CSE 5243 INTRO. TO DATA MINING

Cluster Analysis: Basic Concepts and Methods Huan Sun, CSE@The Ohio State University

Chapter 10. Cluster Analysis: Basic Concepts and Methods

	Cluster Analysis: An Introduction
Partitioning Methods	

- Hierarchical Methods
$\square \quad$ Density- and Grid-Based Methods
- Evaluation of Clustering
\square Summary

K-means Clustering

\square Partitional clustering approach
\square Each cluster is associated with a centroid (center point)
\square Each point is assigned to the cluster with the closest centroid
\square Number of clusters, K, must be specified
\square The basic algorithm is very simple

Often chosen randomly

Measured by Euclidean distance, cosine similarity, etc.

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: \quad Recompute the centroid of each cluster.
Typically the mean of
5: until The centroids don't change

K-means Clustering - Details

$\square \quad$ Initial centroids are often chosen randomly.

- Clusters produced vary from one run to another.
$\square \quad$ The centroid is (typically) the mean of the points in the cluster.
\square 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
\square K-means will converge for common similarity measures mentioned above.
\square Most of the convergence happens in the first few iterations.
$\square \quad$ Often the stopping condition is changed to 'Until relatively few points change clusters'

Example: K-Means Clustering

Evaluating K-means Clusters

\square Most common measure is Sum of Squared Error (SSE)
\square For each point, the error is the distance to the nearest cluster

- To get SSE, we square these errors and sum them.

$$
S S E(C)=\sum_{k=1}^{K} \sum_{x_{i \in C_{k}}}\left\|x_{i}-c_{k}\right\|^{2}
$$

Using Euclidean Distance
$\square X_{i}$ is a data point in cluster C_{k} and c_{k} is the representative point for cluster C_{k} - can show that c_{k} corresponds to the center (mean) of the cluster

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
=> attempt to minimize SSE
5: until The centroids don't change

Derivation of K-means to Minimize SSE

\square Example: one-dimensional data
Step 4: how to update centroid

$$
\begin{aligned}
\frac{\partial}{\partial c_{k}} \mathrm{SSE} & =\frac{\partial}{\partial c_{k}} \sum_{i=1}^{K} \sum_{x \in C_{i}}\left(c_{i}-x\right)^{2} \\
& =\sum_{i=1}^{K} \sum_{x \in C_{i}} \frac{\partial}{\partial c_{k}}\left(c_{i}-x\right)^{2} \\
& =\sum_{x \in C_{k}} 2 \times\left(c_{k}-x_{k}\right)=0 \\
\sum_{x \in C_{k}} 2 \times\left(c_{k}-x_{k}\right)=0 & \Rightarrow m_{k} c_{k}=\sum_{x \in C_{k}} x_{k} \Rightarrow c_{k}=\frac{1}{m_{k}} \sum_{x \in C_{k}} x_{k}
\end{aligned}
$$

Other distance measures

Table 7.2. K-means: Common choices for proximity, centroids, and objective functions.

Proximity Function	Centroid	Objective Function
Manhattan $\left(\mathrm{L}_{1}\right)$	median	Minimize sum of the L_{1} distance of an object to its cluster centroid
Squared Euclidean $\left(\mathrm{L}_{2}^{2}\right)$	mean	Minimize sum of the squared L_{2} distance of an object to its cluster centroid
cosine	mean	$\frac{\text { Maximize sum of the cosine similarity of }}{\text { an object to its cluster centroid }}$

Derivation of K-means to Minimize SSE

\square Example: What if we choose Manhattan distance?

$$
\begin{aligned}
\frac{\partial}{\partial c_{k}} \mathrm{SAE} & =\frac{\partial}{\partial c_{k}} \sum_{i=1}^{K} \sum_{x \in C_{i}}\left|c_{i}-x\right| \\
& =\sum_{i=1}^{K} \sum_{x \in C_{i}} \frac{\partial}{\partial c_{k}}\left|c_{i}-x\right| \\
& =\sum_{x \in C_{k}} \frac{\partial}{\partial c_{k}}\left|c_{k}-x\right|=0 \\
\sum_{x \in C_{k}} \frac{\partial}{\partial c_{k}}\left|c_{k}-x\right| & =0 \Rightarrow \sum_{x \in C_{k}} \operatorname{sign}\left(x-c_{k}\right)=0
\end{aligned}
$$

