CSE 5243 INTRO. TO DATA MINING

Advanced Frequent Pattern Mining

(Chapter 7)
Huan Sun, CSE@The Ohio State University

Chapter 7 : Advanced Frequent Pattern Mining

\square Mining Diverse PatternsConstraint-Based Frequent Pattern MiningSequential Pattern Mining
\square Graph Pattern Mining
\square Pattern Mining Application: Mining Software Copy-and-Paste Bugs
\square Summary

Mining Diverse Patterns

\square Mining Multiple-Level Associations
\square Mining Multi-Dimensional Associations
\square Mining Negative Correlations
\square Mining Compressed and Redundancy-Aware Patterns

Mining Multiple-Level Frequent Patterns

\square Items often form hierarchies

- Ex.: Dairyland 2\% milk; Wonder wheat bread
\square How to set min-support thresholds?

\square Uniform min-support across multiple levels (reasonable?)

Mining Multiple-Level Frequent Patterns

\square Items often form hierarchies

- Ex.: Dairyland 2\% milk; Wonder wheat bread
\square How to set min-support thresholds?

\square Uniform min-support across multiple levels (reasonable?)
\square Level-reduced min-support: Items at the lower level are expected to have lower support

ML/MD Associations with Flexible Support Constraints

\square Why flexible support constraints?

- Real life occurrence frequencies vary greatly
- Diamond, watch, pens in a shopping basket
- Uniform support may not be an interesting model
\square A flexible model
- The lower-level, the more dimension combination, and the long pattern length, usually the smaller support
- General rules should be easy to specify and understand
- Special items and special group of items may be specified individually and have higher priority

Multi-level Association: Redundancy Filtering

\square Some rules may be redundant due to "ancestor" relationships between items.
\square Example
\square milk \Rightarrow wheat bread \quad [support $=8 \%$, confidence $=70 \%$]
$\square 2 \%$ milk \Rightarrow wheat bread [support $=2 \%$, confidence $=72 \%$]
\square Suppose the 2% milk sold is about $1 / 4$ of milk sold
\square We say the first rule is an ancestor of the second rule.
\square A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor.

Multi-Level Mining: Progressive Deepening

\square A top-down, progressive deepening approach:
\square First mine high-level frequent items: milk (15%), bread (10%)

- Then mine their lower-level "weaker" frequent itemsets:
2% milk (5%), wheat bread (4%)
\square Different min_support threshold across multi-levels lead to different algorithms:

Mining Multi-Dimensional Associations

\square Single-dimensional rules (e.g., items are all in "product" dimension)
$\square \operatorname{buys}(X, " m i l k ") \Rightarrow \operatorname{buys}(X, " b r e a d ")$
\square Multi-dimensional rules (i.e., items in ≥ 2 dimensions or predicates)
\square Inter-dimension association rules (no repeated predicates)
■ age(X, " $18-25$ ") \wedge occupation(X , "student") \Rightarrow buys(X, "coke")
\square Hybrid-dimension association rules (repeated predicates)
■ age(X, "18-25") \wedge buys(X, "popcorn") \Rightarrow buys(X, "coke")

Mining Rare Patterns vs. Negative Patterns

\square Rare patterns
\square Very low support but interesting (e.g., buying Rolex watches)
\square How to mine them? Setting individualized, group-based min-support thresholds for different groups of items

Mining Rare Patterns vs. Negative Patterns

\square Rare patterns
\square Very low support but interesting (e.g., buying Rolex watches)

- How to mine them? Setting individualized, group-based min-support thresholds for different groups of items
\square Negative patterns
- Negatively correlated: Unlikely to happen together
\square Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford Fusion are likely negatively correlated patterns
\square How to define negative patterns?

Defining Negative Correlated Patterns

\square A (relative) support-based definition
\square If itemsets A and B are both frequent but rarely occur together, i.e., sup $(A \cup B) \ll$ sup (A) $\times \sup (B)$
\square Then A and B are negatively correlated

Defining Negative Correlated Patterns

\square A (relative) support-based definition
\square If itemsets A and B are both frequent but rarely occur together, i.e., sup $(A \cup B) \ll$ sup (A) $\times \sup (B)$
\square Then A and B are negatively correlated
Does this remind you the definition of lift?
\square Is this a good definition for large transaction datasets?

Defining Negative Correlated Patterns

\square A (relative) support-based definition
If itemsets A and B are both frequent but rarely occur together, i.e., sup $(A \cup B) \ll$ sup $(A) \times \sup (B)$
\square Then A and B are negatively correlated
Does this remind you the definition of lift?
\square Is this a good definition for large transaction datasets?
\square Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B

- When there are in total 200 transactions, we have
$\square s(A \cup B)=0.005, s(A) \times s(B)=0.25, s(A \cup B) \ll s(A) \times s(B)$
\square But when there are 10^{5} transactions, we have
$\square s(A \cup B)=1 / 10^{5}, s(A) \times s(B)=1 / 10^{3} \times 1 / 10^{3}, s(A \cup B)>s(A) \times s(B)$

Defining Negative Correlated Patterns

\square A (relative) support-based definition
If itemsets A and B are both frequent but rarely occur together, i.e., sup $(A \cup B) \ll$ sup $(A) \times \sup (B)$
\square Then A and B are negatively correlated
Does this remind you the definition of lift?
\square Is this a good definition for large transaction datasets?
\square Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B

- When there are in total 200 transactions, we have
$\square s(A \cup B)=0.005, s(A) \times s(B)=0.25, s(A \cup B) \ll s(A) \times s(B)$
\square But when there are 10^{5} transactions, we have
$\square s(A \cup B)=1 / 10^{5}, s(A) \times s(B)=1 / 10^{3} \times 1 / 10^{3}, s(A \cup B)>s(A) \times s(B)$
- What is the problem?-Null transactions: The support-based definition is not nullinvariant!

Defining Negative Correlation: Need Null-Invariance in Definition

\square A good definition on negative correlation should take care of the null-invariance problem
\square Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions

Which measure should we use? Recall last lectures....

