CSE 5243 INTRO. TO DATA MINING

Locality Sensitive Hashing (LSH) Review, Proof, Examples

Huan Sun, CSE@The Ohio State University

Slides adapted from Prof. Jiawei Han @UIUC, Prof. Srinivasan Parthasarathy @OSU

MMDS Secs. 3.2-3.4.

Slides adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

FINDING SIMILAR ITEMS

Slides also adapted from Prof. Srinivasan Parthasarathy @OSU

Two Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity

Host of follow up applications e.g. Similarity Search Data Placement Clustering etc.

The Big Picture

- of length **k** that appear
- in the document

SHINGLING

Step 1: Shingling: Convert documents to sets

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- □ Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$

Similarity Metric for Shingles

Document D_1 is a set of its k-shingles $C_1 = S(D_1)$

- \Box Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- □ A natural similarity measure is the Jaccard similarity:

 $sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$

Motivation for Minhash/LSH

Suppose we need to find similar documents among N = 1 million documents

Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs

□ $N(N-1)/2 \approx 5*10^{11}$ comparisons

At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days

 \square For N = 10 million, it takes more than a year...

MINHASHING

Step 2: Minhashing: Convert large variable length sets to short fixed-length signatures, while preserving similarity

From Sets to Boolean Matrices

Rows = elements (shingles)

Note: Transposed Document Matrix

Columns = sets (documents)

1 in row e and column s if and only if e is a valid shingle of document represented by s

- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!

Outline: Finding Similar Columns

So far:

- \square A documents \rightarrow a set of shingles
- Represent a set as a boolean vector in a matrix
- Next goal: Find similar columns while computing small signatures

Similarity of columns == similarity of signatures

Outline: Finding Similar Columns

Next Goal: Find similar columns based on small signatures

□ Naïve approach:

- 1) Signatures of columns: small summaries of columns
- **2) Examine pairs of signatures** to find similar columns
 - **Essential:** Similarities of signatures and columns are related
- **3) Optional:** Check that columns with similar signatures are really similar

Outline: Finding Similar Columns

Next Goal: Find similar columns based on small signatures

□ Naïve approach:

1) Signatures of columns: small summaries of columns

2) Examine pairs of signatures to find similar columns

Essential: Similarities of signatures and columns are related

3) Optional: Check that columns with similar signatures are really similar

□ Warnings:

Comparing all pairs may take too much time: Job for LSH

These methods can produce false negatives, and even false positives (if the optional check is not made)
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Hashing Columns (Signatures) : LSH principle

Key idea: "hash" each column C to a small signature h(C), such that:

- **(1)** h(C) is small enough that the signature fits in RAM
- **(2)** $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Goal: Find a hash function $h(\cdot)$ such that:

- If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- □ If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

Goal: Find a hash function $h(\cdot)$ such that:

■ if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$ ■ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function

There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

Imagine the rows of the boolean matrix permuted under random permutation π

- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1: $h_{\pi}(C) = min_{\pi} \pi(C)$
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Min-Hashing

Imagine the rows of the boolean matrix permuted under random permutation π

- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1: $h_{\pi}(C) = min_{\pi} \pi(C)$
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Mining of Massive Datasets, http://www.mmds.org

Mining of Massive Datasets, http://www.mmds.org

Note: Another (equivalent) way is to store row indexes or raw shingles (e.g. mouse, lion):

1	5	1	5
2	3	1	3
6	4	6	4

Mining of Massive Datasets, http://www.mmds.org

Min-Hash Signatures

Pick K=100 random permutations of the rows

- □ Think of **sig(C)** as a column vector
 - sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = min(\pi_i(C))$

□ Note: The sketch (signature) of document C is small ~100 bytes!