Step 4: how to update centroid

Partitioning Algorithms: From Optimization Angle

\square Partitioning method: Discovering the groupings in the data by optimizing a specific objective function and iteratively improving the quality of partitions
$\square K$-partitioning method: Partitioning a dataset \boldsymbol{D} of \boldsymbol{n} objects into a set of \boldsymbol{K} clusters so that an objective function is optimized (e.g., the sum of squared distances is minimized, where c_{k} is the "center" of cluster C_{k})

- A typical objective function: Sum of Squared Errors (SSE)

$$
S S E(C)=\sum_{k=1}^{K} \sum_{x_{i \in c_{k}}}\left\|x_{i}-c_{k}\right\|^{2}
$$

\square Problem definition: Given K, find a partition of K clusters that optimizes the chosen partitioning criterion

- Global optimal: Needs to exhaustively enumerate all partitions
- Heuristic methods (i.e., greedy algorithms): K-Means, K-Medians, K-Medoids, etc.

Importance of Choosing Initial Centroids (1)

Importance of Choosing Initial Centroids (2)

Solutions to Initial Centroids Problem

\square Multiple runs

- Helps, but probability is not on your side
\square Sample to determine initial centroids
\square Select more than k initial centroids and then select among these initial centroids
\square Select most widely separated

Pre-processing and Post-processing

\square Pre-processing
\square Normalize the data
\square Eliminate outliers
\square Post-processing
\square Eliminate small clusters that may represent outliers
\square Split 'loose' clusters, i.e., clusters with relatively high SSE
\square Merge clusters that are 'close' and that have relatively low SSE
\square Can use these steps during the clustering process

- ISODATA

K-Means++

\square Original proposal (MacQueen'67): Select K seeds randomly
\square Need to run the algorithm multiple times using different seeds

\square There are many methods proposed for better initialization of k seeds
\square K-Means++ (Arthur \& Vassilvitskii'07):

- The first centroid is selected at random

The next centroid selected is the one that is farthest from the currently selected (selection is based on a weighted probability score)
\square The selection continues until K centroids are obtained

K-Means++

Algorithm 7.2 K-means++ initialization algorithm.
1: For the first centroid, pick one of the points at random.
2: for $i=1$ to number of trials do
3: Compute the distance, $d(x)$, of each point to its closest centroid.
4: Assign each point a probability proportional to each point's $d(x)^{2}$.
5: Pick new centroid from the remaining points using the weighted probabilities.
6: end for

Handling Outliers: From K-Means to K-Medoids

\square The K-Means algorithm is sensitive to outliers!-since an object with an extremely large value may substantially distort the distribution of the data
\square K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster
\square The K-Medoids clustering algorithm:

- Select K points as the initial representative objects (i.e., as initial K medoids)
- Repeat
- Assigning each point to the cluster with the closest medoid
\square Randomly select a non-representative object o_{i}
- Compute the total cost S of swapping the medoid m with o_{i}
- If $S<0$, then swap m with o_{i} to form the new set of medoids
- Until convergence criterion is satisfied

Limitations of K-means

\square K-means has problems when clusters are of differing
\square Sizes

- Densities
\square Non-globular shapes
\square K-means has problems when the data contains outliers.

Limitations of K-means: Differing Size

(a) Original points.

(b) Three K-means clusters.

Figure 7.9. K-means with clusters of different size.

Limitations of K-means: Differing Density

(a) Original points.

Figure 7.10. K-means with clusters of different density.

Limitations of K-means: Non-globular Clusters

(a) Original points.

(b) Two K-means clusters.

Figure 7.11. K-means with non-globular clusters.