Defining Negative Correlation: Need Null-Invariance in Definition

\square A good definition on negative correlation should take care of the null-invariance problem
\square Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions
\square A Kulczynski measure-based definition

- If itemsets A and B are frequent but

$$
(s(A \cup B) / s(A)+s(A \cup B) / s(B)) / 2<\epsilon
$$

where ϵ is a negative pattern threshold, then A and B are negatively correlated
\square For the same needle package problem:

- No matter there are in total 200 or 10^{5} transactions
- If $\epsilon=0.02$, we have
$(s(A \cup B) / s(A)+s(A \cup B) / s(B)) / 2=(0.01+0.01) / 2<\epsilon$

Chapter 7 : Advanced Frequent Pattern Mining

\square Mining Diverse PatternsConstraint-Based Frequent Pattern MiningSequential Pattern Mining
\square Graph Pattern Mining
\square Pattern Mining Application: Mining Software Copy-and-Paste Bugs
\square Summary

Constraint-based Data Mining

\square Finding all the patterns in a database autonomously? - unrealistic!
\square The patterns could be too many but not focused!

Constraint-based Data Mining

\square Finding all the patterns in a database autonomously? - unrealistic!
\square The patterns could be too many but not focused!
\square Data mining should be an interactive process
\square User directs what to be mined using a data mining query language (or a graphical user interface)

Constraint-based Data Mining

\square Finding all the patterns in a database autonomously? - unrealistic!

- The patterns could be too many but not focused!
\square Data mining should be an interactive process
\square User directs what to be mined using a data mining query language (or a graphical user interface)
\square Constraint-based mining
\square User flexibility: provides constraints on what to be mined
\square System optimization: explores such constraints for efficient mining-constraintbased mining

Categories of Constraints

Constraint 1 (Item constraint). An item constraint specifies what are the particular individual or groups of items that should or should not be present in the pattern.

For example, a dairy company may be interested in patterns containing only dairy products, when it mines transactions in a grocery store.

Constraint 2 (Length constraint). A length constraint specifies the requirement on the length of the patterns, i.e., the number of items in the patterns.

For example, when mining classification rules for documents, a user may be interested in only frequent patterns with at least 5 keywords, a typical length constraint.

Categories of Constraints

Constraint 3 (Model-based constraint). A modelbased constraint looks for patterns which are sub- or superpatterns of some given patterns (models).

For example, a travel agent may be interested in what other cities that a visitor is likely to travel if s/he visits both Washington and New York city. That is, they want to find frequent patterns which are super-patterns of \{Washington, New York city $\}$.

Constraint 4 (Aggregate constraint). An aggregate constraint is on an aggregate of items in a pattern, where the aggregate function can be SUM, AVG, MAX, MIN, etc.

For example, a marketing analyst may like to find frequent patterns where the average price of all items in each pattern is over $\$ 100$.

Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

\square Given a frequent pattern mining query with a set of constraints C, the algorithm should be
\square sound: it only finds frequent sets that satisfy the given constraints C
\square complete: all frequent sets satisfying the given constraints C are found

Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

\square Given a frequent pattern mining query with a set of constraints C, the algorithm should be
\square sound: it only finds frequent sets that satisfy the given constraints C
\square complete: all frequent sets satisfying the given constraints C are found
\square A naïve solution

- First find all frequent sets, and then test them for constraint satisfaction

The Apriori Algorithm - Example

Naïve Algorithm: Apriori + Constraint (Naïve Solution)

Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

\square Given a frequent pattern mining query with a set of constraints C, the algorithm should be
\square sound: it only finds frequent sets that satisfy the given constraints C
\square complete: all frequent sets satisfying the given constraints C are found
\square A naïve solution
\square First find all frequent sets, and then test them for constraint satisfaction
\square More efficient approaches:
\square Analyze the properties of constraints comprehensively
\square Push them as deeply as possible inside the frequent pattern computation.

Anti-Monotonicity in Constraint-Based Mining

\square Anti-monotonicity

- When an itemset S violates the constraint, so does any of its superset
\square sum(S.Price) $\leq v$ is anti-monotone?
\square sum(S.Price) $\geq v$ is anti-monotone?

Anti-Monotonicity in Constraint-Based Mining

\square Anti-monotonicity
\square When an itemset S violates the constraint, so does any of its superset
\square sum(S.Price) $\leq v$ is anti-monotone
\square sum(S.Price) $\geq v$ is not anti-monotone

Anti-Monotonicity in Constraint-Based Mining

TDB (min_sup=2)
\square Anti-monotonicity
\square When an itemset S violates the constraint, so does any of its superset
$\square \operatorname{sum}(S . P r i c e) \leq v$ is anti-monotone
$\square \operatorname{sum}($ S.Price $) \geq v$ is not anti-monotone
\square Example. C: range(S.profit) ≤ 15 is anti-monotone

- Itemset ab violates C
- So does every superset of $a b$
\square Define range(S.profit) $=\max (S . A)-\min (S . A)$

TID	Transaction
10	$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}$
20	$\mathrm{~b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \mathrm{h}$
30	$\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$
40	$\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}$

Item	Profit
a	40
b	0
c	-20
d	10
e	-30
f	30
g	20
h	-10

Which Constraints Are Anti-Monotone?

Constraint	Antimonotone
$v \in S$	No
\mathbf{S} ¢ V	no
$\mathbf{S \subseteq V}$	yes
$\min (S) \leq v$	no
$\boldsymbol{\operatorname { m i n }}(\mathrm{S}) \geq \mathrm{v}$	yes
$\max (\mathrm{S}) \leq \mathrm{v}$	yes
$\max (\mathrm{S}) \geq \mathrm{v}$	no
count(S) \leq v	yes
count(S) $\geq \mathrm{V}$	no
sum(S) $\leq \mathrm{v}(\mathrm{a} \in \mathrm{S}, \mathrm{a} \geq 0$)	yes
$\operatorname{sum}(S) \geq v(a \in S, a \geq 0)$	no
range(S) \leq v	yes
range(S) $\geq \mathrm{V}$	no
$\operatorname{avg}(\mathbf{S}) \theta \mathrm{v}, \theta \in\{=, \leq, \geq\}$	convertible
support(S) $\geq \boldsymbol{\xi}$	yes
support(S) $\leq \boldsymbol{\xi}$	no

Monotonicity in Constraint-Based Mining

\square Monotonicity

- When an intemset S satisfies the constraint, so does any of its superset
$\square \operatorname{sum}($ S.Price $) \geq v$ is ?
$\square \min ($ S.Price $) \leq v$ is ?