We achieved our goal! We "compressed" long bit vectors into short signatures

For two sets A, B, and a min-hash function mh_i():

$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Unbiased estimator for Sim using *K* hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A,B) = \frac{1}{k} \sum_{i=1:k} I[mh_i(A) = mh_i(B)]$$

For two sets A, B, and a min-hash function mhi():

$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Unbiased estimator for Sim using *K* hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A,B) = \frac{1}{k} \sum_{i=1:k} I[mh_i(A) = mh_i(B)]$$

The similarity of two signatures is the fraction of the hash functions in which they agree

Permutation π

 π Input matrix (Shingles x Documents)

Signature matrix M

Similarities:

	1-3	2-4	1-2	3-4	
ol/Col	0.75	0.75	0	0	
ig/Sig	Ś	Ś	Ś	Ś	

Permutation π

 π Input matrix (Shingles x Documents)

Signature matrix M

Similarities:

The Min-Hash Property

Choose a random permutation π

- $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- □ Why?

The Min-Hash Property

\Box Choose a random permutation π

 $\Box \underline{\text{Claim:}} \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

□ Given a set X, the probability that any one element is the minhash under π is 1/|X| \leftarrow (0)

It is equally likely that any $y \in X$ is mapped to the *min* element

□ Given a set X, the probability that one of any **k** elements is the min-hash under π is $\mathbf{k}/|X|$ ← (1)

The Min-Hash Property

\square Choose a random permutation π

 $\Box \underline{\text{Claim:}} \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

□ Given a set X, the probability that any one element is the minhash under π is 1/|X| \leftarrow (0)

It is equally likely that any $y \in X$ is mapped to the *min* element

- □ Given a set X, the probability that one of any **k** elements is the min-hash under π is $\mathbf{k}/|X|$ ← (1)
- For $C_1 \cup C_2$, the probability that any element is the min-hash under π is $1/|C_1 \cup C_2|$ (from 0) \leftarrow (2)
- For any C_1 and C_2 , the probability of choosing the same min-hash under π is $|C_1 \cap C_2| / |C_1 \cup C_2|$ ← from (1) and (2)

Similarity for Signatures

- $\square \text{ We know: } \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Permutation π

n π Input matrix (Shingles x Documents)

Signature matrix M

Similarities:

	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	0	0
ig/Sig	0.67	1.00	0	0

Min-Hash Signatures

Pick K=100 random permutations of the rows

- □ Think of sig(C) as a K*1 column vector
- sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = min(\pi_i(C))$

Min-Hash Signatures

Pick K=100 random permutations of the rows

- □ Think of sig(C) as a K*1 column vector
- sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = min(\pi_i(C))$

 \square Note: The sketch (signature) of document C is small ~ 100 bytes!

We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

Permuting rows even once is prohibitive

- Row hashing!
 - **D** Pick $\mathbf{K} = 100$ hash functions k_i
 - Ordering under k_i gives a random row permutation!

One-pass implementation

- **\square** For each column **C** and hash-func. k_i keep a "slot" for the min-hash value
- □ Initialize all $sig(C)[i] = \infty$
- Scan rows looking for 1s
 - Suppose row J has 1 in column C
 - Then for each k_i :
 - If $k_i(J) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(J)$

Page 13: <u>http://infolab.stanford.edu/~ullman/mmds/ch3.pdf</u>

How to pick a random hash function h(x)? Universal hashing: $h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N$ where: a,b ... random integers p ... prime number (p > N)

Summary: Two Key Steps

Shingling: Convert documents to sets

We used hashing to assign each shingle an ID

□ Min-Hashing: Convert large sets to short signatures, while preserving similarity

- We used similarity preserving hashing to generate signatures with property $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)]$ = sim(C₁, C₂)
- We used hashing to get around generating random permutations

LOCALITY SENSITIVE HASHING

Step 3: Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

LSH: First Cut

214112122121

Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)

LSH – General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated

For Min-Hash matrices:

- Hash columns of signature matrix M to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair

Candidates from Min-Hash

Pick a similarity threshold s (0 < s < 1)</p>

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 M (i, x) = M (i, y) for at least frac. s values of I
 - We expect documents x and y to have the same (Jaccard) similarity as their signatures