Overcoming K-means Limitations:

Breaking Clusters to Subclusters

Original Points

K-means Clusters

K-Medians: Handling Outliers by Computing Medians

\square Medians are less sensitive to outliers than means
\square Think of the median salary vs. mean salary of a large firm when adding a few top executives!

K-Medians: Handling Outliers by Computing Medians

- Medians are less sensitive to outliers than means
\square Think of the median salary vs. mean salary of a large firm when adding a few top executives!
\square K-Medians: Instead of taking the mean value of the object in a cluster as a reference point, medians are used (corresponding to L_{1}-norm as the distance measure)
\square The criterion function for the K-Medians algorithm: $\quad S=\sum_{k=1}^{K} \sum_{x_{i \in C_{k}}} \mid x_{i j}-$ med $_{k j} \mid$
\square The K-Medians clustering algorithm:
$■$ Select K points as the initial representative objects (i.e., as initial K medians)
- Repeat
- Assign every point to its nearest median
- Re-compute the median using the median of each individual feature

K-Medoids: PAM (Partitioning around Medoids)

In general, pick actual data points as "cluster center"

K-Medoids: PAM (Partitioning around Medoids)

$$
K=2
$$

Select initial K-Medoids randomly Repeat

Object re-assignment
Swap medoid m with o_{i} if it improves the clustering quality Until convergence criterion is satisfied

\uparrow
Arbitrary choose K medoids
\qquad object as initial

Randomly select a nonmedoid object, $\mathrm{O}_{\text {ramdom }}$

K-Medoids: PAM (Partitioning around Medoids)

Which one is more robust in the presence of noise and outliers?
A. K-Means
B. K-Medoids

K-Modes: Clustering Categorical Data

\square K-Means cannot handle non-numerical (categorical) data

- Mapping categorical value to $1 / 0$ cannot generate quality clusters for high-dimensional data
\square K-Modes: An extension to K-Means by replacing means of clusters with modes
\square Dissimilarity measure between object X and the center of a cluster Z
$\square \Phi\left(x_{i}, z_{i}\right)=1-n_{i}^{r} / n_{l}$ when $x_{i}=z_{i} ; 1$ when $x_{i} \neq z_{i}$
- where z_{i} is the categorical value of attribute j in $Z_{l,} n_{l}$ is the number of objects in cluster l, and n_{i}^{r} is the number of objects whose attribute value is r
\square This dissimilarity measure (distance function) is frequency-based
\square Algorithm is still based on iterative object cluster assignment and centroid update
\square A fuzzy K-Modes method is proposed to calculate a fuzzy cluster membership value for each object to each cluster
\square A mixture of categorical and numerical data: Using a K-Prototype method

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
$\square \quad$ Hierarchical Methods
- Density- and Grid-Based Methods
- Evaluation of Clustering
\square Summary

Hierarchical Clustering

\square Produces a set of nested clusters organized as a hierarchical tree
\square Can be visualized as a dendrogram
\square A tree-like diagram that records the sequences of merges or splits

Dendrogram: Shows How Clusters are Merged/Splitted

\square Dendrogram: Decompose a set of data objects into a tree of clusters by multi-level nested partitioning
\square A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster

Hierarchical clustering generates a dendrogram (a hierarchy of clusters)

Strengths of Hierarchical Clustering

\square Do not have to assume any particular number of clusters
\square Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
\square They may correspond to meaningful taxonomies
\square Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

\square Two main types of hierarchical clustering
\square Agglomerative:
\square Divisive:

Hierarchical Clustering

\square Two main types of hierarchical clustering

- Agglomerative:
- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
■ Build a bottom-up hierarchy of clusters
\square Divisive:

Hierarchical Clustering

\square Two main types of hierarchical clustering

\square Agglomerative:

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
- Build a bottom-up hierarchy of clusters
- Divisive:
- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Generate a top-down hierarchy of clusters

Hierarchical Clustering

\square Two main types of hierarchical clustering

- Agglomerative:
- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
\square Divisive:
- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)
\square Traditional hierarchical algorithms use a similarity or distance matrix
\square Merge or split one cluster at a time