Monotonicity in Constraint-Based Mining

\square Monotonicity

- When an intemset S satisfies the constraint, so does any of its superset
\square sum(S.Price) $\geq v$ is monotone
$\square \min ($ S.Price $) \leq v$ is monotone

Monotonicity in Constraint-Based Mining

\square Monotonicity
\square When an intemset S satisfies the constraint, so does any of its superset
\square sum(S.Price) $\geq v$ is monotone
$\square \min (S$. Price $) \leq v$ is monotone
\square Example. C: range(S.profit) ≥ 15

- Itemset ab satisfies C
\square So does every superset of ab
TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g
Item Profit a 40 b 0 c -20 d 10 e -30 f 30 g 20 h -10	

Which Constraints Are Monotone?

Constraint	Monotone
$\mathbf{V} \in \mathbf{S}$	yes
$S \supseteq \mathrm{~V}$	yes
$\mathrm{S} \subseteq \mathrm{V}$	no
$\boldsymbol{m i n}(\mathrm{S}) \leq \mathrm{v}$	yes
$\boldsymbol{\operatorname { m i n }}(\mathrm{S}) \geq \mathrm{v}$	no
$\max (\mathrm{S}) \leq \mathrm{v}$	no
$\max (\mathrm{S}) \geq \mathrm{v}$	yes
count(S) \leq v	no
count(S) \geq v	yes
sum(S) $\leq v(a \in S, a \geq 0)$	no
$\operatorname{sum}(S) \geq v(a \in S, a \geq 0)$	yes
range(S) \leq v	no
range(S) $\geq \mathrm{v}$	yes
$\operatorname{avg}(\mathbf{S}) \theta \mathrm{v}, \theta \in\{=, \leq, \geq\}$	convertible
support(S) $\geq \xi$	no
support(S) $\leq \boldsymbol{\xi}$	yes

The Apriori Algorithm - Example

Naïve Algorithm: Apriori + Constraint

Pushing the constraint deep into the process

Converting "Tough" Constraints

\square Convert tough constraints into anti-monotone or monotone by properly ordering items

Converting "Tough" Constraints

\square Convert tough constraints into anti-monotone or monotone by properly ordering items
\square Examine C: $\operatorname{avg}(S$. profit $) \geq 25$
\square Order items in value-descending order - <a, f, g, d, b, h, c, e>

- If an itemset $a f b$ violates C
\square So does afbh, afb*
- It becomes anti-monotone!

Converting "Tough" Constraints

\square Convert tough constraints into anti-monotone or monotone by properly ordering items
\square Examine C: avg(S.profit) ≥ 25
\square Order items in value-descending order $\square<a, f, g, d, b, h, c, e>$

- If an itemset $a f b$ violates C
- So does afbh, afb*
- It becomes anti-monotone!
TDB (min_sup=2)

TID	Transaction
10	$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}$
20	$\mathrm{~b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \mathrm{h}$
30	$\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$
40	$\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}$

Item	Profit
a	40
b	0
c	-20
d	10
e	-30
f	30
g	20
h	-10

Convertible Constraints

\square Let R be an order of items
\square Convertible anti-monotone
\square If an itemset S violates a constraint C, so does every itemset having S as a prefix w.r.t. R
\square Ex. $\operatorname{avg}(S) \leq v$ w.r.t. item value ascending order Why?

Convertible Constraints

\square Let R be an order of items
\square Convertible anti-monotone

- If an itemset S violates a constraint C, so does every itemset having S as a prefix w.r.t. R
\square Ex. $\operatorname{avg}(S) \leq v$ w.r.t. item value ascending order
\square Convertible monotone
If an itemset S satisfies constraint C, so does every itemset having S as a prefix w.r.t. R
$\square E x . \operatorname{avg}(S) \geq v$ w.r.t. item value ascending order

Strongly Convertible Constraints

$\square \operatorname{avg}(X) \geq 25$ is convertible anti-monotone w.r.t. item value descending order $R:<a, f, g, d, b, h, c, e>$

- If an itemset of violates a constraint C, so does every itemset with of as prefix, such as afd
$\square \operatorname{avg}(X) \geq 25$ is convertible monotone w.r.t. item value ascending order R^{-1} : $\langle e, c, h, b, d, g, f, a>$
\square If an itemset d satisfies a constraint C, so does itemsets $d f$ and $d f a$, which having d as a prefix
\square Thus, $\operatorname{avg}(X) \geq 25$ is strongly convertible

Item	Profit
a	40
b	0
c	-20
d	10
e	-30
f	30
g	20
h	-10

What Constraints Are Convertible?

