CSE 5243 INTRO. TO DATA MINING

Classification & Clustering Huan Sun, CSE@The Ohio State University

Slides adapted from UIUC CS412, Fall 2017, by Prof. Jiawei Han

Classification: Advanced Methods

- Lazy Learners and K-Nearest Neighbors
- Neural Networks
- Support Vector Machines

recommended reading

Additional Topics: Semi-Supervised Methods, Active Learning, etc.

□ Summary

Neural Network for Classification

- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- A neural network: A set of connected input/output units where each connection has a weight associated with it
 - During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples
- □ Also referred to as **connectionist learning** due to the connections between units
- □ Backpropagation: A **neural network** learning algorithm

Neuron: A Hidden/Output Layer Unit

- An n-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping
- The inputs to unit are outputs from the previous layer. They are multiplied by their corresponding weights to form a weighted sum, which is added to the bias associated with unit. Then a nonlinear activation function is applied to it.

A Multi-Layer Feed-Forward Neural Network

How a Multi-Layer Neural Network Works

- □ The **inputs** to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- □ They are then weighted and fed simultaneously to a **hidden layer**

How a Multi-Layer Neural Network Works

- □ The **inputs** to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
- □ The number of hidden layers is arbitrary
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction

How a Multi-Layer Neural Network Works

- The **inputs** to the network correspond to the attributes measured for each training tuple x_1
- Inputs are fed simultaneously into the units making up the input layer
- □ They are then weighted and fed simultaneously to a **hidden layer**
- □ The number of hidden layers is arbitrary
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction
- The network is feed-forward: None of the weights cycles back to an input unit or to an output unit of a previous layer
- From a statistical point of view, networks perform nonlinear regression
 - Given enough hidden units and enough training samples, they can closely approximate any function

Defining a Network Topology

- Decide the **network topology**
 - Specify # of units in the input layer, # of hidden layers (if > 1), # of units in each hidden layer, and # of units in the output layer
- Normalize the input values for each attribute measured in the training
- Output, if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights
- Tutorial: <u>https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf</u>

Back Propagation

- Back propagation: Reset weights on the "front" neural units and this is sometimes done in combination with training where the correct result is known
- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"
- □ Steps
 - Initialize weights to small random numbers, associated with biases
 - Propagate the inputs forward (by applying activation function)
 - Backpropagate the error (by updating weights and biases)
 - Terminating condition (when error is very small, etc.)
 - Convolutional Neural Networks example:

http://brohrer.github.io/how_convolutional_neural_networks_work.html

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods
- Density- and Grid-Based Methods
- Evaluation of Clustering
- Summary

- A cluster is a collection of data objects which are
 - Similar (or related) to one another within the same group (i.e., cluster)
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)

- A cluster is a collection of data objects which are
 - Similar (or related) to one another within the same group (i.e., cluster)
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
- Cluster analysis (or clustering, data segmentation, ...)
 - Given a set of data points, partition them into a set of groups (i.e., clusters), such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

- A cluster is a collection of data objects which are
 - Similar (or related) to one another within the same group (i.e., cluster)
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
- Cluster analysis (or clustering, data segmentation, ...)

- A cluster is a collection of data objects which are
 - Similar (or related) to one another within the same group (i.e., cluster)
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
- Cluster analysis (or clustering, data segmentation, ...)
 - Given a set of data points, partition them into a set of groups (i.e., clusters), such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups
- Cluster analysis is **unsupervised learning** (i.e., <u>no predefined classes</u>)
 - This contrasts with classification (i.e., supervised learning)
- Typical ways to use/apply cluster analysis
 - As a stand-alone tool to get insight into data distribution, or
 - As a preprocessing (or intermediate) step for other algorithms

What Is Good Clustering?

□ A good clustering method will produce high quality clusters, which should have

- **High intra-class similarity:** Cohesive within clusters
- **Low inter-class similarity:** Distinctive between clusters

What Is Good Clustering?

- □ A good clustering method will produce high quality clusters, which should have
 - **High intra-class similarity:** Cohesive within clusters
 - Low inter-class similarity: Distinctive between clusters
- Quality function
 - There is usually a separate "quality" function that measures the "goodness" of a cluster
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective
- There exist many similarity measures and/or functions for different applications
- □ Similarity measure is critical for cluster analysis

Cluster Analysis: Applications

Understanding

Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

What is not Cluster Analysis?

Supervised classification

Have class label information

Simple segmentation

Dividing students into different registration groups alphabetically, by last name

Results of a query

Groupings are a result of an external specification

Graph partitioning

Some mutual relevance and synergy, but areas are not identical

Notion of a Cluster can be Ambiguous

How many clusters?

Notion of a Cluster can be Ambiguous

How many clusters?

Six Clusters

Two Clusters

Four Clusters

Types of Clusterings

- □ A clustering is a set of clusters
- Important distinction between partitional and hierarchical sets of clusters
- Partitional Clustering
 - A division of data objects into non-overlapping subsets (clusters) such that <u>each data object is in</u> <u>exactly one subset</u>

Partitional Clustering

Types of Clusterings

- □ A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters

Partitional Clustering

A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset

Hierarchical clustering

A set of <u>nested</u> clusters organized as a <u>hierarchical tree</u>

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Types of Clusters: Well-Separated

Well-Separated Clusters:

A cluster is a set of points such that <u>any point in a cluster is closer (or more similar) to every other</u> point in the cluster than to any point not in the cluster.

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that <u>an object in a cluster is closer (more similar) to the "center"</u> of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

Contiguous Cluster (Nearest neighbor or Transitive)

A cluster is a set of points such that <u>a point in a cluster is closer (or more similar) to one or more other</u> points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Characteristics of the Input Data Are Important

Type of proximity or density measure

This is a derived measure, but central to clustering

Sparseness

- Dictates type of similarity
- Adds to efficiency

Attribute type

Dictates type of similarity

Type of Data

- Dictates type of similarity
- Other characteristics, e.g., autocorrelation
- Dimensionality
- Noise and Outliers
- Type of Distribution

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

Often chosen randomly

1: Select K points as the initial centroids.

2: repeat

- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- □ The basic algorithm is very simple Often chosen
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the <u>closest</u> centroid.

randomly

- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Measured by Euclidean distance, cosine similarity, etc.

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

Often chosen randomly

1: Select K points as the initial centroids.

2: repeat

- 3: Form K clusters by assigning all points to the closest centroid.
- 4: <u>Recompute the centroid of each cluster</u>. =
- 5: **until** The centroids don't change

Typically the mean of the points in the cluster

K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- □ K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- $\Box \quad \text{Complexity is O(n * K * I * d)}$
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

randomly select K = 2 centroids

Execution of the K-Means Clustering Algorithm

Select K points as initial centroids

Repeat

- Form K clusters by assigning each point to its closest centroid
- Re-compute the centroids (i.e., *mean point*) of each cluster
 Until convergence criterion is satisfied

Execution of the K-Means Clustering Algorithm

Select K points as initial centroids

Repeat

- Form K clusters by assigning each point to its closest centroid
- Re-compute the centroids (i.e., *mean point*) of each cluster
- Until convergence criterion is satisfied

Execution of the K-Means Clustering Algorithm

Select K points as initial centroids

Repeat

- Form K clusters by assigning each point to its closest centroid
- Re-compute the centroids (i.e., *mean point*) of each cluster
- Until convergence criterion is satisfied

