CSE 5243 INTRO. TO DATA MINING

Advanced Frequent Pattern Mining

(Chapter 7)

Huan Sun, CSE@The Ohio State University

Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- ☐ Constraint-Based Frequent Pattern Mining

☐ Sequential Pattern Mining

Constraint-based Data Mining

- □ Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!

Constraint-based Data Mining

- □ Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!

- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - System optimization: explores such constraints for efficient mining—constraintbased mining

Review

Categories of Constraints

Constraint 1 (Item constraint). An item constraint specifies what are the particular individual or groups of items that should or should not be present in the pattern. \Box

For example, a dairy company may be interested in patterns containing only dairy products, when it mines transactions in a grocery store.

Constraint 3 (Model-based constraint). A model-based constraint looks for patterns which are sub- or superpatterns of some given patterns (models).

For example, a travel agent may be interested in what other cities that a visitor is likely to travel if s/he visits both Washington and New York city. That is, they want to find frequent patterns which are super-patterns of {Washington, New York city}.

Constraint 2 (Length constraint). A length constraint specifies the requirement on the length of the patterns, i.e., the number of items in the patterns. \Box

For example, when mining classification rules for documents, a user may be interested in only frequent patterns with at least 5 keywords, a typical length constraint.

CONSTRAINT 4 (AGGREGATE CONSTRAINT). An aggregate constraint is on an aggregate of items in a pattern, where the aggregate function can be SUM, AVG, MAX, MIN, etc.

For example, a marketing analyst may like to find frequent patterns where the average price of all items in each pattern is over \$100.

Constrained Frequent Pattern Mining

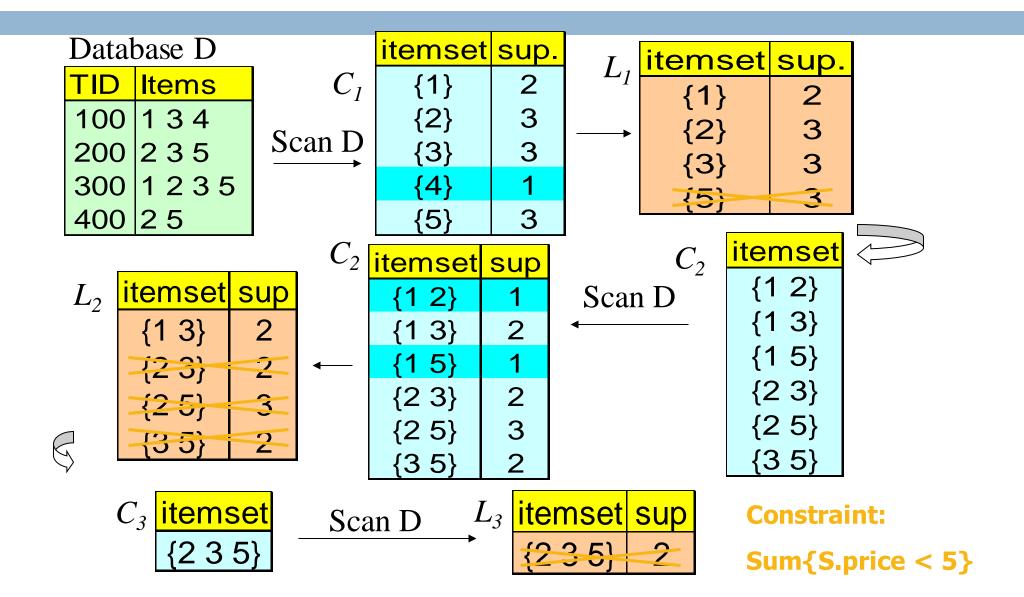
- Given a frequent pattern mining query with a set of constraints C, the algorithm should be
 - sound: it only finds frequent sets that satisfy the given constraints C
 - complete: all frequent sets satisfying the given constraints C are found

Constrained Frequent Pattern Mining

- Given a frequent pattern mining query with a set of constraints C, the algorithm should be
 - sound: it only finds frequent sets that satisfy the given constraints C
 - complete: all frequent sets satisfying the given constraints C are found
- A naïve solution
 - How?

Review

Naïve Algorithm: Apriori + Constraint (Naïve Solution)



Review

Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

- Given a frequent pattern mining query with a set of constraints C, the algorithm should be
 - sound: it only finds frequent sets that satisfy the given constraints C
 - complete: all frequent sets satisfying the given constraints C are found
- A naïve solution
 - □ First find all frequent sets, and then test them for constraint satisfaction
- More efficient approaches:
 - Analyze the properties of constraints comprehensively
 - Consider them in the frequent pattern computation process.

Properties of a Constraint

Anti-monotonicity

Monotonicity

Anti-Monotonicity in Constraint-Based Mining

- Anti-monotonicity
 - When an itemset S violates the constraint, so does any of its superset

min(S.Price) <= v is anti-monotone?</pre>

Which Constraints Are Anti-Monotone?

Constraint	Antimonotone
v ∈ S	No
S⊇V	no
S⊆V	yes
min(S) ≤ v	no
min(S)≥ v	yes
max(S)≤ v	yes
max(S)≥ v	no
count(S)≤ v	yes
count(S)≥ v	no
sum(S) ≤ v (a ∈ S, a ≥ 0)	yes
sum(S)≥ v (a ∈ S, a ≥ 0)	no
range(S)≤ v	yes
range(S)≥ v	no
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible
support(S)≥ ξ	yes
support(S)≤ξ	no

Monotonicity in Constraint-Based Mining

Monotonicity

- When an intemset S satisfies the constraint, so does any of its superset
- \square sum(S.Price) \ge v is monotone
- \blacksquare min(S.Price) \le v is monotone
- \square Example. C: range(S.profit) ≥ 15
 - Itemset ab satisfies C
 - So does every superset of ab