Agglomerative Clustering Algorithm

$\square \quad$ More popular hierarchical clustering technique
$\square \quad$ Basic algorithm is straightforward

1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat

Merge the two closest clusters
Update the proximity matrix
6. Until only a single cluster remains

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
$\square \quad$ Basic algorithm is straightforward

1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat
4. Merge the two closest clusters
5. Update the proximity matrix
6. Until only a single cluster remains
\square Key operation is the computation of the proximity of two clusters

- Different approaches to defining the distance/similarity between clusters distinguish the different algorithms

Starting Situation

\square Start with clusters of individual points and a proximity matrix

Intermediate Situation

\square After some merging steps, we have some clusters

	C1	C2	C3	C4	C5
C 1					
C					
C					
C					
C					

Proximity Matrix

Intermediate Situation

\square We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

After Merging

\square How do we update the proximity matrix?

C 2				
	C 1	C 5	C 3	C 4
C 1		$?$		
C 2 U 5	$?$	$?$	$?$	$?$
C 3		$?$		
C		$?$		

Proximity Matrix

How to Define Inter-Cluster Similarity

$\square \mathrm{MIN}$

- MAX
- Group Average
- Distance Between Centroids

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	p3	p4	p5	\ldots
p1						
p2						
p3						
p4						
p5						
.						

- Proximity Matrix

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	p3	p4	p5	\ldots
p1						
p2						
p3						
p4						
p5						
.						

- Proximity Matrix

How to Define Inter-Cluster Similarity

$\square \mathrm{MIN}$

- MAX
- Group Average
- Distance Between Centroids

	p1	p2	p3	p4	p5	\ldots
p1						
p2						
p3						
p4						
p5						
.						

Proximity Matrix

How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	p3	p4	p5	\ldots
p1						
p2						
p3						
p4						
p5						
.						

Proximity Matrix

Cluster Similarity: MIN or Single Link

\square Similarity of two clusters is based on the two most similar (closest) points in the different clusters
\square Determined by one pair of points, i.e., by one link in the proximity graph.

Cluster Similarity: MIN or Single Link

\square Similarity of two clusters is based on the two most similar (closest) points in the different clusters
\square Determined by one pair of points, i.e., by one link in the proximity graph.

	11	12	13	14	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

\mid	\mid	\mid	\mid	\mid
1	2	3	4	5

Cluster Similarity: MIN or Single Link

\square Similarity of two clusters is based on the two most similar (closest) points in the different clusters
\square Determined by one pair of points, i.e., by one link in the proximity graph.

	11	12	13	14	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
5	0.20	0.50	0.30	0.80	1.00

Cluster Similarity: MIN or Single Link

\square Similarity of two clusters is based on the two most similar (closest) points in the different clusters
\square Determined by one pair of points, i.e., by one link in the proximity graph.

	11	12	13	14	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Cluster Similarity: MIN or Single Link

\square Similarity of two clusters is based on the two most similar (closest) points in the different clusters
\square Determined by one pair of points, i.e., by one link in the proximity graph.

	11	12	13	14	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Cluster Similarity: MIN or Single Link

\square Similarity of two clusters is based on the two most similar (closest) points in the different clusters
\square Determined by one pair of points, i.e., by one link in the proximity graph.

	$\{\|1\| 2\}$,	13	14	15
$\{11, \mid 2\}$	1.00	0.70	0.65	0.50
13	0.70	1.00	0.40	0.30
14	0.65	0.40	1.00	0.80
15	0.50	0.30	0.80	1.00

Update proximity matrix with new
cluster $\{11, \mid 2\}$

Cluster Similarity: MIN or Single Link

\square Similarity of two clusters is based on the two most similar (closest) points in the different clusters
\square Determined by one pair of points, i.e., by one link in the proximity graph.

	\{11,12\}	13	14	15
\{11, 21$\}$	1.00	0.70	0.65	0.50
13	0.70	1.00	0.40	0.30
14	0.65	0.40	1.00	0.80
15	0.50	0.30	0.80	1.00

Update proximity matrix with new cluster $\{11,12\}$

Cluster Similarity: MIN or Single Link

\square Similarity of two clusters is based on the two most similar (closest) points in the different clusters
\square Determined by one pair of points, i.e., by one link in the proximity graph.