Constraint	Convertible anti-monotone	Convertible monotone	Strongly convertible
$\operatorname{avg}(\mathrm{S}) \leq, \geq \mathrm{v}$	Yes	Yes	Yes
median(S) $\leq, \geq \mathrm{v}$	Yes	Yes	Yes
sum $(S) \leq v$ (items could be of any value, $v \geq 0$)	Yes	No	No
$\operatorname{sum}(S) \leq v$ (items could be of any value, $\mathrm{v} \leq 0$)	No	Yes	No
sum $(S) \geq v$ (items could be of any value, $\mathrm{v} \geq 0$)	No	Yes	No
sum $(S) \geq v$ (items could be of any value, $\mathrm{v} \leq 0$)	Yes	No	No
\ldots			

Combing Them Together-A General Picture

Constraint	Antimonotone	Monotone
$\mathbf{v} \in \mathbf{S}$	no	yes
$\mathbf{S} \supseteq \mathbf{V}$	no	yes
$\mathbf{S} \subseteq \mathbf{V}$	yes	no
$\min (\mathbf{S}) \leq \mathbf{v}$	no	yes
$\min (\mathbf{S}) \geq \mathbf{v}$	yes	no
$\max (\mathbf{S}) \leq \mathbf{v}$	yes	no
$\max (\mathbf{S}) \geq \mathbf{v}$	no	yes
$\operatorname{count}(\mathbf{S}) \leq \mathbf{v}$	yes	no
$\operatorname{count}(\mathbf{S}) \geq \mathbf{v}$	no	yes
sum(S) $\leq \mathbf{v} \mathbf{(a} \in \mathbf{S}, \mathbf{a} \geq \mathbf{0})$	yes	no
sum(S) $\geq \mathbf{v} \mathbf{(a \in S , a \geq 0)}$	no	yes
range(S) $\leq \mathbf{v}$	yes	no
range(S) $\geq \mathbf{v}$	no	yes
avg(S) θ v, $\theta \in\{=, \leq, \geq\}$	convertible	convertible
support(S) $\geq \xi$	yes	no
support(S) $\leq \xi$	no	yes

Classification of Constraints

Mining With Convertible Constraints

\square C: $\operatorname{avg}($ S.profit $) \geq 25$

TDB (min_sup=2) | TID | Transaction |
| :---: | :---: |
| 10 | $\mathrm{a}, \mathrm{f}, \mathrm{d}, \mathrm{b}, \mathrm{c}$ |
| 20 | $\mathrm{f}, \mathrm{g}, \mathrm{d}, \mathrm{b}, \mathrm{c}$ |
| 30 | $\mathrm{a}, \mathrm{f}, \mathrm{d}, \mathrm{c}, \mathrm{e}$ |
| 40 | $\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{c}, \mathrm{e}$ |

\square Scan transaction DB once
\square remove infrequent items
■ Item h in transaction 40 is dropped
\square Itemsets a and f are good

Item	Profit
a	40
f	30
g	20
d	10
b	0
h	-10
c	-20
e	-30

Can Apriori Handle Convertible Constraint?

\square A convertible, not monotone nor anti-monotone cannot be pushed deep into the an Apriori mining algorithm
\square Within the level wise framework, no direct pruning based on the constraint can be made
\square Itemset df violates constraint C : $\operatorname{avg}(X)>=25$
\square Can we prune df afterwards?

Item	Value
a	40
b	0
c	-20
d	10
e	-30
f	30
g	20
h	-10

Can Apriori Handle Convertible Constraint?

\square A convertible, not monotone nor anti-monotone cannot be pushed deep into the an Apriori mining algorithm
\square Within the level wise framework, no direct pruning based on the constraint can be made
\square Itemset df violates constraint C : $\operatorname{avg}(X)>=25$
\square Since adf satisfies C, Apriori needs df to assemble adf, df cannot be pruned

Item	Value
a	40
b	0
c	-20
d	10
e	-30
f	30
g	20
h	-10

\square But it can be pushed into frequent-pattern growth framework!

Mining With Convertible Constraints in FP-Growth Framework

$\square C: \operatorname{avg}(X)>=25, \min _$sup $=2$
\square List items in every transaction in value descending order R: <a, f, g, d, b, h, c, e>
$\square \mathrm{C}$ is convertible anti-monotone w.r.t. R
\square Scan TDB once
\square remove infrequentitems

- Item h is dropped
- Itemsets a and fare good,...
\square Projection-based mining
- Imposing an appropriate order on item projection
- Many tough constraints can be converted into (anti)monotone
TDB (min_sup $=2$)

TID	Transaction
10	a, f, d, b, c
20	$\mathrm{f}, \mathrm{g}, \mathrm{d}, \mathrm{b}, \mathrm{c}$
30	$\mathrm{a}, \mathrm{f}, \mathrm{d}, \mathrm{c}, \mathrm{e}$
40	$\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{c}, \mathrm{e}$

Item	Value
a	40
f	30
g	20
d	10
b	0
h	-10
c	-20
e	-30

Mining With Convertible Constraints in FP-Growth Framework

Constrained Frequent Pattern Mining: A Pattern-Growth View

Jian Pei, Jiawei Han, SIGKDD 2002

Handling Multiple Constraints

\square Different constraints may require different or even conflicting itemordering
\square If there exists an order R s.t. both C_{1} and C_{2} are convertible w.r.t. R, then there is no conflict between the two convertible constraints
\square If there exists conflict on order of items
\square Try to satisfy one constraint first
\square Then using the order for the other constraint to mine frequent itemsets in the corresponding projected database

Chapter 7 : Advanced Frequent Pattern Mining

\square Mining Diverse PatternsConstraint-Based Frequent Pattern MiningSequential Pattern Mining
\square Graph Pattern Mining
\square Pattern Mining Application: Mining Software Copy-and-Paste Bugs
\square Summary

Sequence Databases \& Sequential Patterns

\square Sequential pattern mining has broad applications
\square Customer shopping sequences

- Purchase a laptop first, then a digital camera, and then a smartphone, within 6 months
\square Medical treatments, natural disasters (e.g., earthquakes), science \& engineering processes, stocks and markets, ...
\square Weblog click streams, calling patterns, ...
\square Software engineering: Program execution sequences, ...
\square Biological sequences: DNA, protein, ...
\square Transaction DB, sequence DB vs. time-series DB
\square Gapped vs. non-gapped sequential patterns
\square Shopping sequences, clicking streams vs. biological sequences

Sequence Mining: Description

\square Input
\square A database \mathbf{D} of sequences called data-sequences, in which:
$\square I=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ is the set of items

- each sequence is a list of transactions ordered by transaction-time
- each transaction consists of fields: sequence-id, transaction-id, transaction-time and a set of items.
\square Problem
\square To discover all the sequential patterns with a user-specified minimum support

Input Database: example

Database \mathcal{D}

Sequence-Id	Transaction Time	Items
C1	1	Ringworld
C1	2	Foundation
C1	15	Ringworld Engineers, Second Foundation
C2	1	Foundation, Ringworld
C2	20	Foundation and Empire
C2	50	Ringworld Engineers

45\% of customers who bought Foundation will buy Foundation and Empire within the next month.