TDB (min_sup=2)

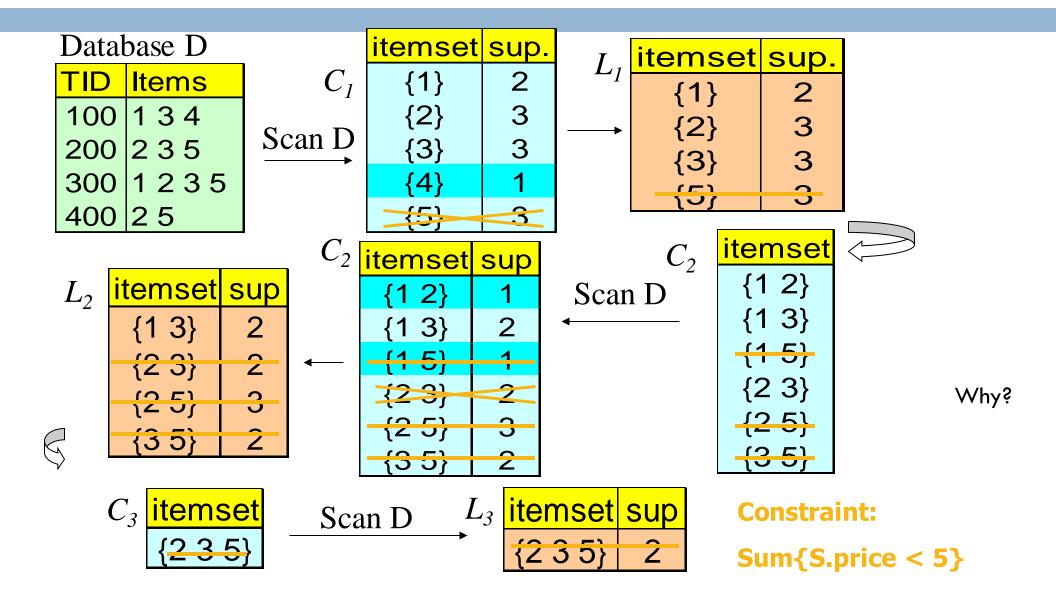
TID	Transaction	
10	a, b, c, d, f	
20	b, c, d, f, g, h	
30	a, c, d, e, f	
40	c, e, f, g	

14	D (14
ltem	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Which Constraints Are Monotone?

Constraint	Monotone
v ∈ S	yes
S⊇V	yes
S⊆V	no
min(S) ≤ v	yes
min(S)≥ v	no
max(S)≤ v	no
max(S)≥ v	yes
count(S)≤v	no
count(S)≥ v	yes
$sum(S) \le v (a \in S, a \ge 0)$	no
$sum(S) \ge v (a \in S, a \ge 0)$	yes
range(S)≤ v	no
range(S)≥ v	yes
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible
support(S)≥ ξ	no
support(S)≤ξ	yes

Pushing the constraint deep into the mining process



Converting "Tough" Constraints

 Convert tough constraints into anti-monotone or monotone by properly ordering items

Converting "Tough" Constraints

- Convert tough constraints into anti-monotone or monotone by properly ordering items
- □ Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - If an itemset afb violates C
 - So does afbh, afb*
 - It becomes anti-monotone!

Converting "Tough" Constraints

- Convert tough constraints into anti-monotone or monotone by properly ordering items
- □ Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - If an itemset afb violates C
 - So does afbh, afb*
 - It becomes anti-monotone!

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Convertible Constraints

□ Let R be an order of items

- Convertible anti-monotone
 - If an itemset S violates a constraint C, so does every itemset having S as a prefix w.r.t. R
 - \blacksquare Ex. $avg(S) \le v$ w.r.t. item value ascending order

Why?

Convertible Constraints

Let R be an order of items

- Convertible anti-monotone
 - If an itemset S violates a constraint C, so does every itemset having S as a prefix w.r.t. R
 - \square Ex. $avg(S) \le v$ w.r.t. item value ascending order
- Convertible monotone
 - If an itemset S satisfies constraint C, so does every itemset having S as a prefix w.r.t.
 R
 - \square Ex. avg(S) $\ge v$ w.r.t. item value ascending order

Strongly Convertible Constraints

- □ avg(X) \geq 25 is convertible anti-monotone w.r.t. item value descending order R: <a, f, g, d, b, h, c, e>
 - If an itemset af violates a constraint C, so does every itemset with af as prefix, such as afd
- avg(X) ≥ 25 is convertible monotone w.r.t. item value ascending order R⁻¹: <e, c, h, b, d, g, f, a>
 - If an itemset d satisfies a constraint C, so does itemsets df and dfa, which having d as a prefix
- □ Thus, $avg(X) \ge 25$ is strongly convertible

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

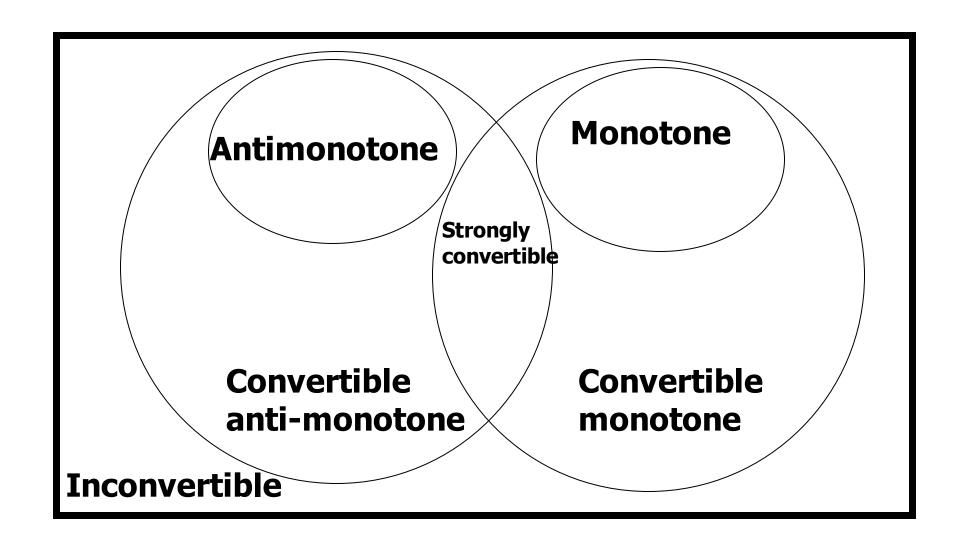
What Constraints Are Convertible?

