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Data Transformation

A function that maps the entire set of values of a given attribute to a new set of 
replacement values, s.t. each old value can be identified with one of the new values
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Data Transformation

A function that maps the entire set of values of a given attribute to a new set of 
replacement values s.t. each old value can be identified with one of the new values 
Methods 
! Smoothing: Remove noise from data 
! Attribute/feature construction 

■ New attributes constructed from the given ones 
! Aggregation: Summarization, data cube construction 
! Normalization: Scaled to fall within a smaller, specified range 

■ min-max normalization; z-score normalization; normalization by decimal scaling 
! Discretization
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Normalization

Min-max normalization: to [new_minA, new_maxA] 

Ex.  Let income range $12,000 to $98,000 normalized to [0.0, 1.0] 
■ Then $73,600 is mapped to  
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Normalization

Min-max normalization: to [new_minA, new_maxA] 

Z-score normalization (μ: mean, σ: standard deviation): 

! Ex. Let μ = 54,000, σ = 16,000.  Then,
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Normalization

Min-max normalization: to [new_minA, new_maxA] 

Z-score normalization (μ: mean, σ: standard deviation): 

Normalization by decimal scaling
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Discretization 

Three types of attributes 
! Nominal—values from an unordered set, e.g., color, profession 
! Ordinal—values from an ordered set, e.g., military or academic rank  
! Numeric—real numbers, e.g., integer or real numbers 

Discretization: Divide the range of a continuous attribute into intervals 
! Interval labels can then be used to replace actual data values  
! Reduce data size by discretization 
! Supervised vs. unsupervised 
! Split (top-down) vs. merge (bottom-up) 
! Discretization can be performed recursively on an attribute 
! Prepare for further analysis, e.g., classification



‹#›

Data Discretization Methods

Binning  
! Top-down split, unsupervised 

Histogram analysis 
! Top-down split, unsupervised 

Clustering analysis  
! Unsupervised, top-down split or bottom-up merge 

Decision-tree analysis 
! Supervised, top-down split 
Correlation (e.g., χ2) analysis  
! Unsupervised, bottom-up merge 

Note: All the methods can be applied recursively
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Simple Discretization: Binning

Equal-width (distance) partitioning 
! Divides the range into N intervals of equal size: uniform grid 
! if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B –

A)/N. 
! The most straightforward, but outliers may dominate presentation 
! Skewed data is not handled well
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Simple Discretization: Binning

Equal-width (distance) partitioning 
! Divides the range into N intervals of equal size: uniform grid 
! if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B –

A)/N. 
! The most straightforward, but outliers may dominate presentation 
! Skewed data is not handled well 

Equal-depth (frequency) partitioning 
! Divides the range into N intervals, each containing approximately same number of samples 
! Good data scaling 
! Managing categorical attributes can be tricky
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Example: Binning Methods for Data Smoothing

❑ Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34 
❑ Partition into equal-frequency (equi-depth) bins: 
    - Bin 1: 4, 8, 9, 15 
     - Bin 2: 21, 21, 24, 25 
     - Bin 3: 26, 28, 29, 34 
❑ Smoothing by bin means: 
    - Bin 1: 9, 9, 9, 9 
     - Bin 2: 23, 23, 23, 23 
     - Bin 3: 29, 29, 29, 29 
❑ Smoothing by bin boundaries: 
     - Bin 1: 4, 4, 4, 15 
      - Bin 2: 21, 21, 25, 25 
      - Bin 3: 26, 26, 26, 34
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Dimensionality Reduction

Curse of dimensionality 
! When dimensionality increases, data becomes increasingly sparse 
! Density and distance between points, which is critical to clustering, outlier analysis, 

becomes less meaningful 
! The possible combinations of subspaces will grow exponentially
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Curse of dimensionality 
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! Density and distance between points, which is critical to clustering, outlier analysis, 
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Dimensionality reduction 
! Reducing the number of random variables under consideration, via obtaining a set 

of principal variables
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Dimensionality Reduction

Curse of dimensionality 
! When dimensionality increases, data becomes increasingly sparse 
! Density and distance between points, which is critical to clustering, outlier analysis, becomes less 

meaningful 
! The possible combinations of subspaces will grow exponentially 

Dimensionality reduction 
! Reducing the number of random variables under consideration, via obtaining a set of principal 

variables 

Advantages of dimensionality reduction 
! Avoid the curse of dimensionality 
! Help eliminate irrelevant features and reduce noise 
! Reduce time and space required in data mining 
! Allow easier visualization
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Dimensionality Reduction Techniques

Dimensionality reduction methodologies 
! Feature selection: Find a subset of the original variables (or features, attributes) 
! Feature extraction: Transform the data in the high-dimensional space to a space of 

fewer dimensions 
Some typical dimensionality reduction methods 
! Principal Component Analysis 
! Supervised and nonlinear techniques  

