CSE 5243 INTRO. TO DATA MINING

Cluster Analysis: Basic Concepts and Methods

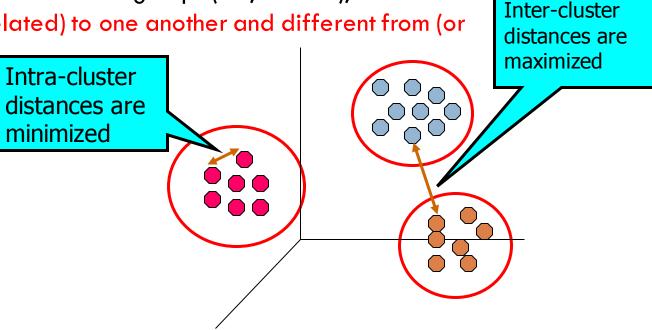
Huan Sun, CSE@The Ohio State University

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods
- Density- and Grid-Based Methods
- Evaluation of Clustering
- Summary

What Is Cluster Analysis?

- What is a cluster?
 - A cluster is a collection of data objects which are
 - Similar (or related) to one another within the same group (i.e., cluster)
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
- Cluster analysis (or clustering, data segmentation, ...)
 - Given a set of data points, partition them into a set of groups (i.e., clusters), such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

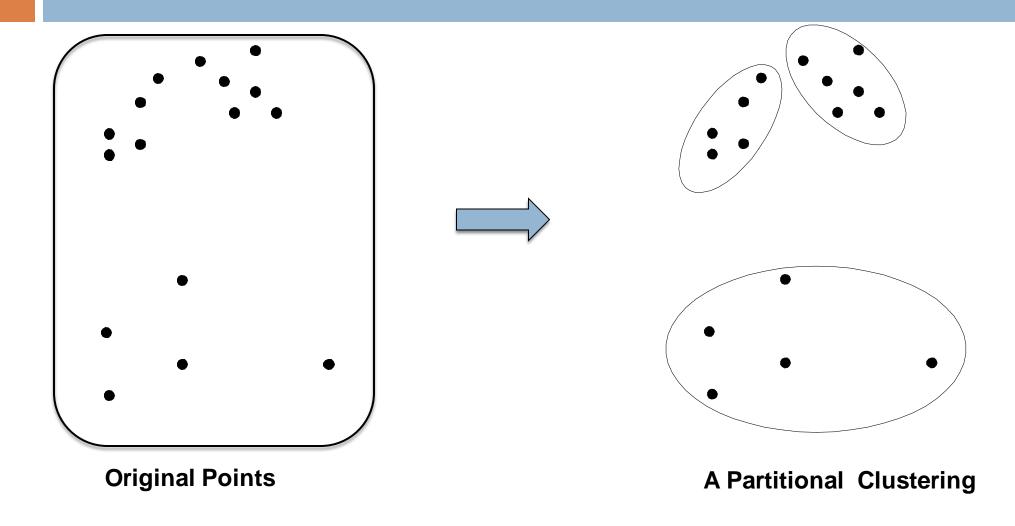


In what real scenarios you need clustering analysis?

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

K-means: Partitional Clustering



K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

Often chosen randomly

Measured by Euclidean distance, cosine similarity, etc.

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.

Typically the mean of the points in the cluster

5: **until** The centroids don't change

K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- "Closeness" is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'

K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- "Closeness" is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity?

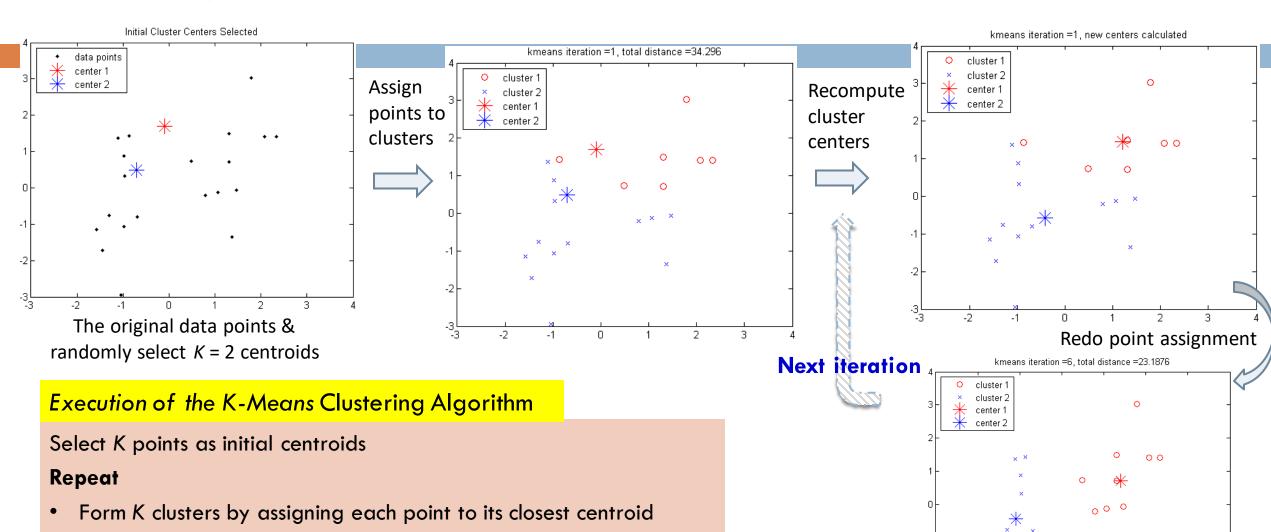
K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- "Closeness" is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

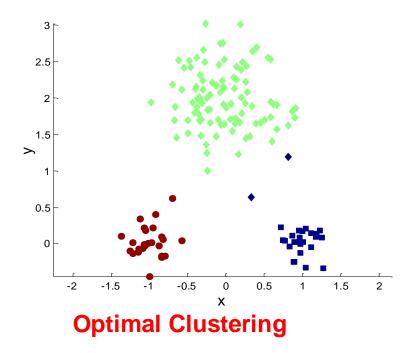
Example: K-Means Clustering

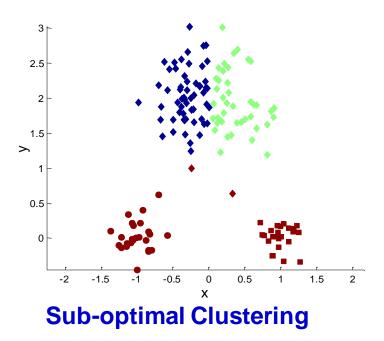
Re-compute the centroids (i.e., mean point) of each cluster