Sequential Pattern and Sequential Pattern Mining

\square Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A sequence database

SID Sequence

10	$<a(\underline{a b c})(a \underline{c}) d(c f)>$
20	$<(a d) c(b c)(a e)>$
30	$<(e f)(a b)(d f) \underline{c} b>$
40	$<e g(a f) c b c>$

A sequence: < (ef) (ab) (df) c b >

- An element may contain a set of items (also called events)
Items within an element are unordered and we list them alphabetically
$<a(b c) d c>$ is a subsequence of <a $(a \underline{b c})(a c) \underline{d}(\underline{c} f)>$
- Given support threshold min_sup $=2,<(a b) c>$ is a sequential pattern

A Basic Property of Sequential Patterns: Apriori

\square A basic property: Apriori (Agrawal \& Sirkant'94)
\square If a sequence S is not frequent
\square Then none of the super-sequences of S is frequent
\square E.g, <hb> is infrequent \rightarrow so do <hab> and <(ah)b>

Seq. ID	Sequence
10	$<(\mathrm{bd}) \mathrm{cb}(\mathrm{ac})>$
20	$<(\mathrm{bf})(\mathrm{ce}) \mathrm{b}(\mathrm{fg})>$
30	$<(\mathrm{ah})(\mathrm{bf}) \mathrm{abf}>$
40	$<(\mathrm{be})(\mathrm{ce}) \mathrm{d}>$
50	$<\mathrm{a}(\mathrm{bd}) \mathrm{bcb}(\mathrm{ade})>$

Given support threshold min_sup $=2$

GSP: Apriori-Based Sequential Pattern Mining

GSP Mining and Pruning

$5^{\text {th }}$ scan: 1 cand. 1 length- 5 seq. pat. <(bd)cba>
$4^{\text {th }}$ scan: 8 cand. 7 length -4 seq. pat.
$3^{\text {rd }}$ scan: 46 cand. 20 length- 3 seq. pat. 20 cand. not in DB at all
$2^{\text {nd }}$ scan: 51 cand. 19 length-2 seq. pat. 10 cand. not in DB at all
$1^{\text {st }}$ scan: 8 cand. 6 length -1 seq. pat.

- Repeat (for each level (i.e., length-k))
- \quad Scan DB to find length- k frequent sequences
- Generate length-($k+1$) candidate sequences from length-k frequent sequences using Apriori
- set $k=k+1$
- Until no frequent sequence or no candidate can be found

Candidates cannot pass min_sup threshold
<abba> < (bd)bc>

Candidates not in DB

GSP: Algorithm

Phase 1:

\square Scan over the database to identify all the frequent items, i.e., 1 element sequences

Phase 2:

- Iteratively scan over the database to discover all frequent sequences. Each iteration discovers all the sequences with the same length.
- In the iteration to generate all k-sequences
- Generate the set of all candidate k-sequences, C_{k}, by joining two ($k-1$)sequences if only their first and last items are different
- Prune the candidate sequence if any of its $k-1$ contiguous subsequence is not frequent
- Scan over the database to determine the support of the remaining candidate sequences
- Terminate when no more frequent sequences can be found

GSP: Candidate Generation

Frequent	Candidate 4-Sequences	
3-Sequences	after join	after pruning
$\langle(1,2)(3)\rangle$	$\langle(1,2)(3,4)\rangle$	$\langle(1,2)(3,4)\rangle$
$\langle(1,2)(4)\rangle$	$\langle(1,2)(3)(5)\rangle$	
$\langle(1)(3,4)\rangle$		
$\langle(1,3)(5)\rangle$		
$\langle(2)(3,4)\rangle$		
$\langle(2)(3)(5)\rangle$		

Figure 3: Candidate Generation: Example

The sequence $<(1,2)(3)(5)>$ is dropped in the pruning phase, since its contiguous subsequence $<$ (1) (3) (5) $>$ is not frequent.

GSP: Optimization Techniques

\square Applied to phase 2: computation-intensive
\square Technique 1: the hash-tree data structure
\square Used for counting candidates to reduce the number of candidates that need to be checked

- Leaf: a list of sequences
- Interior node: a hash table
\square Technique 2: data-representation transformation
- From horizontal format to vertical format

Transaction-Time	Items			
10	1,2			
25	4,6			
45	3			
50	1,2			
65	3			
90	2,4			
95	6	\quad	Item	Times
:---:	:---			
1	$\rightarrow 10 \rightarrow 50 \rightarrow$ NULL			
2	$\rightarrow 10 \rightarrow 50 \rightarrow 90 \rightarrow$ NULL			
3	$\rightarrow 45 \rightarrow 65 \rightarrow$ NULL			
4	$\rightarrow 25 \rightarrow 90 \rightarrow$ NULL			
5	\rightarrow NULL			
6	$\rightarrow 25 \rightarrow 95 \rightarrow$ NULL			
7	\rightarrow NULL			

Sequential Pattern Mining in Vertical Data Format: The SPADE Algorithm

- A sequence database is mapped to: <SID, EID>
- Grow the subsequences (patterns) one item at a time by Apriori candidate generation

SID	Sequence
1	$<a(a b c)(a \underline{c}) d(c f)>$
2	$<(a d) c(b c)(a e)>$
3	$<(e f)(\underline{a b})(d f) \underline{c} b>$
4	$<e g(a f) c b c>$
	min_sup $=2$

Ref: SPADE (Sequential PAttern Discovery using Equivalent Class) [M. Zaki 2001]