■ Feature subset selection 
■ Feature creation
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PCA:  A statistical procedure that uses an orthogonal 
transformation to convert a set of observations of 
possibly correlated variables into a set of values of 
linearly uncorrelated variables called principal 
components 

The original data are projected onto a much smaller 
space, resulting in dimensionality reduction 

Method:  Find the eigenvectors of the covariance 
matrix, and these eigenvectors define the new space

Ball travels in a straight line. Data from 
three cameras contain much redundancy

Principal Component Analysis (PCA)
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  Principal Components Analysis: Intuition

Goal is to find a projection that captures the largest  amount of 
variation in data 
Find the eigenvectors of the covariance matrix 
The eigenvectors define the new space

x2

x1

e
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Principal Component Analysis: Details

Let A be an n ×n matrix representing the correlation or covariance of 
the data.  
! λ is an eigenvalue of A if there exists a non-zero vector v such that:   
   Av = λ v often rewritten as (A- λI)v=0 

In this case, vector v is called an eigenvector of A corresponding to λ. 
For each eigenvalue λ, the set of all vectors v satisfying Av = λ v is 
called the eigenspace of A corresponding to λ. 
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Attribute Subset Selection

Another way to reduce dimensionality of data 

Redundant attributes  
! Duplicate much or all of the information contained in 

one or more other attributes 
■ E.g., purchase price of a product and the amount of 

sales tax paid 

Irrelevant attributes 
! Contain no information that is useful for the data 

mining task at hand 
■ Ex. A student’s ID is often irrelevant to the task of 

predicting his/her GPA



‹#›

Heuristic Search in Attribute Selection

There are 2d possible attribute combinations of d  attributes 
Typical heuristic attribute selection methods: 
! Best single attribute under the attribute independence assumption: choose by significance 

tests 
! Best step-wise feature selection: 

■ The best single-attribute is picked first 
■ Then next best attribute condition to the first, ... 

! Step-wise attribute elimination: 
■ Repeatedly eliminate the worst attribute 

! Best combined attribute selection and elimination 
! Optimal branch and bound: 

■ Use attribute elimination and backtracking
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Attribute Creation (Feature Generation)

Create new attributes (features) that can capture the important information in a data 
set more effectively than the original ones 
Three general methodologies 
! Attribute extraction 

■  Domain-specific 

! Mapping data to new space (see: data reduction) 
■ E.g., Fourier transformation, wavelet transformation, manifold approaches (not covered) 

! Attribute construction  
■ Combining features (see: discriminative frequent patterns in Chapter on “Advanced Classification”)

■ Data discretization
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Summary

Data quality: accuracy, completeness, consistency, timeliness, believability, 
interpretability 
Data cleaning: e.g. missing/noisy values, outliers 
Data integration from multiple sources:  
! Entity identification problem; Remove redundancies; Detect inconsistencies 
Data reduction 
! Dimensionality reduction; Numerosity reduction; Data compression 
Data transformation and data discretization 
! Normalization; Concept hierarchy generation
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Supervised vs. Unsupervised Learning
Supervised learning (classification) 

! Supervision: The training data (observations, measurements, etc.) are accompanied 
by labels indicating the class of the observations 

! New data is classified based on the training set
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Supervised vs. Unsupervised Learning
Supervised learning (classification) 

! Supervision: The training data (observations, measurements, etc.) are accompanied 
by labels indicating the class of the observations 

! New data is classified based on the training set 

Unsupervised learning (clustering) 

! The class labels of training data is unknown 
! Given a set of measurements, observations, etc. with the aim of establishing the 

existence of classes or clusters in the data
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Prediction Problems: Classification vs. Numeric Prediction
Classification   

! predicts categorical class labels (discrete or nominal) 
! classifies data (constructs a model) based on the training set and the values (class 

labels) in a classifying attribute and uses it in classifying new data 
Numeric Prediction   
! models continuous-valued functions, i.e., predicts unknown or missing values 
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Prediction Problems: Classification vs. Numeric Prediction
Classification   

! predicts categorical class labels (discrete or nominal) 
! classifies data (constructs a model) based on the training set and the values (class 

labels) in a classifying attribute and uses it in classifying new data 
Numeric Prediction   
! models continuous-valued functions, i.e., predicts unknown or missing values  
Typical applications 
! Credit/loan approval: 
! Medical diagnosis: if a tumor is cancerous or benign 
! Fraud detection: if a transaction is fraudulent 
! Web page categorization: which category it is
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Classification—A Two-Step Process 

(1) Model construction: describing a set of predetermined classes 
! Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute

! The set of tuples used for model construction is training set 
! Model: represented as classification rules, decision trees, or mathematical formulae
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! The set of tuples used for model construction is training set 
! Model: represented as classification rules, decision trees, or mathematical formulae 

(2) Model usage: for classifying future or unknown objects 
! Estimate accuracy of the model 

■ The known label of test sample is compared with the classified result from the model 
■ Accuracy: % of test set samples that are correctly classified by the model 
■ Test set is independent of training set (otherwise overfitting)  