Until convergence criterion is satisfied

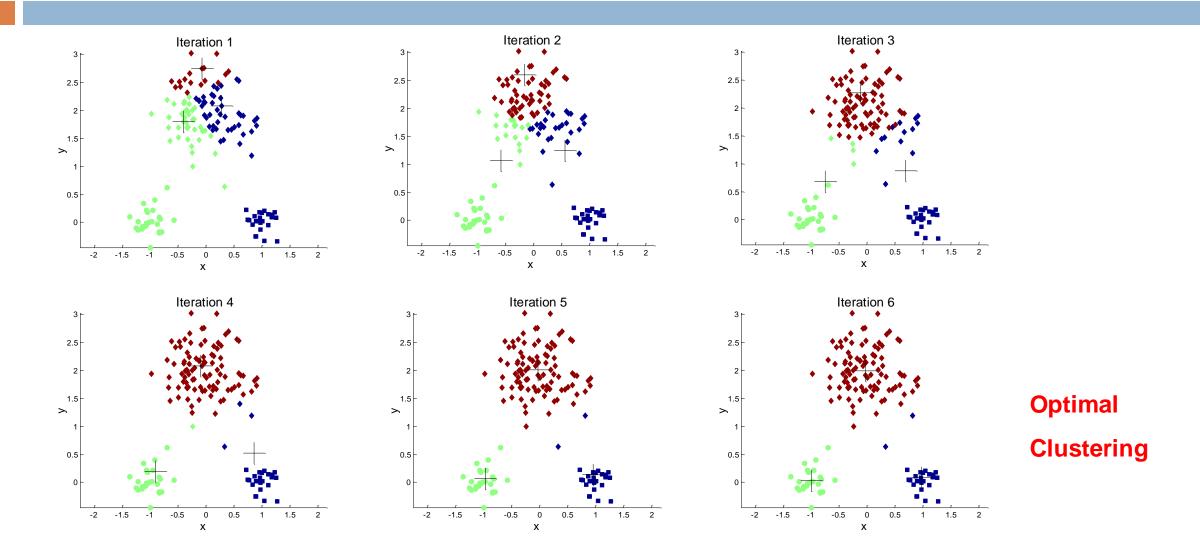


Two different K-means Clusterings

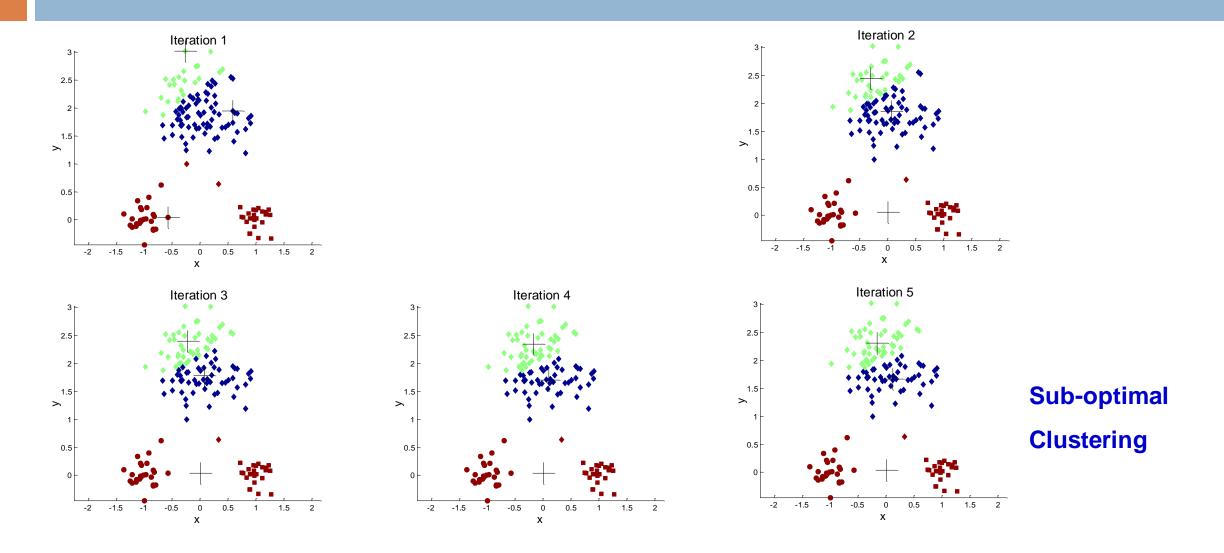




Importance of Choosing Initial Centroids (1)



Importance of Choosing Initial Centroids (2)



■ Why one clustering result is better than the other?

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - □ To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

 \square x is a data point in cluster C_i and m_i is the representative point for cluster C_i

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE(C) = \sum_{k=1}^{K} \sum_{x_{i \in C_k}} ||x_i - c_k||^2$$

Using Euclidean Distance

- \square X_i is a data point in cluster C_k and c_k is the representative point for cluster C_k
 - \blacksquare can show that c_k corresponds to the center (mean) of the cluster

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE(C) = \sum_{k=1}^{K} \sum_{x_{i \in C_k}} ||x_i - c_k||^2$$

- \square X_i is a data point in cluster C_k and c_k is the representative point for cluster C_k
 - \blacksquare can show that c_k corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
 - A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

K-Means: From Optimization Angle

Partitioning method: Discovering the groupings in the data by optimizing a specific objective function and iteratively improving the quality of partitions

K-Means: From Optimization Angle

- Partitioning method: Discovering the groupings in the data by optimizing a specific objective function and iteratively improving the quality of partitions
- □ K-partitioning method: Partitioning a dataset **D** of **n** objects into a set of **K** clusters so that an objective function is optimized (e.g., the sum of squared distances is minimized, where c_k is the "center" of cluster C_k)
 - A typical objective function: Sum of Squared Errors (SSE)

$$SSE(C) = \sum_{k=1}^{K} \sum_{x_{i \in C_k}} ||x_i - c_k||^2$$

The optimization problem:

Partitioning Algorithms: From Optimization Angle

- Partitioning method: Discovering the groupings in the data by optimizing a specific objective function and iteratively improving the quality of partitions
- □ K-partitioning method: Partitioning a dataset **D** of **n** objects into a set of **K** clusters so that an objective function is optimized (e.g., the sum of squared distances is minimized, where c_k is the "center" of cluster C_k)
 - A typical objective function: Sum of Squared Errors (SSE)

$$SSE(C) = \sum_{k=1}^{K} \sum_{x_{i \in C_k}} ||x_i - c_k||^2$$

- □ Problem definition: Given K, find a partition of K clusters that optimizes the chosen partitioning criterion
 - Global optimal: Needs to exhaustively enumerate all partitions
 - Heuristic methods (i.e., greedy algorithms): K-Means, K-Medians, K-Medoids, etc.

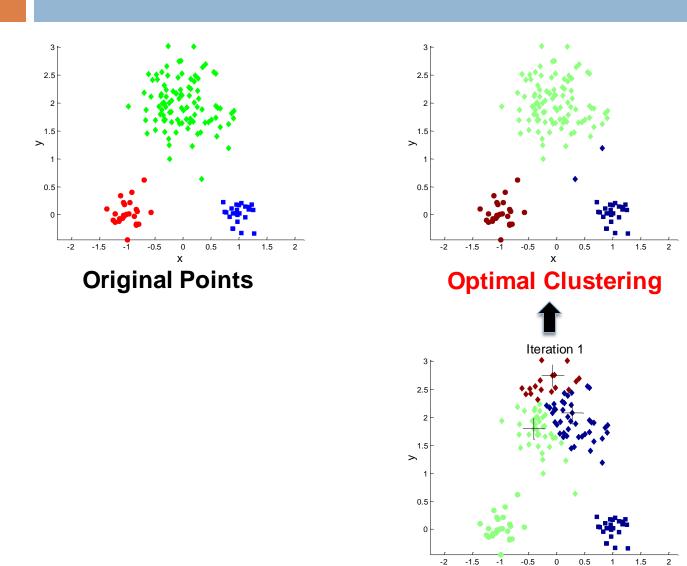
Problems with Selecting Initial Points

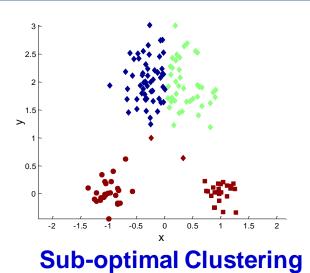
- If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.
 - Chance is relatively small when K is large
 - If clusters are the same size, n, then

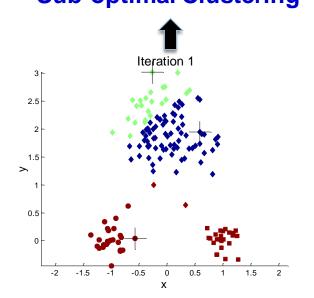
$$P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K!n^K}{(Kn)^K} = \frac{K!}{K^K}$$

- For example, if K = 10, then probability = $10!/10^{10} = 0.00036$
- Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't

Two different K-means Clusterings







Solutions to Initial Centroids Problem

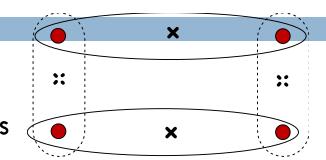
- □ Multiple runs
 - Helps, but probability is not on your side
- Sample to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated

Pre-processing and Post-processing

- Pre-processing
 - Normalize the data
 - Eliminate outliers
- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters, i.e., clusters with relatively high SSE
 - Merge clusters that are 'close' and that have relatively low SSE
 - Can use these steps during the clustering process
 - ISODATA

K-Means++

- Original proposal (MacQueen'67): Select K seeds randomly
 - Need to run the algorithm multiple times using different seeds



- \square There are many methods proposed for better initialization of k seeds
 - □ K-Means++ (Arthur & Vassilvitskii'07):
 - ☐ The first centroid is selected at random
 - ☐ The next centroid selected is the one that is farthest from the currently selected (selection is based on a weighted probability score)
 - ☐ The selection continues until K centroids are obtained

K-Means++

- □ The exact initialization algorithm is:
- 1. Choose one center uniformly at random from all data points.
- 2. For each data point x, compute D(x), the distance between x and the nearest center that has already been chosen.
- 3. Choose one new data point at random as a new center, using a weighted probability distribution where a point x is chosen with probability proportional to $D(x)^2$.
- 4. Repeat Steps 2 and 3 until k centers have been chosen.
- 5. Now that the initial centers have been chosen, proceed using standard K-Means clustering.

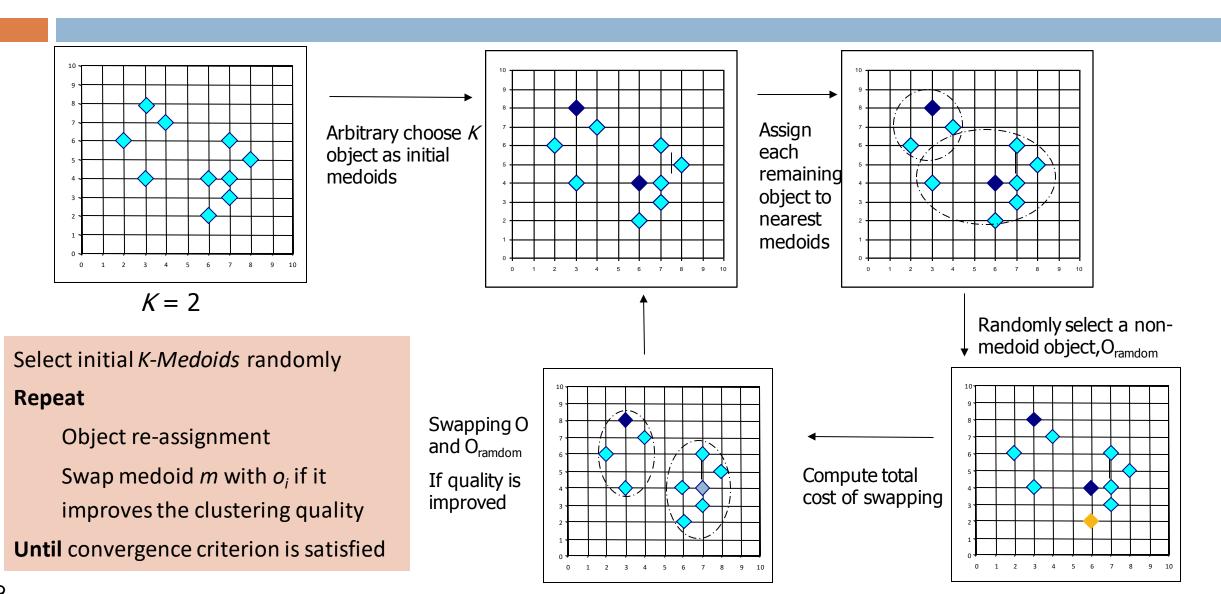
Handling Outliers: From K-Means to K-Medoids