Constraint	Convertible anti-monotone	Convertible monotone	Strongly convertible
avg(S) ≤ , ≥ v	Yes	Yes	Yes
median(S) ≤ , ≥ v	Yes	Yes	Yes
sum(S) \leq v (items could be of any value, v \geq 0)	Yes	No	No
sum(S) \leq v (items could be of any value, v \leq 0)	No	Yes	No
sum(S) \geq v (items could be of any value, v \geq 0)	No	Yes	No
sum(S) \geq v (items could be of any value, v \leq 0)	Yes	No	No
•••••			

Combing Them Together—A General Picture

Constraint	Antimonotone	Monotone
v ∈ S	no	yes
S⊇V	no	yes
S⊆V	yes	no
min(S) ≤ v	no	yes
min(S)≥ v	yes	no
max(S)≤ v	yes	no
max(S)≥ v	no	yes
count(S)≤ v	yes	no
count(S)≥ v	no	yes
$sum(S) \le v (a \in S, a \ge 0)$	yes	no
$sum(S) \ge v (a \in S, a \ge 0)$	no	yes
range(S)≤ v	yes	no
range(S)≥ v	no	yes
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible	convertible
support(S)≥ ξ	yes	no
support(S)≤ξ	no	yes

Classification of Constraints



Mining With Convertible Constraints

□ C: $avg(S.profit) \ge 25$

TDB (min_sup=2)

TID	Transaction	
10	a, f, d, b, c	
20	f, g, d, b, c	
30	a, f, d, c, e	
40	f, g, h, c, e	

П	Scan	transaction	DB	once
	Juli	TI GIISGCIIOII	טט	OHC

- □ remove infrequent items
 - Item *h* in transaction 40 is dropped
- Itemsets a and f are good

ltem	Profit
а	40
f	30
g	20
d	10
b	0
h	-10
С	-20
е	-30

Can Apriori Handle Convertible Constraint?

- A convertible, not monotone nor anti-monotone cannot be pushed deep into the an Apriori mining algorithm
 - Within the level wise framework, no direct pruning based on the constraint can be made
 - Itemset df violates constraint C: avg(X) > = 25
 - Can we prune df afterwards?

Item	Value
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Can Apriori Handle Convertible Constraint?

- A convertible, not monotone nor anti-monotone cannot be pushed deep into the an Apriori mining algorithm
 - Within the level wise framework, no direct pruning based on the constraint can be made
 - Itemset df violates constraint C: avg(X) > = 25
 - Since adf satisfies C, Apriori needs df to assemble adf, df cannot be pruned

But it can be pushed into frequent-pattern growth framewo		But it can k	se pushed into	o frequent-patterr	n growth framewor
---	--	--------------	----------------	--------------------	-------------------

Item	Value
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10
•	

Mining With Convertible Constraints in FP-Growth Framework

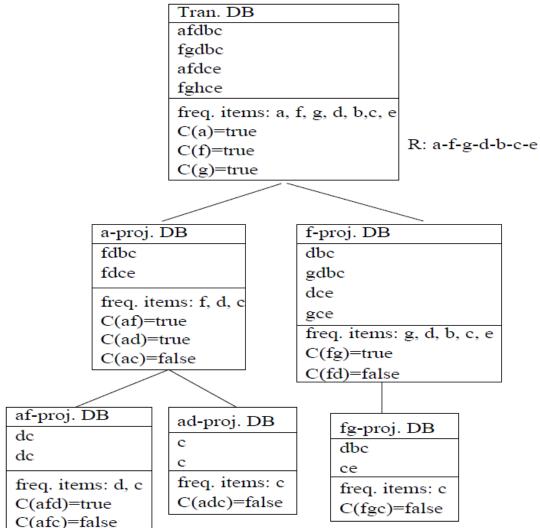
- \square C: avg(X)>=25, min_sup=2
- List items in every transaction in value descending order R: <a, f, g, d, b, h, c, e>
 - □ C is convertible anti-monotone w.r.t. R
- Scan TDB once
 - remove infrequent items
 - Item h is dropped
 - Itemsets a and f are good, ...
- Projection-based mining
 - Imposing an appropriate order on item projection
 - Many tough constraints can be converted into (anti)monotone

Item	Value
а	40
f	30
g	20
d	10
b	0
h	-10
С	-20
е	-30

TDB (min_sup=2)

	<u> </u>
TID	Transaction
10	a, f, d, b, c
20	f, g, d, b, c
30	a, f, d, c, e
40	f, g, h, c, e

Mining With Convertible Constraints in FP-Growth Framework



Constrained Frequent Pattern Mining: A Pattern-Growth View

Jian Pei, Jiawei Han, SIGKDD 2002

Figure 1: Mining frequent itemsets satisfying constraint $avg(S) \geq 25$.