! If the accuracy is acceptable, use the model to classify new data
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Classification—A Two-Step Process 

(1) Model construction: describing a set of predetermined classes 
! Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute

! The set of tuples used for model construction is training set 
! Model: represented as classification rules, decision trees, or mathematical formulae 

(2) Model usage: for classifying future or unknown objects 
! Estimate accuracy of the model 

■ The known label of test sample is compared with the classified result from the model 
■ Accuracy: % of test set samples that are correctly classified by the model 
■ Test set is independent of training set (otherwise overfitting)  

! If the accuracy is acceptable, use the model to classify new data 

Note: If the test set is used to select/refine models, it is called validation (test) set or development test set
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Step (1): Model Construction

Training 
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification 
Algorithms

Classifier 
(Model)
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Step (1): Model Construction

Training 
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification 
Algorithms

IF rank = ‘professor’ 
OR years > 6 
THEN tenured = ‘yes’ 

Classifier 
(Model)
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Step (2): Using the Model in Prediction 

Classifier

Testing 
Data

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes
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Step (2): Using the Model in Prediction 

Classifier

Testing 
Data

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

New/Unseen Data

(Jeff, Professor, 4)

Tenured?
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Bayes Classification Methods 
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Techniques to Improve Classification Accuracy: Ensemble Methods 

Summary
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Decision Tree Induction: An Example

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

❑ Training data set: Buys_computer 
❑ The data set follows an example of 

Quinlan’s ID3 (Playing Tennis)
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Decision Tree Induction: An Example

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

no

fairexcellentyesno

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

❑ Training data set: Buys_computer 
❑ The data set follows an example of 

Quinlan’s ID3 (Playing Tennis) 
❑ Resulting tree:
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Algorithm for Decision Tree Induction
Basic algorithm (a greedy algorithm) 
! Tree is constructed in a top-down recursive divide-and-conquer manner 
! At start, all the training examples are at the root 
! Attributes are categorical (if continuous-valued, they are discretized in advance) 
! Examples are partitioned recursively based on selected attributes 
! Test attributes are selected on the basis of a heuristic or statistical measure (e.g., 

information gain)
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Algorithm for Decision Tree Induction
Basic algorithm (a greedy algorithm) 
! Tree is constructed in a top-down recursive divide-and-conquer manner 
! At start, all the training examples are at the root 
! Attributes are categorical (if continuous-valued, they are discretized in advance) 
! Examples are partitioned recursively based on selected attributes 
! Test attributes are selected on the basis of a heuristic or statistical measure (e.g., 

information gain) 
Conditions for stopping partitioning 
! All samples for a given node belong to the same class 
! There are no remaining attributes for further partitioning—majority voting is 

employed for classifying the leaf 
! There are no samples left
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Brief Review of Entropy
Entropy (Information Theory) 
! A measure of uncertainty associated with a random number 
! Calculation:  For a discrete random variable Y taking m distinct values {y1, y2, …, ym} 

! Interpretation 
■ Higher entropy → higher uncertainty 
■ Lower entropy → lower uncertainty 

Conditional entropy

m = 2
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Attribute Selection Measure: Information Gain (ID3/C4.5)

❑ Select the attribute with the highest information gain 
❑ Let pi be the probability that an arbitrary tuple in D belongs to class Ci, 

estimated by |Ci, D|/|D| 
❑ Expected information (entropy) needed to classify a tuple in D: 

❑ Information needed (after using A to split D into v partitions) to classify D: 

❑ Information gained by branching on attribute A
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Attribute Selection: Information Gain
Class P: buys_computer = “yes” 
Class N: buys_computer = “no”

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

How to select the first attribute? 
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Attribute Selection: Information Gain
Class P: buys_computer = “yes” 
Class N: buys_computer = “no”

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Attribute Selection: Information Gain
Class P: buys_computer = “yes” 
Class N: buys_computer = “no”

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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age pi ni I(pi, ni)
<=30 2 3 0.971
31…40 4 0 0
>40 3 2 0.971

Look at “age”: 
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Attribute Selection: Information Gain
Class P: buys_computer = “yes” 
Class N: buys_computer = “no”

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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age pi ni I(pi, ni)
<=30 2 3 0.971
31…40 4 0 0
>40 3 2 0.971

Look at “age”: 
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Attribute Selection: Information Gain
Class P: buys_computer = “yes” 
Class N: buys_computer = “no”

age pi ni I(pi, ni)
<=30 2 3 0.971
31…40 4 0 0
>40 3 2 0.971

Look at “age”: 
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            means “age <=30” has 5 out of 14 samples, 
with 2 yes’es  and 3 no’s.   
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Attribute Selection: Information Gain
Class P: buys_computer = “yes” 
Class N: buys_computer = “no”

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Attribute Selection: Information Gain
Class P: buys_computer = “yes” 
Class N: buys_computer = “no”

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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