- The K-Means algorithm is sensitive to outliers!—since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster
- The K-Medoids clustering algorithm:
 - Select K points as the initial representative objects (i.e., as initial K medoids)

Repeat

- Assigning each point to the cluster with the closest medoid
- Randomly select a non-representative object o_i
- \blacksquare Compute the total cost S of swapping the medoid m with o_i
- If S < 0, then swap m with o_i to form the new set of medoids
- Until convergence criterion is satisfied

PAM: A Typical K-Medoids Algorithm



K-Medians: Handling Outliers by Computing Medians

- Medians are less sensitive to outliers than means
 - □ Think of the median salary vs. mean salary of a large firm when adding a few top executives!
- □ **K-Medians**: Instead of taking the **mean** value of the object in a cluster as a reference point, **medians** are used (corresponding to L_1 -norm as the distance measure) $S = \sum_{i=1}^{n} \sum_{j=1}^{n} |x_{ij} med_{ki}|$
- □ The criterion function for the *K-Medians* algorithm:
- □ The K-Medians clustering algorithm:
 - Select K points as the initial representative objects (i.e., as initial K medians)

Repeat

- Assign every point to its nearest median
- Re-compute the median using the median of each individual feature
- Until convergence criterion is satisfied

K-Modes: Clustering Categorical Data

- □ K-Means cannot handle non-numerical (categorical) data
 - $lue{}$ Mapping categorical value to 1/0 cannot generate quality clusters for high-dimensional data
- □ **K-Modes:** An extension to K-Means by replacing means of clusters with **modes**
- Dissimilarity measure between object X and the center of a cluster Z
 - - where z_i is the categorical value of attribute i in Z_i , n_i is the number of objects in cluster i, and n_i^r is the number of objects whose attribute value is r
- □ This dissimilarity measure (distance function) is **frequency-based**
- Algorithm is still based on iterative object cluster assignment and centroid update
- A fuzzy K-Modes method is proposed to calculate a fuzzy cluster membership value for each object to each cluster
- □ A mixture of categorical and numerical data: Using a *K-Prototype* method

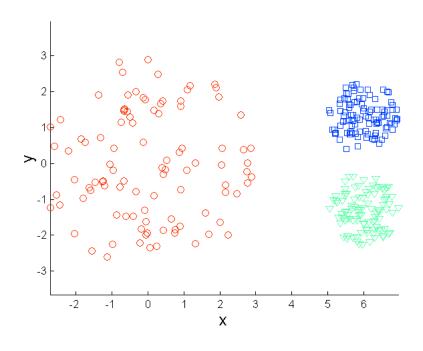
Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

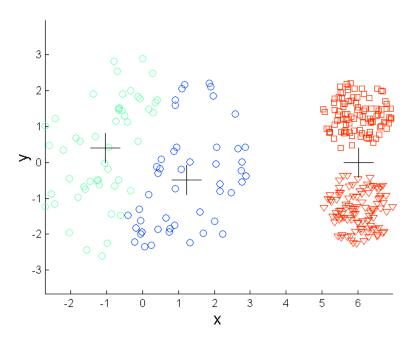
K-means has problems when the data contains outliers.

The mean may often not be a real point!

Limitations of K-means: Differing Density

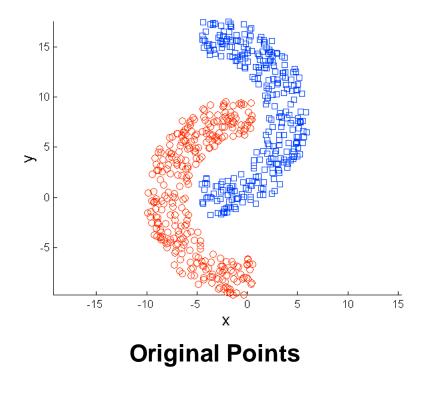


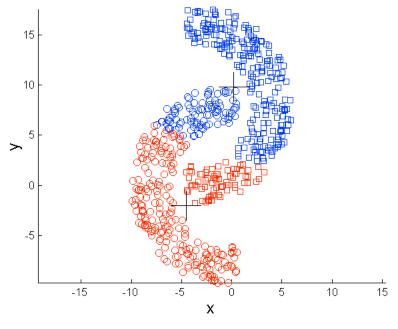
Original Points



K-means (3 Clusters)

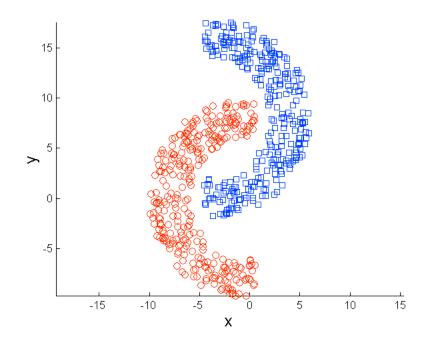
Limitations of K-means: Non-globular Shapes



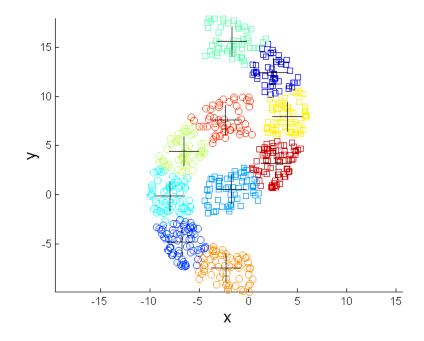


K-means (2 Clusters)