LSH for Min-Hash

Big idea: Hash columns of signature matrix M several times

Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

Candidate pairs are those that hash to the same bucket

signature

Partition M into Bands

 \Box Divide matrix **M** into **b** bands of **r** rows

For each band, hash its portion of each column to a hash table with k buckets

Make k as large as possible

Partition M into Bands

Divide matrix *M* into *b* bands of *r* rows

For each band, hash its portion of each column to a hash table with k buckets

Make k as large as possible

Candidate column pairs are those that hash to the same bucket for ≥ 1 band

Tune b and r to catch most similar pairs, but few non-similar pairs

Hashing Bands

Simplifying Assumption

There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

Hereafter, we assume that "same bucket" means "identical in that band"

Assumption needed only to simplify analysis, not for correctness of algorithm

Example of Bands

Assume the following case:

- □ Suppose 100,000 columns of **M** (100k docs)
- Signatures of 100 integers (rows)
- □ Therefore, signatures take 40Mb
- \Box Choose **b** = 20 bands of **r** = 5 integers/band

Goal: Find pairs of documents that are at least s = 0.8 similar

2

1

2

4

2

1

2

2

1

 C_1, C_2 are 80% Similar

□ Find pairs of \geq s=0.8 similarity, set b=20, r=5

- **Assume:** $sim(C_1, C_2) = 0.8$
 - □ Since sim(C₁, C₂) ≥ s, we want C₁, C₂ to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

 C_1, C_2 are 80% Similar

□ Find pairs of \geq s=0.8 similarity, set b=20, r=5

- **Assume:** $sim(C_1, C_2) = 0.8$
 - Since sim(C₁, C₂) ≥ s, we want C₁, C₂ to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- **Probability C**₁, C₂ identical in one particular band: $(0.8)^5 = 0.328$
- Probability C₁, C₂ are *not* similar in any of the 20 bands: (1-0.328)²⁰ = 0.00035
 i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find 99.965% pairs of truly similar documents

 C_1 , C_2 are 30% Similar

□ Find pairs of \ge s=0.8 similarity, set b=20, r=5

- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since sim(C₁, C₂) < s we want C₁, C₂ to hash to NO common buckets (all bands should be different)

 C_1, C_2 are 30% Similar

□ Find pairs of \ge s=0.8 similarity, set b=20, r=5

- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since sim(C₁, C₂) < s we want C₁, C₂ to hash to NO common buckets (all bands should be different)
- **Probability C**₁, C₂ identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C₁, C₂ identical in at least 1 of 20 bands: 1 (1 0.00243)²⁰ = 0.0474
 - In other words, approximately 4.74% pairs of docs with similarity 30% end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Involves a Tradeoff

Der Pick:

- The number of Min-Hashes (rows of M)
- The number of bands b, and
- The number of rows r per band
- to balance false positives/negatives
- Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

2

1

2

4

1

2

2

1

2

1

Analysis of LSH – What We Want

Similarity $t = sim(C_1, C_2)$ of two sets \longrightarrow

What 1 Band of 1 Row Gives You

Similarity $t = sim(C_1, C_2)$ of two sets \longrightarrow

b bands, r rows/band

- \Box Columns C₁ and C₂ have similarity **t**
- Pick any band (r rows)
 - Prob. that all rows in band equal = t^r
 - **Prob.** that some row in band unequal = $1 t^r$
- □ Prob. that no band identical = $(1 t^r)^b$
- □ Prob. that at least 1 band identical = $1 (1 t^r)^b$

What b Bands of r Rows Gives You

Similarity $t = sim(C_1, C_2)$ of two sets \longrightarrow

Example:
$$b = 20; r = 5$$

Similarity threshold s

Prob. that at least 1 band is identical:

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Picking r and b: The S-curve

Picking r and b to get the best S-curve

■ 50 hash-functions (r=5, b=10)

Blue area: False Negative rate Green area: False Positive rate

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

LSH Summary

Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

Check in main memory that candidate pairs really do have similar signatures

Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID

□ Min-Hashing: Convert large sets to short signatures, while preserving similarity

- We used similarity preserving hashing to generate signatures with property $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)]$ = sim(C₁, C₂)
- We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - **D** We used hashing to find **candidate pairs** of similarity \geq **s**