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1	4	d
1	5	cf
2	1	ad
2	2	c
2	3	bc
2	4	ae
3	1	ef
3	2	ab
3	3	df
3	4	c
3	5	b
4	1	e
4	2	g
4	3	af
4	4	c
4	5	b
4	6	c

a		b		\cdots
SID	EID	SID	EID	\cdots
1	1	1	2	
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			

ab				ba				\cdots
SID	EID (a)	EID(b)	SID	EID (b)	EID (a)	\cdots		
1	1	2	1	2	3			
2	1	3	2	3	4			
3	2	5						
4	3	5						

aba				\cdots
SID	EID (a)	EID(b)	EID(a)	\cdots
1	1	2	3	
2	1	3	4	

PrefixSpan: A Pattern-Growth Approach

SID	Sequence	min_sup $=2$	
10	<a(abc)(act)d(cf)>	Prefix	Suffix (Projection)
20	<(ad)c(bc)(ae)>	<a>	<(abc)(ac)d(cf)>
30	<(ef)(ab)(df) $\underline{\text { b }}$ >	<aa>	< (_bc)(ac)d(cf)>
40	<eg(af)cbc>	<ab>	< _ c) (ac)d(cf)>

\square PrefixSpan Mining: Prefix Projections

- Prefix and suffix

- Given <a(abc)(ac)d(cf)>
\square Prefixes: <a>, <aa>, $<a(a b)>,<a(a b c)>, \ldots$ Suffix: Prefixes-based projection
- Step 1: Find length-1 sequential patterns
$\square\langle a\rangle,\langle b\rangle,\langle c\rangle,\langle d\rangle,\langle e\rangle,<f\rangle$
- Step 2: Divide search space and mine each projected DB
- <a>-projected DB,
- -projected DB,
- ...
- <f>-projected DB, ...
PrefixSpan (Prefix-projected Sequential pattern mining) Pei, et al. @TKDE'04

PrefixSpan: Mining Prefix-Projected DBs

Consideration:

Pseudo-Projection vs. Physical Prlmplementation ojection

- Major cost of PrefixSpan: Constructing projected DBs
- Suffixes largely repeating in recursive projected DBs
\square When DB can be held in main memory, use pseudo projection
- No physically copying suffixes

- Suggested approach:
- Integration of physical and pseudo-projection
$\square \quad$ Swapping to pseudo-projection when the data fits in memory

CloSpan: Mining Closed Sequential Patterns

\square A closed sequential pattern s: There exists no superpattern s' such that s'J s, and s' and s have the same support
\square Which ones are closed? <abc>: 20, <abcd>:20, <abcde>: 15

- Why directly mine closed sequential patterns?
- Reduce \# of (redundant) patterns
- Attain the same expressive power
- Property P_{1} : If $s \supset s_{1}$, s is closed iff two project DBs have the same size
- Explore Backward Subpattern and Backward Superpattern pruning to prune redundant search space
- Greatly enhances efficiency (Yan, et al., SDM’03)

CloSpan: When Two Projected DBs Have the Same Size

- If $s \supset s_{1}, s$ is closed iff two project DBs have the same size
\square When two projected sequence DBs have the same size?
\square Here is one example:

Chapter 7 : Advanced Frequent Pattern Mining

\square Mining Diverse PatternsSequential Pattern MiningConstraint-Based Frequent Pattern Mining
\square Graph Pattern Mining
\square Pattern Mining Application: Mining Software Copy-and-Paste Bugs
\square Summary

Constraint-Based Pattern Mining

\square Why Constraint-Based Mining?

- Different Kinds of Constraints: Different Pruning Strategies
\square Constrained Mining with Pattern Anti-Monotonicity
\square Constrained Mining with Pattern Monotonicity
- Constrained Mining with Data Anti-Monotonicity
\square Constrained Mining with Succinct Constraints
- Constrained Mining with Convertible Constraints
\square Handling Multiple Constraints
\square Constraint-Based Sequential-Pattern Mining

Why Constraint-Based Mining?

\square Finding all the patterns in a dataset autonomously?-unrealistic!

- Too many patterns but not necessarily user-interested!
\square Pattern mining in practice: Often a user-guided, interactive process
- User directs what to be mined using a data mining query language (or a graphical user interface), specifying various kinds of constraints
\square What is constraint-based mining?
- Mine together with user-provided constraints
\square Why constraint-based mining?
- User flexibility: User provides constraints on what to be mined
- Optimization: System explores such constraints for mining efficiency
- E.g., Push constraints deeply into the mining process

Various Kinds of User-Specified Constraints in Data Mining

- Knowledge type constraint—Specifying what kinds of knowledge to mine
- Ex.: Classification, association, clustering, outlier finding, ...
- Data constraint—using SQL-like queries
- Ex.: Find products sold together in NY stores this year
- Dimension/level constraint—similar to projection in relational database
- Ex.: In relevance to region, price, brand, customer category
- Interestingness constraint-various kinds of thresholds
- Ex.: Strong rules: min_sup ≥ 0.02, min_conf ≥ 0.6, min_correlation ≥ 0.7
\square Rule (or pattern) constraint \square The focus of this study
Ex.: Small sales (price < \$10) triggers big sales (sum > \$200)

Pattern Space Pruning with Pattern Anti-Monotonicity

TID Transaction

10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	a, c, e, f, g

min_sup $=2$		
Item	Price	Profit
a	100	40
b	40	0
c	150	-20
d	35	-15
e	55	-30
f	45	-10
g	80	20
h	10	5

- A constraint c is anti-monotone
- If an itemset S violates constraint c, so does any of its superset
- That is, mining on itemset S can be terminated
- Ex. 1: $\mathrm{c}_{1}: \operatorname{sum}($ S.price $) \leq v$ is anti-monotone
- Ex. 2: c_{2} : range(S.profit) ≤ 15 is anti-monotone
- Itemset $a b$ violates c_{2} (range $\left.(a b)=40\right)$
- So does every superset of $a b$
- Ex. 3. $c_{3}: \operatorname{sum}($ S.Price $) \geq v$ is not anti-monotone
- Ex. 4 . Is_{4} : $\operatorname{support}(S) \geq \sigma$ anti-monotone?
- Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

```
Note: item.price > 0
Profit can be negative
```