Overcoming K-means Limitations



Original Points



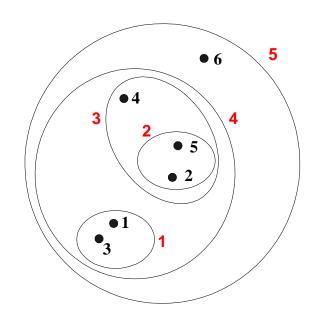
K-means Clusters

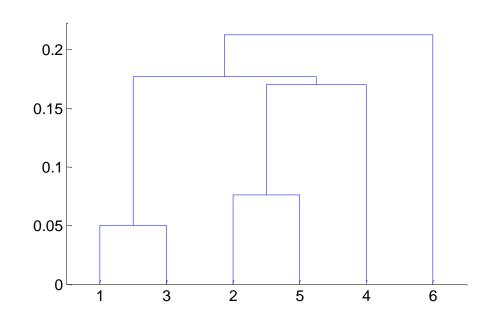
Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods

- Density- and Grid-Based Methods
- **Evaluation of Clustering**
- Summary

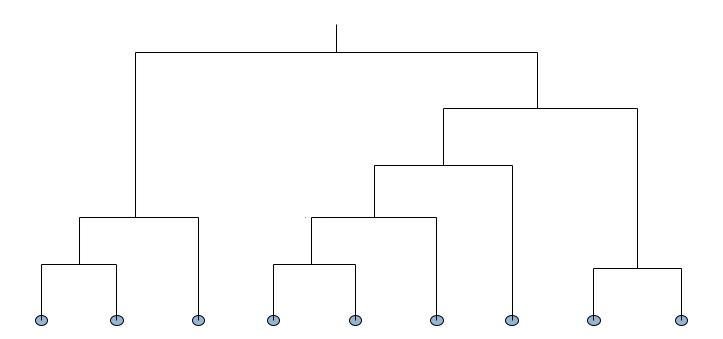
- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree-like diagram that records the sequences of merges or splits





Dendrogram: Shows How Clusters are Merged/Splitted

- <u>Dendrogram</u>: Decompose a set of data objects into a <u>tree</u> of clusters by multi-level nested partitioning
- A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster



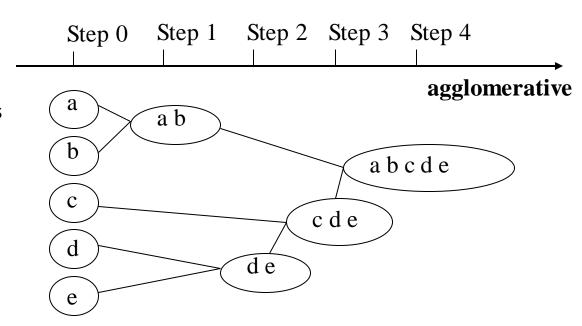
Hierarchical clustering generates a dendrogram (a hierarchy of clusters)

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

- Two main types of hierarchical clustering
 - Agglomerative:
 - Divisive:

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Build a bottom-up hierarchy of clusters
 - Divisive:



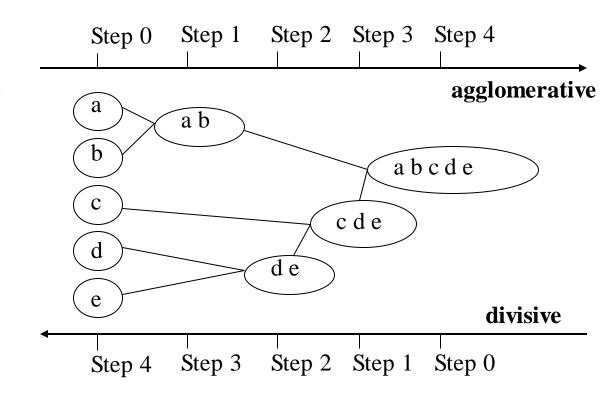
Two main types of hierarchical clustering

Agglomerative:

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
- Build a bottom-up hierarchy of clusters

Divisive:

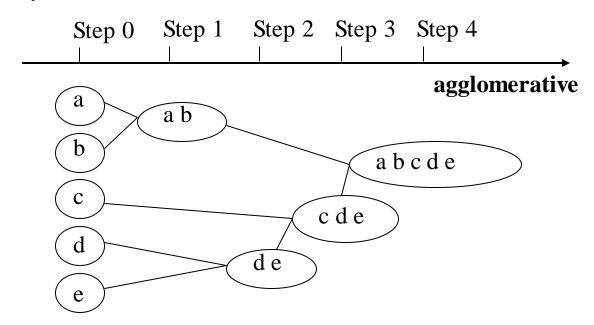
- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster
 contains a point (or there are k clusters)
- Generate a top-down hierarchy of clusters



- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. Until only a single cluster remains

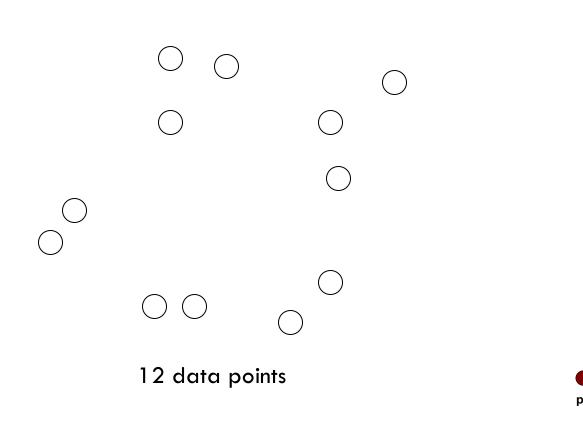


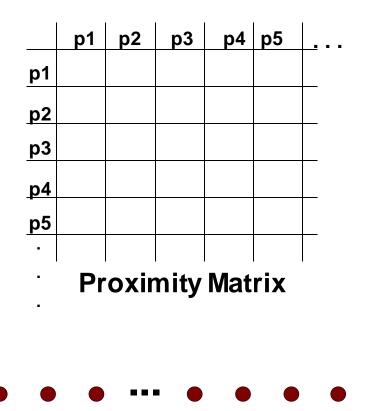
Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance/similarity between clusters distinguish the different algorithms