	$\{11,12\}$	13	$\{4,15\}$
$\{11,12\}$	1.00	0.70	0.65
13	0.70	1.00	0.40
$\{14,15\}$	0.65	0.40	1.00

Update proximity matrix with new cluster $\{11,12\}$ and $\{14,15\}$

Cluster Similarity: MIN or Single Link

\square Similarity of two clusters is based on the two most similar (closest) points in the different clusters
\square Determined by one pair of points, i.e., by one link in the proximity graph.

	$\{\|1,\|2\| 3\}$,	$\{\|4\| 5\}$,
$\{\|1,\|2\| 3\}$,	1.00	0.65
$\{\|4\| 5\}$,	0.65	1.00

Only two clusters are left.

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Original Points

Two Clusters

- Can handle non-elliptical shapes

Limitations of MIN

Original Points
Two Clusters

- Sensitive to noise and outliers

Cluster Similarity: MAX or Complete Linkage

\square Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
\square Determined by all pairs of points in the two clusters

		12	13		
	1.00	0.	0.10	0.65	
2	0.90	1.00	0.70	0.60	
3	0.10	0.70	1.	0.40	
	0.65	0.60	0.40	1.00	0.80
	0.2	0.5	0.30	0.80	

1					
1	2	3	4	5	

Cluster Similarity: MAX or Complete Linkage

\square Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
\square Determined by all pairs of points in the two clusters

	$\multicolumn{1}{c}{11, \mid 2} \mid 3$	14	15	
11	1.00	0.10	0.60	0.20
13	0.10	1.00	0.40	0.30
14	0.60	0.40	1.00	0.80
15	0.20	0.30	0.80	1.00

Cluster Similarity: MAX or Complete Linkage

\square Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
\square Determined by all pairs of points in the two clusters

Which two clusters should be merged next?

Cluster Similarity: MAX or Complete Linkage

\square Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
\square Determined by all pairs of points in the two clusters

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strength of MAX

Original Points

Two Clusters

- Less susceptible to noise and outliers

Limitations of MAX

Original Points

Two Clusters
-Tends to break large clusters
-Biased towards globular clusters

Cluster Similarity: Group Average

\square Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$
\begin{aligned}
& \sum \text { proximity }\left(\mathbf{p}_{\mathrm{i}}, \mathbf{p}_{\mathrm{j}}\right) \\
& \text { proximity } \left.\text { Cluster }_{i}, \text { Cluster }_{j}\right)=\frac{\substack{p_{i} \in \text { Clister } \\
p_{j} \\
\mathcal{C C l u s t e r}_{j}}}{\mid \text { Cluster }_{i}|*| \text { Cluster }_{j} \mid}
\end{aligned}
$$

\square Need to use average connectivity for scalability since total proximity favors large clusters

	11	12	13	14	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00
1					

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

\square Compromise between Single and Complete Link
\square Strengths

- Less susceptible to noise and outliers
\square Limitations
\square Biased towards globular clusters

Hierarchical Clustering: Time and Space requirements

$\square \mathrm{O}\left(\mathrm{N}^{2}\right)$ space since it uses the proximity matrix.
$\square \mathrm{N}$ is the number of points.
$\square \mathrm{O}\left(\mathrm{N}^{3}\right)$ time in many cases

- There are N steps and at each step the size, N^{2}, proximity matrix must be updated and searched
\square Complexity can be reduced to $\mathrm{O}\left(\mathrm{N}^{2} \log (\mathrm{~N})\right)$ time for some approaches

Hierarchical Clustering: Problems and Limitations

\square Once a decision is made to combine two clusters, it cannot be undone
\square No objective function is directly minimized
\square Different schemes have problems with one or more of the following:
\square Sensitivity to noise and outliers
\square Difficulty handling different sized clusters and convex shapes
\square Breaking large clusters