Pattern Monotonicity and Its Roles

- A constraint c is monotone: If an itemset S satisfies the

TID	Transaction
10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	a, c, e, f, g

$$
\text { min_sup }=2
$$

Item	Price	Profit
a	100	40
b	40	0
c	150	-20
d	35	-15
e	55	-30
f	45	-10
g	80	20
h	10	5

- That is, we do not need to check c in subsequent mining
- Ex. 1: $\mathrm{c}_{1}: \operatorname{sum}(S$. Price $) \geq v$ is monotone
- Ex. 2: c_{2} : $\min ($ S.Price $) \leq v$ is monotone
- Ex. 3: c_{3} : range(S.profit) ≥ 15 is monotone
- Itemset $a b$ satisfies c_{3}
- So does every superset of $a b$

Data Space Pruning with Data Anti-Monotonicity

10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	a, c, e, f, g

min_sup $=2$		
Item	Price	Profit
a	100	40
b	40	0
c	150	-20
d	35	-15
e	55	-30
f	45	-10
g	80	20
h	10	5

\square A constraint c is data anti-monotone: In the mining process, if a data entry t cannot satisfy a pattern p under c, t cannot satisfy p 's superset either
\square Data space pruning: Data entry t can be pruned
\square Ex. 1: $\mathrm{c}_{1}: \operatorname{sum}(S . P r o f i t) \geq v$ is data anti-monotone

- Let constraint c_{1} be: $\operatorname{sum}($ S.Profit $) \geq 25$
$-T_{30}:\{b, c, d, f, g\}$ can be removed since none of their combinations can make an S whose sum of the profit is ≥ 25
\square Ex. 2: $c_{2}: \min (S . P r i c e) \leq v$ is data anti-monotone
- Consider $v=5$ but every item in a transaction, say T_{50}, has a price higher than 10
\square Ex. 3: c_{3} : range(S.Profit) >25 is data anti-monotone

Expressing Patterns in Compressed Form: Closed Patterns

\square How to handle such a challenge?
\square Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern $\mathrm{Y} \supset \mathrm{X}$, with the same support as X
\square Let Transaction DB TDB ${ }_{1}: T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
\square Suppose minsup $=1$. How many closed patterns does TDB 1 contain?

- Two: P_{1} : "\{ $\left.a_{1}, \ldots, a_{50}\right\}: 2 " ; P_{2}$: "\{ $\left.a_{1}, \ldots, a_{100}\right\}: 1 "$
\square Closed pattern is a lossless compression of frequent patterns
\square Reduces the \# of patterns but does not lose the support information!
- You will still be able to say: " $\left\{a_{2}, \ldots, a_{40}\right\}$: $2 ", "\left\{a_{5}, a_{51}\right\}: 1$ "

Expressing Patterns in Compressed Form: Max-Patterns

\square Solution 2: Max-patterns: A pattern X is a maximal frequent pattern or max-pattern if X is frequent and there exists no frequent super-pattern $\mathrm{Y} \supset \mathrm{X}$
\square Difference from close-patterns?
\square Do not care the real support of the sub-patterns of a max-pattern

- Let Transaction DB TDB ${ }_{1}: T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
\square Suppose minsup $=1$. How many max-patterns does TDB ${ }_{1}$ contain?
- One: P: "\{a $\left.a_{1}, \ldots, a_{100}\right\}: 1 "$
\square Max-pattern is a lossy compression!
\square We only know $\left\{a_{1}, \ldots, a_{40}\right\}$ is frequent
- But we do not know the real support of $\left\{a_{1}, \ldots, a_{40}\right\}, \ldots$, any more!
\square Thus in many applications, close-patterns are more desirable than max-patterns

Scaling FP-growth by Item-Based Data Projection

\square What if FP-tree cannot fit in memory?—Do not construct FP-tree

- "Project" the database based on frequent single items
- Construct \& mine FP-tree for each projected DB
\square Parallel projection vs. partition projection
\square Parallel projection: Project the DB on each frequent item
- Space costly, all partitions can be processed in parallel
\square Partition projection: Partition the DB in order
- Passing the unprocessed parts to subsequent partitions

Trans. DB		Parallel projection	
$\mathrm{f}_{2} \mathrm{f}_{3} \mathrm{f}_{4} \mathrm{gh}$		f_{4}-pro	f_{3}-pro
$\mathrm{f}_{3} \mathrm{f}_{4} \mathrm{ij}$	Assume only f's are	$\mathrm{f}_{2} \mathrm{f}_{3}$	f_{2}
$\mathrm{f}_{2} \mathrm{f}_{4} \mathrm{k}$	frequent \& the	f_{3}	f_{1}
$\mathrm{f}_{1} \mathrm{f}_{3} \mathrm{~h}$	frequent item ordering is: $f_{1}-f_{2}-f_{3}-f_{4}$	f_{2}	...
...		...	

Analysis of DBLP Coauthor Relationships

- DBLP: Computer science research publication bibliographic database
- >3.8 million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	$s(A)$	$s(B)$	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	$0.163(2)$	$0.315(7)$	$0.355(9)$
2	Michael Carey	Miron Livny	26	104	58	$0.191(1)$	$0.335(4)$	$0.349(10)$
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	$0.152(3)$	$0.331(5)$	$0.416(8)$
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	$0.119(7)$	$0.308(10)$	$0.446(7)$
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	$18)$	$0.123(6)$	$0.351(2)$	$0.562(2)$
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	$0.110(9)$	$0.314(8)$	$0.500(4)$
7	Divyakant Agrawal	Wang Hsiung	16	120	16	$0.133(5)$	$0.365(1)$	$0.567(1)$
8	Elke Rundensteiner	Murali Mani	16	104	20	$0.148(4)$	$0.351(3)$	$0.477(6)$
9	Divyakant Agrawal	Oliver Po	12	120	12	$0.100(10)$	$0.316(6)$	$0.550(3)$
10	Gerhard Weikum	Martin Theobald	12	106	14	$0.111(8)$	$0.312(9)$	$0.485(5)$

Advisor-advisee relation: Kulc: high, Jaccard: low, cosine: middle
\square Which pairs of authors are strongly related?