Starting Situation

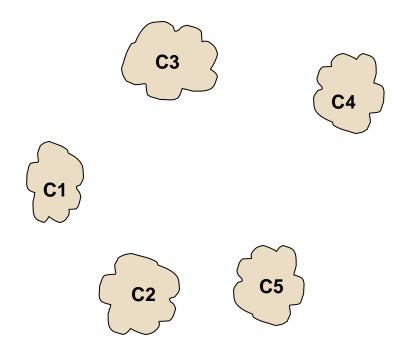
Start with clusters of individual points and a proximity matrix

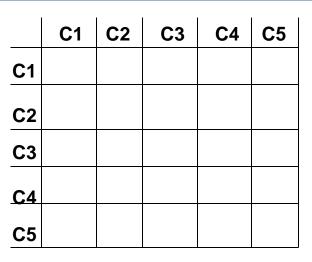




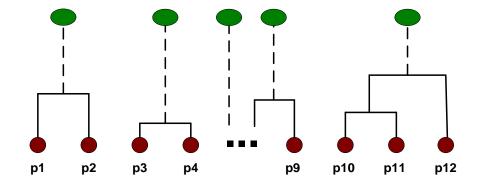
Intermediate Situation

After some merging steps, we have some clusters



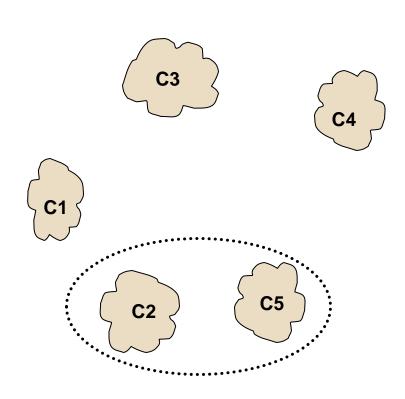


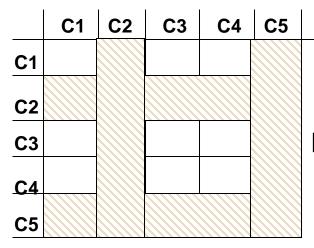
Proximity Matrix



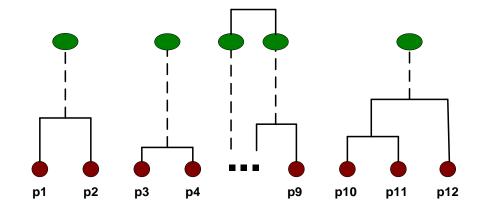
Intermediate Situation

□ We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.



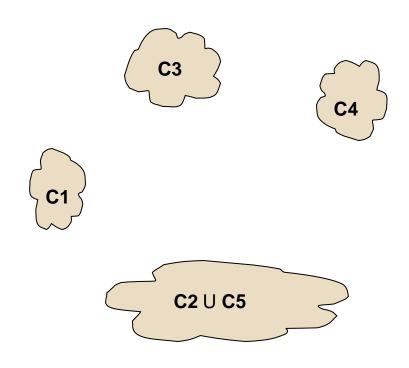


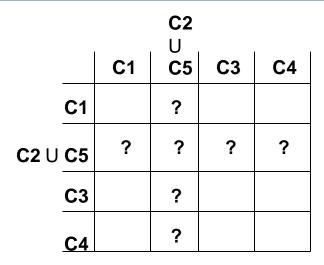
Proximity Matrix



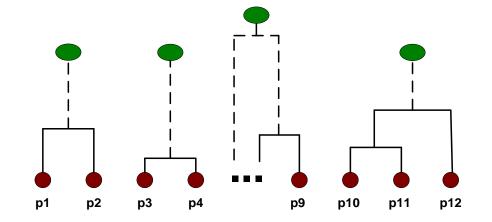
After Merging

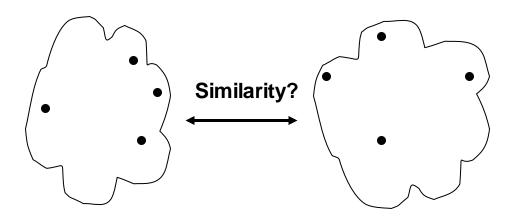
□ How do we update the proximity matrix?





Proximity Matrix



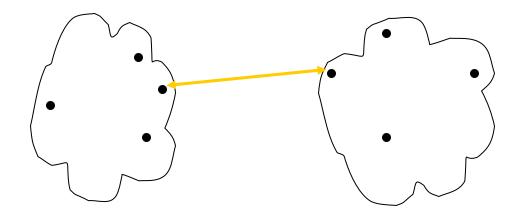


- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
p5						

Proximity Matrix

.

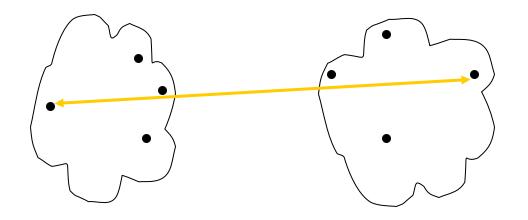


- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	p5	<u> </u>
р1						
p2						
р3						
p4						
р5						

Proximity Matrix

.

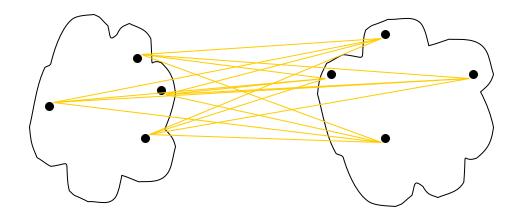


- MAX
- Group Average
- Distance Between Centroids

	р1	p2	р3	p4	р5	<u>.</u>
р1						
p2						
рЗ						
p4						
р5						
_						

Proximity Matrix

.

