probably 

identical (candidate pair)

Columns 6 and 7 are surely 

different.

Hashing Bands
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Simplifying Assumption

 There are enough buckets that columns are unlikely to hash to the 

same bucket unless they are identical in a particular band

 Hereafter, we assume that “same bucket” means “identical in that 

band”

 Assumption needed only to simplify analysis, not for correctness of 

algorithm
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Example of Bands

Assume the following case:

 Suppose 100,000 columns of M (100k docs)

 Signatures of 100 integers (rows)

 Therefore, signatures take 40Mb

 Choose b = 20 bands of r = 5 integers/band

 Goal: Find pairs of documents that are at least s = 0.8 similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121
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C1, C2 are 80% Similar

 Find pairs of  s=0.8 similarity, set b=20, r=5

 Assume: sim(C1, C2) = 0.8

 Since sim(C1, C2)  s, we want C1, C2 to be a candidate pair: We want them to hash to at least 1 

common bucket (at least one band is identical)

1212

1412

2121
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C1, C2 are 80% Similar

 Find pairs of  s=0.8 similarity, set b=20, r=5

 Assume: sim(C1, C2) = 0.8

 Since sim(C1, C2)  s, we want C1, C2 to be a candidate pair: We want them to hash to at least 1 

common bucket (at least one band is identical)

 Probability C1, C2 identical in one particular band: (0.8)5 = 0.328

 Probability C1, C2 are not similar in any of the 20 bands: (1-0.328)20 = 0.00035

 i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)

 We would find 99.965% pairs of truly similar documents

1212

1412

2121
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C1, C2 are 30% Similar

 Find pairs of  s=0.8 similarity, set b=20, r=5

 Assume: sim(C1, C2) = 0.3

 Since sim(C1, C2) < s we want C1, C2 to hash to NO common buckets (all bands should be 

different)

1212

1412

2121
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C1, C2 are 30% Similar

 Find pairs of  s=0.8 similarity, set b=20, r=5

 Assume: sim(C1, C2) = 0.3

 Since sim(C1, C2) < s we want C1, C2 to hash to NO common buckets (all bands should be 

different)

 Probability C1, C2 identical in one particular band: (0.3)5 = 0.00243

 Probability C1, C2 identical in at least 1 of 20 bands: 1 - (1 - 0.00243)20 = 

0.0474

 In other words, approximately 4.74% pairs of docs with similarity 30% end up becoming 

candidate pairs

◼ They are false positives since we will have to examine them (they are candidate pairs) but then it will 

turn out their similarity is below threshold s

1212

1412

2121
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LSH Involves a Tradeoff

 Pick:

 The number of Min-Hashes (rows of M) 

 The number of bands b, and 

 The number of rows r per band

to balance false positives/negatives

 Example: If we had only 15 bands of 5 rows, the number of false 

positives would go down, but the number of false negatives would go 

up

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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2121
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Analysis of LSH – What We Want

Similarity t =sim(C1, C2) of two sets

Probability

of sharing
a bucket

S
im

ila
ri
ty

 t
h
re

sh
o
ld

 s

No chance

if t < s

Probability = 

1 if t > s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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What 1 Band of 1 Row Gives You

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Remember:

Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability

of sharing
a bucket
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b bands, r rows/band

 Columns C1 and C2 have similarity t

 Pick any band (r rows)

 Prob. that all rows in band equal = tr

 Prob. that some row in band unequal = 1 - tr

 Prob. that no band identical  = (1 - tr)b

 Prob. that at least 1 band identical =  1 - (1 - tr)b

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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What b Bands of r Rows Gives You

t r 1 -( )b 1 -

At least

one band
identical

t ~ (1/b)1/r 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarity t=sim(C1, C2) of two sets

Probability

of sharing
a bucket
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Example: b = 20; r = 5

 Similarity threshold s

 Prob. that at least 1 band is identical:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996
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Picking r and b: The S-curve

 Picking r and b to get the best S-curve

 50 hash-functions (r=5, b=10)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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LSH Summary

 Tune M, b, r to get almost all pairs with similar signatures, but 
eliminate most pairs that do not have similar signatures

 Check in main memory that candidate pairs really do have 
similar signatures

 Optional: In another pass through data, check that the remaining 
candidate pairs really represent similar documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Summary: 3 Steps

 Shingling: Convert documents to sets

 We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short signatures, while preserving similarity

 We used similarity preserving hashing to generate signatures with property Pr[h(C1) = h(C2)] 

= sim(C1, C2)

 We used hashing to get around generating random permutations

 Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar 

documents

 We used hashing to find candidate pairs of similarity  s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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