- Use Kulc to find Advisor-advisee, close collaborators

Analysis of DBLP Coauthor Relationships

\square DBLP: Computer science research publication bibliographic database
$\square \quad>3.8$ million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	$s(A)$	$s(B)$	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163 (2)	0.315 (7)	0.355 (9)
2	Michael Carey	Miron Livny	26	104	58	0.191 (1)	0.335 (4)	0.349 (10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152 (3)	0.331 (5)	0.416 (8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119 (7)	0.308 (10)	0.446 (7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123 (6)	0.351 (2)	0.562 (2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110 (9)	0.314 (8)	0.500 (4)
7	Divyakant Agrawal	Wang Hsiung	16	120	16	0.133 (5)	0.365 (1)	0.567 (1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148 (4)	0.351 (3)	0.477 (6)
9	Divyakant Agrawal	Oliver Po	<12	120	12	$0.100(10)$	0.316 (6)	0.550 (3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111 (8)	0.312 (9)	0.485 (5)

Advisor-advisee relation: Kulc: high, Jaccard: low, cosine: middle
\square Which pairs of authors are strongly related?
\square Use Kulc to find Advisor-advisee, close collaborators

What Measures to Choose for Effective Pattern Evaluation?

\square Null value cases are predominant in many large datasets

- Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
\square Null-invariance is an important property
\square Lift, $\boldsymbol{\chi}^{\mathbf{2}}$ and cosine are good measures if null transactions are not predominant
- Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern
\square Exercise: Mining research collaborations from research bibliographic data
- Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
\square Can you find the likely advisor-advisee relationship and during which years such a relationship happened?
\square Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD' 10

Mining Compressed Patterns

Pat-ID	Item-Sets	Support
P1	$\{38,16,18,12\}$	205227
P2	$\{38,16,18,12,17\}$	205211
P3	$\{39,38,16,18,12,17\}$	101758
P4	$\{39,16,18,12,17\}$	161563
P5	$\{39,16,18,12\}$	161576

- Closed patterns
- P1, P2, P3, P4, P5
- Emphasizes too much on support
- There is no compression
- Max-patterns
- P3: information loss
- Desired output (a good balance):
- P2, P3, P4
\square Why mining compressed patterns?
- Too many scattered patterns but not so meaningful
\square Pattern distance measure

$$
\operatorname{Dist}\left(P_{1}, P_{2}\right)=1-\frac{\left|T\left(P_{1}\right) \cap T\left(P_{2}\right)\right|}{\left|T\left(P_{1}\right) \cup T\left(P_{2}\right)\right|}
$$

$\square \delta$-clustering: For each pattern P, find all patterns which can be expressed by P and whose distance to P is within δ (δ-cover)
\square All patterns in the cluster can be represented by P
\square Method for efficient, direct mining of compressed frequent patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60:5-29, 2007)

Redundancy-Aware Top-k Patterns

\square Desired patterns: high significance \& low redundancy

(a) a set of patterns

(c) traditional top- k

(b) redundancy-awart top-k

(d) summarization

- Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06

Redundancy Filtering at Mining Multi-Level Associations

\square Multi-level association mining may generate many redundant rules

- Redundancy filtering: Some rules may be redundant due to "ancestor" relationships between items
\square milk \Rightarrow wheat bread [support $=8 \%$, confidence $=70 \%$] (1)
$\square 2 \%$ milk \Rightarrow wheat bread [support $=2 \%$, confidence $=72 \%$] (2)
- Suppose the " 2% milk" sold is about " $1 / 4$ " of milk sold
\square Does (2) provide any novel information?
\square A rule is redundant if its support is close to the "expected" value, according to its "ancestor" rule, and it has a similar confidence as its "ancestor"
\square Rule (1) is an ancestor of rule (2), which one to prune?

Succinctness

\square Succinctness:
\square Given A_{1}, the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A_{1}, i.e., S contains a subset belonging to A_{1}
\square Idea: Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
$\square \min (S$. Price $) \leq v$ is succinct
\square sum(S.Price) $\geq v$ is not succinct
\square Optimization: If C is succinct, C is pre-counting pushable

Which Constraints Are Succinct?

Constraint	Succinct
$\mathbf{v} \in \mathbf{S}$	yes
$\mathbf{S} \supseteq \mathbf{V}$	yes
$\mathbf{S} \subseteq \mathbf{V}$	yes
$\min (\mathbf{S}) \leq \mathbf{v}$	yes
$\min (\mathbf{S}) \geq \mathbf{v}$	yes
$\max (\mathbf{S}) \leq \mathbf{v}$	yes
$\max (\mathbf{S}) \geq \mathbf{v}$	yes
$\operatorname{sum}(\mathbf{S}) \leq \mathbf{v}(\mathbf{a} \in \mathbf{S}, \mathbf{a} \geq \mathbf{0})$	no
$\operatorname{sum}(\mathbf{S}) \geq \mathbf{v}(\mathbf{a} \in \mathbf{S}, \mathbf{a} \geq \mathbf{0})$	no
$\operatorname{range(S)} \leq \mathbf{v}$	no
$\operatorname{range(S)} \geq \mathbf{v}$	no
$\mathbf{a v g (S)} \theta \mathbf{v}, \theta \in\{=, \leq, \geq\}$	no
$\operatorname{support}(\mathbf{S}) \geq \xi$	no
$\operatorname{support}(\mathbf{S}) \leq \xi$	no

Push a Succinct Constraint Deep

Database D	
TID	Items
100	134
200	235
300	1235
400	25

Constraint:
$\min \{S$. price $<=1\}$

Sequential Pattern Mining

\square Sequential Pattern and Sequential Pattern Mining
\square GSP: Apriori-Based Sequential Pattern Mining
\square SPADE: Sequential Pattern Mining in Vertical Data Format
\square PrefixSpan: Sequential Pattern Mining by Pattern-Growth
\square CloSpan: Mining Closed Sequential Patterns