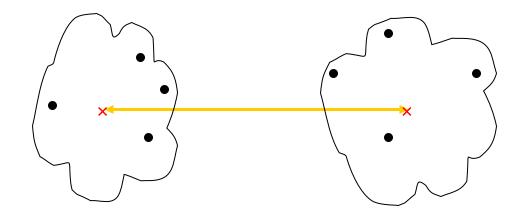


- MAX
- Group Average
- Distance Between Centroids

	р1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
р3						
p4						
p5						
_						

Proximity Matrix

•



- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
р5						_
_						

Proximity Matrix

54

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

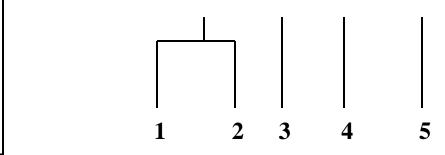
Ī	I 1	12	I 3	14	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

-	I 1	12	I 3	14	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90 0.10 0.65 0.20	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

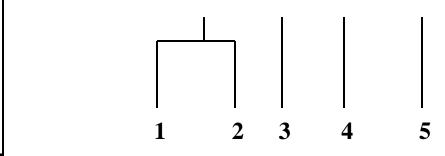
- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

-			13		
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00



- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_			13		
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00



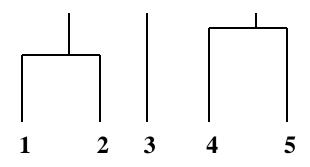
- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

Update proximity matrix with new cluster {11, 12}

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

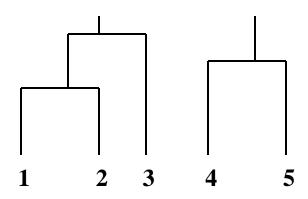
	{I1,I2}	13	4	<u> 15</u>
{I1,I2}	1.00	0.70	0.65	0.50
13	0.70	1.00	0.40	0.30
 4	0.65	0.40	1.00	0.80
15	1.00 0.70 0.65 0.50	0.30	0.80	1.00

Update proximity matrix with new cluster {11, 12}



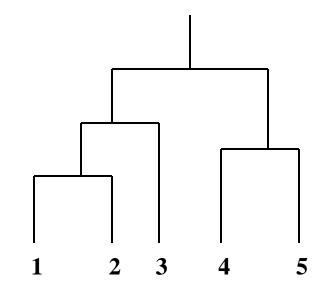
- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

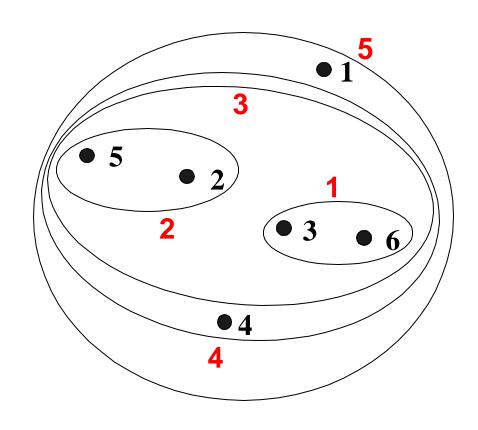
Update proximity matrix with new cluster {11, 12} and {14, 15}



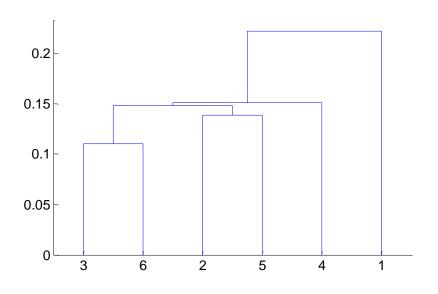
- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	{I1,I2, I3}	{14,15}
{I1,I2, I3}	1.00	0.65
{14,15}	0.65	1.00
	Only two clusters	s are left.



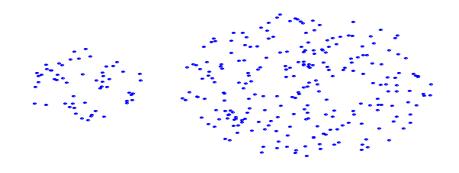


Nested Clusters



Dendrogram

Strength of MIN



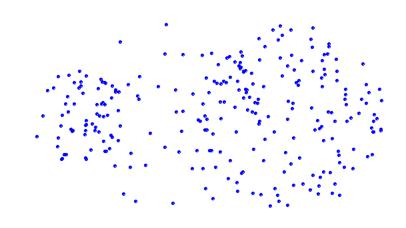


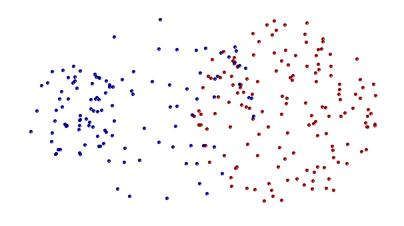
Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of MIN





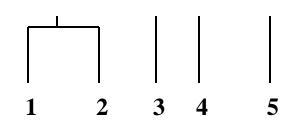
Original Points

Two Clusters

Sensitive to noise and outliers

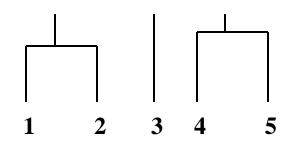
- Similarity of two clusters is based on the two least similar (most distant)
 points in the different clusters
 - Determined by all pairs of points in the two clusters

	I 1				
11	1.00 0.90 0.10 0.65 0.20	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
I 3	0.10	0.70	1.00	0.40	0.30
1 4	0.65	0.60	0.40	1.00	0.80
I 5	0.20	0.50	0.30	0.80	1.00



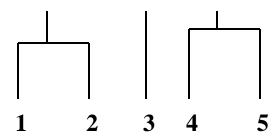
- Similarity of two clusters is based on the two least similar (most distant)
 points in the different clusters
 - Determined by all pairs of points in the two clusters

-	{I1,I2} I3		I 4	1 5	
11	1.00	0.10	0.60	0.20	
13	0.10	1.00	0.40	0.30	
I 4	0.60	0.40	1.00	0.80	
I 5	1.00 0.10 0.60 0.20	0.30	0.80	1.00	



- Similarity of two clusters is based on the two least similar (most distant)
 points in the different clusters
 - Determined by all pairs of points in the two clusters