Handling Multiple Constraints

 Different constraints may require different or even conflicting itemordering

□ If there exists an order R s.t. both C_1 and C_2 are convertible w.r.t. R, then there is no conflict between the two convertible constraints

- If there exists conflict on order of items
 - Try to satisfy one constraint first
 - Then using the order for the other constraint to mine frequent itemsets in the corresponding projected database

Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Sequential Pattern Mining

Sequence Databases & Sequential Patterns

- Sequential pattern mining has broad applications
 - Customer shopping sequences
 - Purchase a laptop first, then a digital camera, and then a smartphone, within 6 months
 - Medical treatments, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, ...
 - Weblog click streams, calling patterns, ...
 - Software engineering: Program execution sequences, ...
 - Biological sequences: DNA, protein, ...
- Transaction DB, sequence DB vs. time-series DB
- Gapped vs. non-gapped sequential patterns
 - Shopping sequences, clicking streams vs. biological sequences

Sequence Mining: Description

Input

- A database D of sequences called data-sequences, in which:
 - $= I = \{i_1, i_2, ..., i_n\}$ is the set of items
 - each sequence is a list of transactions ordered by transaction-time
 - each transaction consists of fields: sequence-id, transaction-id, transaction-time and a set of items.

Problem

□ To discover all the sequential patterns with a user-specified minimum support

Input Database: example

Database \mathcal{D}

Sequence-Id	Transaction	Items
	Time	
C1	1	Ringworld
C1	2	Foundation
C1	15	Ringworld Engineers, Second Foundation
C2	1	Foundation, Ringworld
C2	20	Foundation and Empire
C2	50	Ringworld Engineers

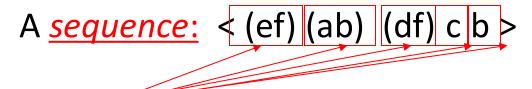
45% of customers who bought *Foundation* will buy *Foundation and Empire* within the next month.

Sequential Pattern and Sequential Pattern Mining

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>



- An <u>element</u> may contain a set of *items* (also called *events*)
- □ Items within an element are unordered and we list them alphabetically

 $<a(bc)dc>is a <u>subsequence</u> of <math><\underline{a(abc)(ac)\underline{d(cf)}}>$

Given <u>support threshold</u> min_sup = 2, <(ab)c> is a <u>sequential pattern</u>

A Basic Property of Sequential Patterns: Apriori

- A basic property: Apriori (Agrawal & Sirkant'94)
 - If a sequence S is not frequent
 - □ Then none of the super-sequences of S is frequent
 - \blacksquare E.g, <hb> is infrequent \rightarrow so do <hab> and <(ah)b>

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Given <u>support threshold</u> min_sup =2

GSP: Apriori-Based Sequential Pattern Mining

- Initial candidates: All 8-singleton sequences
 - □ <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan DB once, count support for each candidate
- Generate length-2 candidate sequences

$$min_sup = 2$$

Cand.	sup
<a>	3
	5
<c></c>	4
<d></d>	3
<e></e>	3
<f></f>	2
ZE Z	1

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

- Without Apriori pruning:(8 singletons) 8*8+8*7/2 = 92length-2 candidates
- With pruning, length-2 candidates: 36 + 15= 51

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

GSP Mining and Pruning

Candidates cannot pass min_sup <(bd)cba> 5th scan: 1 cand. 1 length-5 seq. pat. threshold 4th scan: 8 cand. 7 length-4 seq. pat. Candidates not in DB <abba> <(bd)bc> ... 3rd scan: 46 cand. 20 length-3 seq. pat. 20 <abb> <aab> <aba> <bab> ... cand. not in DB at all 2nd scan: 51 cand. 19 length-2 seq. pat. <aa> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> ... <(ef)> 10 cand, not in DB at all <a> <c> <d> <e> <f> <q> <h> 1st scan: 8 cand. 6 length-1 seq. pat. $min_sup = 2$

- Repeat (for each level (i.e., length-k))
- Scan DB to find length-k frequent sequences
- ☐ Generate length-(k+1) candidate sequences from length-k frequent sequences using Apriori
- \Box set k = k+1
- Until no frequent sequence or no candidate can be found

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

GSP: Algorithm

□ Phase 1:

□ Scan over the database to identify all the frequent items, i.e., 1-element sequences

Phase 2:

- Iteratively scan over the database to discover all frequent sequences. Each iteration discovers all the sequences with the same length.
- \blacksquare In the iteration to generate all k-sequences
- Generate the set of all candidate k-sequences, C_k , by joining two (k-1)-sequences if only their first and last items are different
 - Prune the candidate sequence if any of its k-1 subsequences is not frequent
 - Scan over the database to determine the support of the remaining candidate sequences
- Terminate when no more frequent sequences can be found

Detailed example:

http://simpledatamining.blogspot.com/2015/03/generalized-sequential-pattern-gsp.html

GSP: Optimization Techniques

- Applied to phase 2: computation-intensive
- Technique 1: the hash-tree data structure
 - Used for counting candidates to reduce the number of candidates that need to be checked
 - Leaf: a list of sequences
 - Interior node: a hash table
- □ Technique 2: data-representation transformation
 - From horizontal format to vertical format

Transaction-Time	Items
10	1, 2
25	1, 2 4, 6
45	3
50	1, 2
65	3
90	2, 4
95	6

Item	Times
1	$ ightarrow 10 ightarrow 50 ightarrow ext{NULL}$
2	$\rightarrow 10 \rightarrow 50 \rightarrow 90 \rightarrow NULL$
3	ightarrow 45 $ ightarrow$ 65 $ ightarrow$ NULL
4	$ ightarrow 25 ightarrow 90 ightarrow ext{NULL}$
5	ightarrow NULL
6	ightarrow 25 $ ightarrow$ 95 $ ightarrow$ NULL
7	ightarrow NULL

Backup slides

Sequential Pattern Mining in Vertical Data Format: The SPADE Algorithm

- A sequence database is mapped to: <SID, EID>
- ☐ Grow the subsequences (patterns) one item at a time by Apriori candidate generation

SID	Sequence
1	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
2	<(ad)c(bc)(ae)>
3	<(ef)(<u>ab</u>)(df) <u>c</u> b>
4	<eg(af)cbc></eg(af)cbc>

 $min_sup = 2$

Ref: SPADE (<u>S</u>equential

<u>PA</u>ttern <u>D</u>iscovery using

<u>E</u>quivalent Class) [M. Zaki
2001]

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1	4	d
1 2 2 2	5	cf
2	1	ad
2	2	\mathbf{c}
2	3	$_{\mathrm{bc}}$
2	4	ae
3	1	ef
3	2	ab
3	3	$\mathrm{d}\mathrm{f}$
3	4	\mathbf{c}
3	5	b
4	1	e
4	2	g
4	3	af
4	4	C
4	5	b
4	6	\mathbf{c}

CID DID I

ä	a	1	0	
SID	EID	SID	EID	
1	1	1	2	
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			

	$^{\mathrm{ab}}$			ba		
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	
1	1	2	1	2	3	
2	1	3	2	3	4	
3	2	5				
4	3	5				

aba				
SID	EID (a)	EID(b)	EID(a)	
1	1	2	3	
2	1	3	4	

PrefixSpan: A Pattern-Growth Approach

SID	Sequence	
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>	
20	<(ad)c(bc)(ae)>	
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>	
40	<eg(af)cbc></eg(af)cbc>	

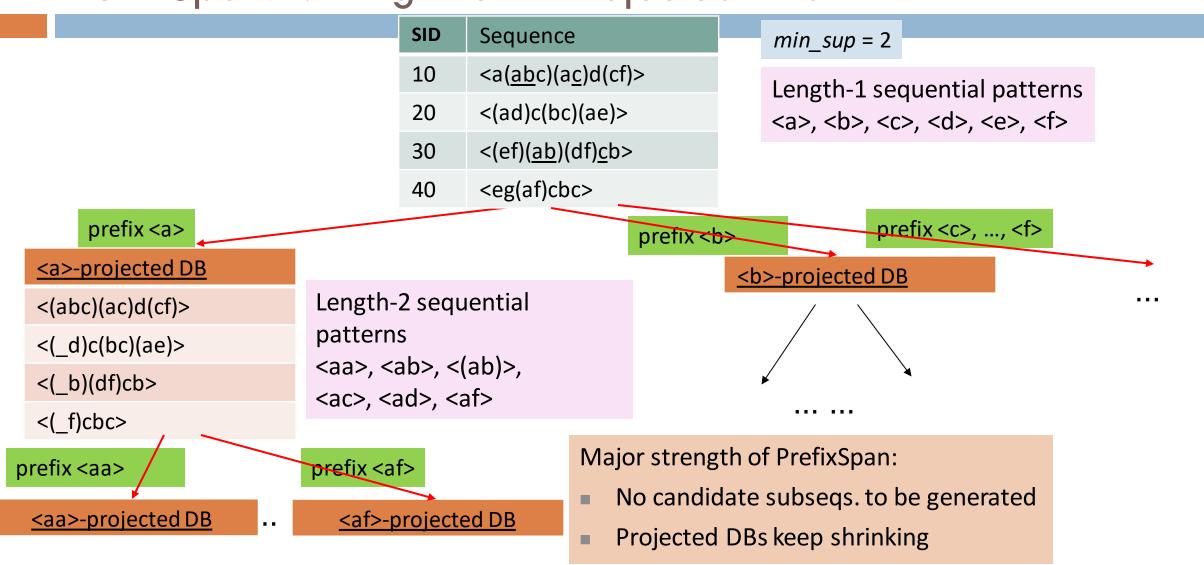
	min_sup =	2
Prefix <u>Su</u>		Suffix (Projection)
_	<a>	<(abc)(ac)d(cf)>
	<aa></aa>	<(_bc)(ac)d(cf)>
	<ab></ab>	<(_c)(ac)d(cf)>
		\

- Prefix and suffix
 - Given <a(abc)(ac)d(cf)>
 - Prefixes: <a>, <aa>,<a(ab)>, <a(abc)>, ...
 - Suffix: Prefixes-based projection

- PrefixSpan Mining: Prefix Projections
 - Step 1: Find length-1 sequential patterns
 - <a>, , <c>, <d>, <e>, <f>
 - Step 2: Divide search space and mine each projected DB
 - <a>-projected DB,
 - -projected DB,
 - ...
 - <f>-projected DB, ...

PrefixSpan (Prefix-projected Sequential pattern mining) Pei, et al. @TKDE'04

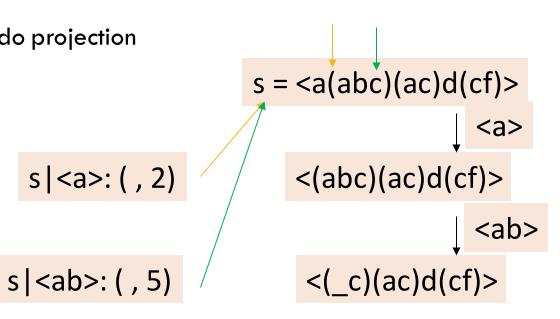
PrefixSpan: Mining Prefix-Projected DBs



Consideration:

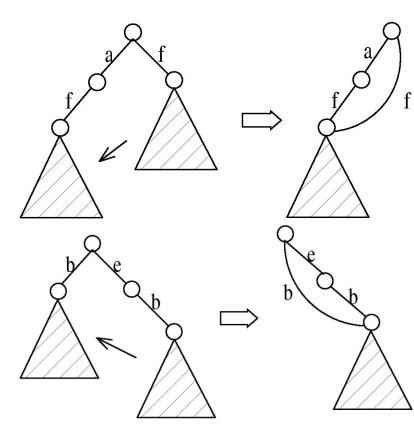
Pseudo-Projection vs. Physical PrImplementation ojection

- Major cost of PrefixSpan: Constructing projected DBs
 - Suffixes largely repeating in recursive projected DBs
- When DB can be held in main memory, use pseudo projection
 - No physically copying suffixes
 - Pointer to the sequence
 - Offset of the suffix
 - But if it does not fit in memory
 - Physical projection
 - Suggested approach:
 - Integration of physical and pseudo-projection
 - Swapping to pseudo-projection when the data fits in memory

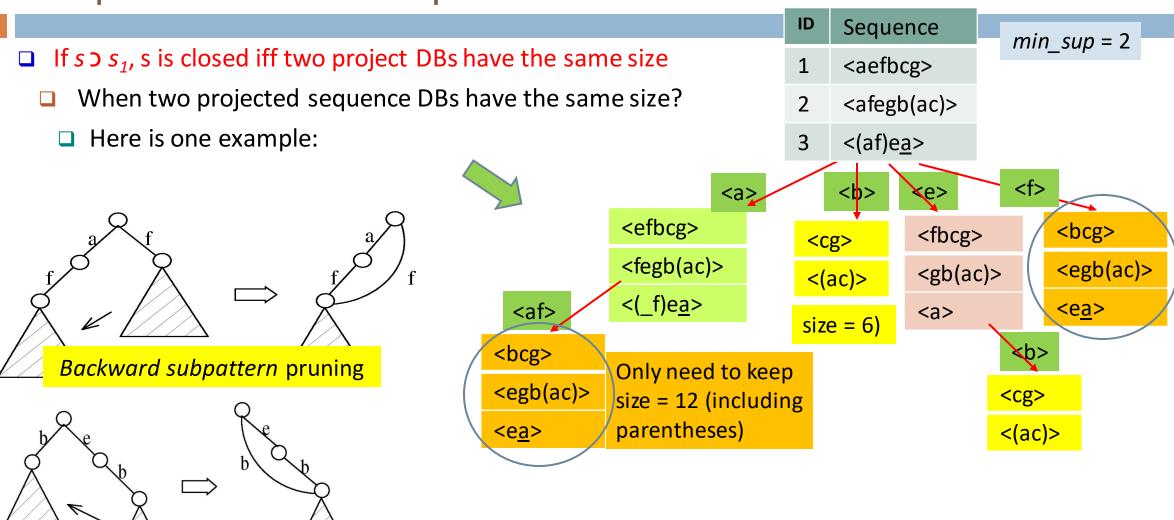


CloSpan: Mining Closed Sequential Patterns

- \square A closed sequential pattern s: There exists no superpattern s' such that s' \supseteq s, and s' and s have the same support
- □ Which ones are closed? <abc>: 20, <abcd>:20, <abcd>: 15
- Why directly mine closed sequential patterns?
 - □ Reduce # of (redundant) patterns
 - ☐ Attain the same expressive power
- Property P_1 : If $s \supset s_1$, s is closed iff two project DBs have the same size
- Explore *Backward Subpattern* and *Backward Superpattern* pruning to prune redundant search space
- Greatly enhances efficiency (Yan, et al., SDM'03)



CloSpan: When Two Projected DBs Have the Same Size



Backward superpattern pruning

Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary

Constraint-Based Pattern Mining

- Why Constraint-Based Mining?
- Different Kinds of Constraints: Different Pruning Strategies
- Constrained Mining with Pattern Anti-Monotonicity
- Constrained Mining with Pattern Monotonicity
- Constrained Mining with Data Anti-Monotonicity
- Constrained Mining with Succinct Constraints
- Constrained Mining with Convertible Constraints
- Handling Multiple Constraints
- Constraint-Based Sequential-Pattern Mining

Why Constraint-Based Mining?

- Finding all the patterns in a dataset autonomously?—unrealistic!
 - Too many patterns but not necessarily user-interested!
- Pattern mining in practice: Often a user-guided, interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface), specifying various kinds of constraints
- What is constraint-based mining?
 - Mine together with user-provided constraints
- Why constraint-based mining?
 - User flexibility: User provides constraints on what to be mined
 - Optimization: System explores such constraints for mining efficiency
 - E.g., Push constraints deeply into the mining process

Various Kinds of User-Specified Constraints in Data Mining

- Knowledge type constraint—Specifying what kinds of knowledge to mine
 - Ex.: Classification, association, clustering, outlier finding, ...
- Data constraint—using SQL-like queries
 - Ex.: Find products sold together in NY stores this year
- □ Dimension/level constraint—similar to projection in relational database
 - Ex.: In relevance to region, price, brand, customer category
- Interestingness constraint—various kinds of thresholds
 - \square Ex.: Strong rules: min_sup ≥ 0.02 , min_conf ≥ 0.6 , min_correlation ≥ 0.7
- Rule (or pattern) constraint
 The focus of this study
 - Ex.: Small sales (price < \$10) triggers big sales (sum > \$200)

Pattern Space Pruning with Pattern Anti-Monotonicity

TID	Transaction			
10	a, b, c, d, f, h			
20	b, c, d, f, g, h			
30	b, c, d, f, g			
40	a, c, e, f, g			

$min_sup = 2$

Item	Price	Profit
а	100	40
b	40	0
С	150	-20
d	35	- 15
е	55	-30
f	45	-10
g	80	20
h	10	5

- A constraint c is anti-monotone
 - If an itemset S violates constraint c, so does any of its superset
 - That is, mining on itemset S can be terminated
- Ex. 1: c_1 : $sum(S.price) \le v$ is anti-monotone
- Ex. 2: c_2 : range(S.profit) \leq 15 is anti-monotone
 - Itemset ab violates c_2 (range(ab) = 40)
 - So does every superset of ab
- Ex. 3. c_3 : $sum(S.Price) \ge v$ is not anti-monotone
- Ex. 4. Is c_4 : $support(S) \ge \sigma$ anti-monotone?
 - Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

Note: item.price > 0
Profit can be negative

Pattern Monotonicity and Its Roles

TID	Transaction
10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	a, c, e, f, g

min_	_sup	= 2
------	------	-----

Item	Price	Profit
а	100	40
b	40	0
С	150	-20
d	35	-1 5
е	55	-30
f	45	-10
g	80	20
h	10	5

- A constraint c is monotone: If an itemset S satisfies the constraint c, so does any of its superset
 - That is, we do not need to check c in subsequent mining
- Ex. 1: c_1 : $sum(S.Price) \ge v$ is monotone
- Ex. 2: c_2 : $min(S.Price) \le v$ is monotone
- Ex. 3: c_3 : range(S.profit) \geq 15 is monotone
 - Itemset ab satisfies c_3
 - So does every superset of ab

Note: item.price > 0
Profit can be negative

Data Space Pruning with Data Anti-Monotonicity

TID	Transaction			
10	a, b, c, d, f, h			
20	b, c, d, f, g, h			
30	b, c, d, f, g			
40	a, c, e, f, g			

min sup = 2

Price	Profit
100	40
40	0
150	-20
35	-15
55	-30
45	-10
80	20
10	5
	100 40 150 35 55 45 80

- A constraint c is data anti-monotone: In the mining process, if a data entry t cannot satisfy a pattern p under c, t cannot satisfy p's superset either
 - Data space pruning: Data entry t can be pruned
- \square Ex. 1: c_1 : $sum(S.Profit) \ge v$ is data anti-monotone
 - Let constraint c_1 be: $sum(S.Profit) \ge 25$
 - T_{30} : {b, c, d, f, g} can be removed since none of their combinations can make an S whose sum of the profit is ≥ 25
- Ex. 2: c_2 : $min(S.Price) \le v$ is data anti-monotone
 - Consider v = 5 but every item in a transaction, say T_{50} , has a price higher than 10
- \Box Ex. 3: c₃: range(S.Profit) > 25 is data anti-monotone

Note: item.price > 0
Profit can be negative

Expressing Patterns in Compressed Form: Closed Patterns

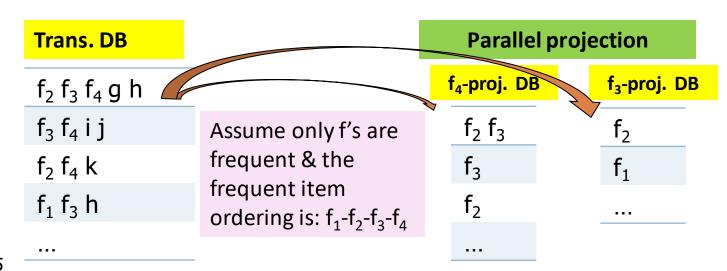
- How to handle such a challenge?
- Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y D X, with the same support as X
 - Let Transaction DB TDB₁: T_1 : { a_1 , ..., a_{50} }; T_2 : { a_1 , ..., a_{100} }
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?
 - Two: P_1 : " $\{a_1, ..., a_{50}\}$: 2"; P_2 : " $\{a_1, ..., a_{100}\}$: 1"
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

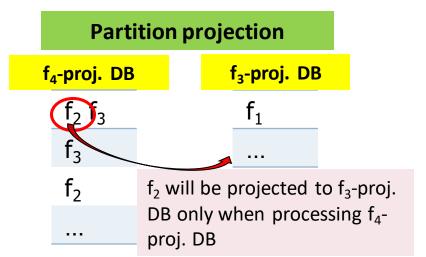
Expressing Patterns in Compressed Form: Max-Patterns

- □ Solution 2: Max-patterns: A pattern X is a maximal frequent pattern or max-pattern if X is frequent and there exists no frequent super-pattern Y ⊃ X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - Let Transaction DB TDB₁: T_1 : { a_1 , ..., a_{50} }; T_2 : { a_1 , ..., a_{100} }
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - We only know $\{a_1, ..., a_{40}\}$ is frequent
 - But we do not know the real support of $\{a_1, ..., a_{40}\}, ...,$ any more!
 - □ Thus in many applications, close-patterns are more desirable than max-patterns

Scaling FP-growth by Item-Based Data Projection

- □ What if FP-tree cannot fit in memory?—Do not construct FP-tree
 - "Project" the database based on frequent single items
 - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection
 - Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel
 - Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions





Analysis of DBLP Coauthor Relationships

- DBLP: Computer science research publication bibliographic database
 - → 3.8 million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191 (1)	0.335(4)	0.349 (10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331 (5)	0.416 (8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18) <	0.123(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110 (9)	0.314 (8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	1 6	120	16	0.133(5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	1 2	120	12	0.100(10)	0.316(6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111 (8)	0.312 (9)	0.485(5)

Advisor-advisee relation: Kulc: high, Jaccard: low,

cosine: middle

- Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

Analysis of DBLP Coauthor Relationships

- DBLP: Computer science research publication bibliographic database
- > 3.8 million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191 (1)	0.335(4)	0.349 (10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416 (8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18) <	0.123(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314 (8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	\bigcirc 6	120	16	0.133 (5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	$\overline{}$	120	12	0.100(10)	0.316(6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111 (8)	0.312 (9)	0.485(5)

Advisor-advisee relation: Kulc: high, Jaccard: low,

cosine: middle

- □ Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
 - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
- Null-invariance is an important property
- \Box Lift, χ^2 and cosine are good measures if null transactions are not predominant
 - Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern
- Exercise: Mining research collaborations from research bibliographic data
 - □ Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
 - Can you find the likely advisor-advisee relationship and during which years such a relationship happened?
 - Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD'10

Mining Compressed Patterns

Pat-ID	Item-Sets	Support
P1	{38,16,18,12}	205227
P2	{38,16,18,12,17}	205211
Р3	{39,38,16,18,12,17}	101758
P4	{39,16,18,12,17}	161563
P5	{39,16,18,12}	161576

- Closed patterns
 - P1, P2, P3, P4, P5
 - Emphasizes too much on support
 - ☐ There is no compression
- Max-patterns
 - P3: information loss
- □ Desired output (a good balance):
 - □ P2, P3, P4

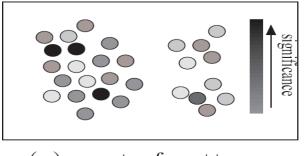
- Why mining compressed patterns?
 - Too many scattered patterns but not so meaningful
- Pattern distance measure

$$Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$$

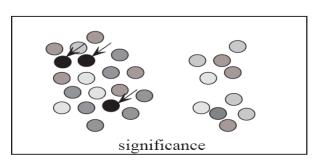
- δ-clustering: For each pattern P, find all patterns which can be expressed by P and whose distance to P is within δ (δ-cover)
- All patterns in the cluster can be represented by P
- Method for efficient, direct mining of compressed frequent patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60:5-29, 2007)

Redundancy-Aware Top-k Patterns

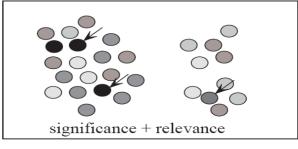
Desired patterns: high significance & low redundancy



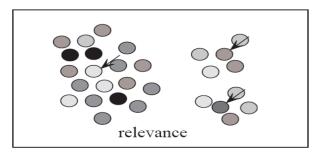
(a) a set of patterns



(c) traditional top-k



(b) redundancy-aware top-k



(d) summarization

- Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- ☐ Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD'06

Redundancy Filtering at Mining Multi-Level Associations

- Multi-level association mining may generate many redundant rules
- Redundancy filtering: Some rules may be redundant due to "ancestor" relationships between items
 - \blacksquare milk \Rightarrow wheat bread [support = 8%, confidence = 70%] (1)
 - \square 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%] (2)
 - Suppose the "2% milk" sold is about "1/4" of milk sold
 - Does (2) provide any novel information?
- □ A rule is redundant if its support is close to the "expected" value, according to its "ancestor" rule, and it has a similar confidence as its "ancestor"
 - Rule (1) is an ancestor of rule (2), which one to prune?

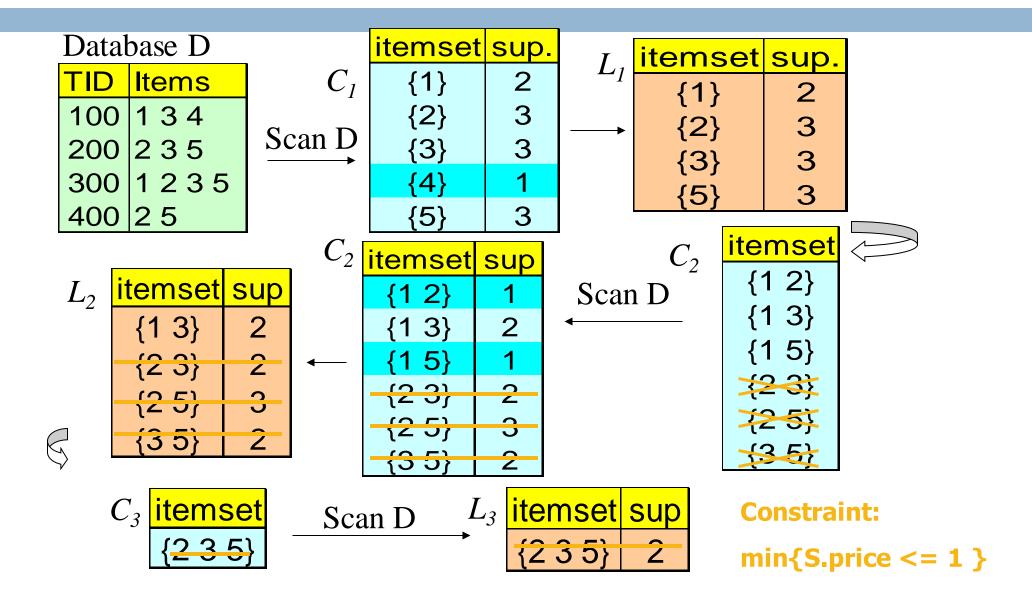
Succinctness

- Succinctness:
 - □ Given A_{1} , the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A_{1} , i.e., S contains a subset belonging to A_{1}
 - □ Idea: Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
 - \square min(S.Price) \leq v is succinct
 - \square sum(S.Price) $\ge v$ is not succinct
- Optimization: If C is succinct, C is pre-counting pushable

Which Constraints Are Succinct?

Constraint	Succinct
v ∈ S	yes
S⊇V	yes
S⊆V	yes
min(S) ≤ v	yes
min(S) ≥ v	yes
max(S)≤ v	yes
max(S)≥ v	yes
sum(S) ≤ v (a ∈ S, a ≥ 0)	no
sum(S)≥ v (a ∈ S, a ≥ 0)	no
range(S)≤ v	no
range(S)≥ v	no
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	no
support(S)≥ ξ	no
support(S)≤ξ	no

Push a Succinct Constraint Deep



Sequential Pattern Mining

- Sequential Pattern and Sequential Pattern Mining
- GSP: Apriori-Based Sequential Pattern Mining
- SPADE: Sequential Pattern Mining in Vertical Data Format
- PrefixSpan: Sequential Pattern Mining by Pattern-Growth
- CloSpan: Mining Closed Sequential Patterns