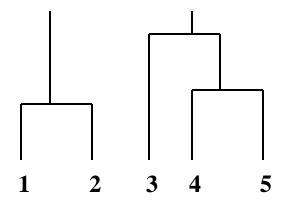
-	{I1,I2} I3		I 4	I 5	
11	1.00	0.10	0.60	0.20	
I 3	0.10	1.00	0.40	0.30	
I 4	0.60	0.40	1.00	0.80	
15	1.00 0.10 0.60 0.20	0.30	0.80	1.00	



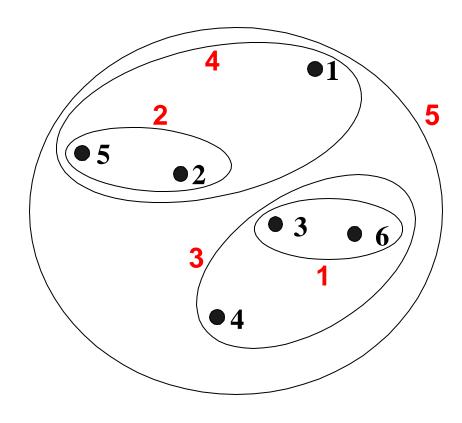
Which two clusters should be merged next?

- Similarity of two clusters is based on the two least similar (most distant)
 points in the different clusters
 - Determined by all pairs of points in the two clusters

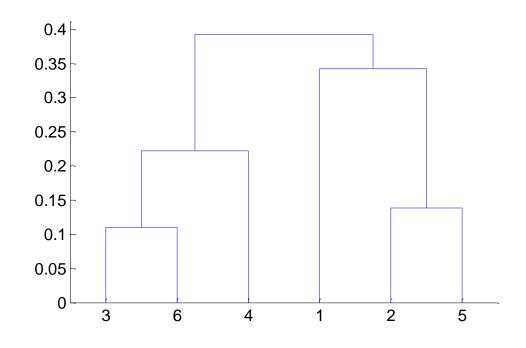
-	{I1,I2} I3		I 4	15	
11	1.00	0.10	0.60	0.20	
13	0.10	1.00	0.40	0.30	
I 4	0.60	0.40	1.00	0.80	
I 5	1.00 0.10 0.60 0.20	0.30	0.80	1.00	



Merge {3} with {4,5}, why?

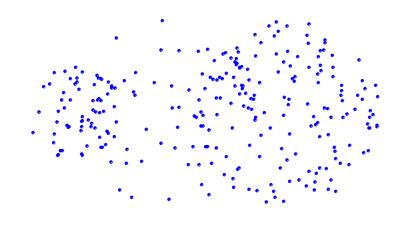


Nested Clusters

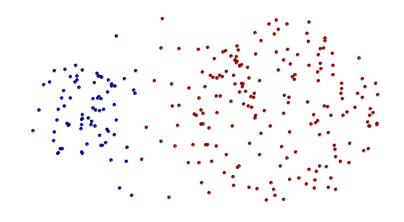


Dendrogram

Strength of MAX



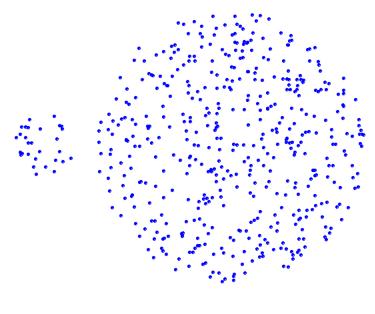
Original Points



Two Clusters

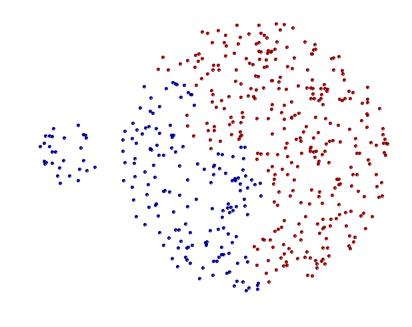
Less susceptible to noise and outliers

Limitations of MAX



Original Points

- Tends to break large clusters
- Biased towards globular clusters



Two Clusters

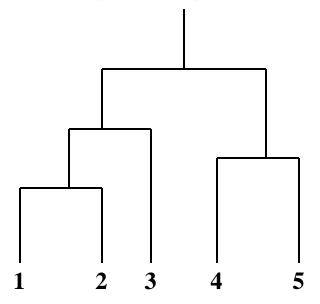
Cluster Similarity: Group Average

Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

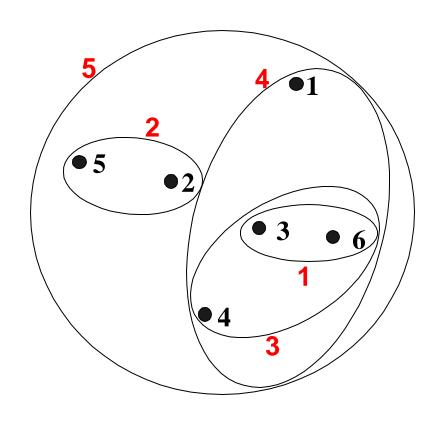
$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} \sum\limits_{\substack{p_{i} \in Cluster_{j} \\ |Cluster_{i}| * |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ |Cluster_{i}| * |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i}| * |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i}| * |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i}| * |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{j}| * |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{j}| * |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in$$

Need to use average connectivity for scalability since total proximity favors large clusters

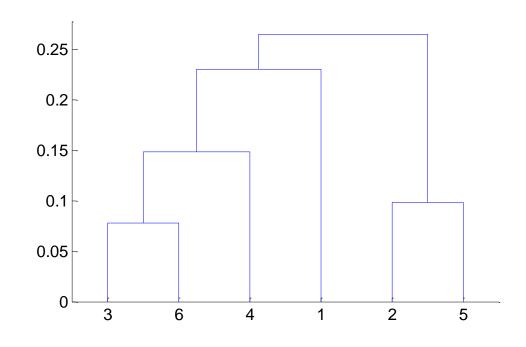
_	I 1	12	I 3	1 4	1 5
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
1 4	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00



Hierarchical Clustering: Group Average



Nested Clusters



Dendrogram

Hierarchical Clustering: Group Average

Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Hierarchical Clustering: Time and Space requirements

- \square O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- \square O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - \square Complexity can be reduced to $O(N^2 \log(N))$ time for some approaches

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters