CSE 5243 INTRO. TO DATA MINING

Data \& Data Preprocessing
Huan Sun, CSE@The Ohio State University

Chapter 3: Data Preprocessing

\square Data Preprocessing: An Overview
\square Data Cleaning
\square Data Integration
\square Data Reduction and Transformation
\square Dimensionality Reduction
\square Summary

Why Preprocess the Data? — Data Quality Issues

\square Measures for data quality: A multidimensional view
\square Accuracy: correct or wrong, accurate or not
\square Completeness: not recorded, unavailable, ...
\square Consistency: some modified but some not, dangling, ...
\square Timeliness: timely update?
\square Believability: how trustable the data are correct?

- Interpretability: how easily the data can be understood?

What is Data Preprocessing? — Major Tasks

\square Data cleaning

- Handle missing data, smooth noisy data, identify or remove outliers, and resolve inconsistencies
\square Data integration
- Integration of multiple databases, data cubes, or files
\square Data reduction
\square Dimensionality reduction
\square Numerosity reduction
- Data compression
\square Data transformation and data discretization
- Normalization
- Concept hierarchy generation

Data integration

Data transformation $\quad-2,32,100,59,48 \longrightarrow-0.02,0.32,1.00,0.59,0.48$

Chapter 3: Data Preprocessing

\square Data Preprocessing: An Overview
\square Data Cleaning
\square Data Integration
\square Data Reduction and Transformation
\square Dimensionality Reduction
\square Summary

Incomplete (Missing) Data

\square Data is not always available
\square E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
\square Various reasons for missing:

- Equipment malfunction
\square Inconsistent with other recorded data and thus deleted
\square Data were not entered due to misunderstanding
- Certain data may not be considered important at the time of entry
\square Did not register history or changes of the data
\square Missing data may need to be inferred

How to Handle Missing Data?

\square Ignore the tuple: usually done when class label is missing (when doing classification)not effective when the \% of missing values per attribute varies considerably
\square Fill in the missing value manually: tedious + infeasible?
\square Fill in it automatically with

- a global constant : e.g., "unknown", a new class?!
\square the attribute mean
- the attribute mean for all samples belonging to the same class: smarter
\square the most probable value: inference-based such as Bayesian formula or decision tree

Noisy Data

\square Noise: random error or variance in a measured variable

- Incorrect attribute values may be due to
\square Faulty data collection instruments
- Data entry problems
\square Data transmission problems
\square Technology limitation
Two Sine Waves
\square Inconsistency in naming convention
\square Other data problems
\square Duplicate records
\square Inconsistent data

How to Handle Noisy Data?

\square Binning
\square First sort data and partition into (equal-frequency) bins
\square Then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
\square Regression
\square Smooth by fitting the data into regression functions
\square Clustering
\square Detect and remove outliers
\square Semi-supervised: Combined computer and human inspection
\square Detect suspicious values and check by human (e.g., deal with possible outliers)

Data Cleaning as a Process

\square Data discrepancy detection

\square Use metadata (e.g., domain, range, dependency, distribution)
\square Check field overloading
\square Check based on rules: uniqueness rule, consecutive rule and null rule

- Use commercial tools
- Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
- Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)

Data Cleaning as a Process

\square Data discrepancy detection
\square Use metadata (e.g., domain, range, dependency, distribution)
\square Check field overloading

- Check uniqueness rule, consecutive rule and null rule
\square Use commercial tools
\square Data migration and integration
\square Data migration tools: allow transformations to be specified
\square ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface
\square Integration of the two processes
- Iterative and interactive (e.g., Potter's Wheels, a publicly available data cleaning tool)

Chapter 3: Data Preprocessing

\square Data Preprocessing: An Overview
\square Data Cleaning
\square Data Integration
\square Data Reduction and Transformation
\square Dimensionality Reduction
\square Summary

Data Integration

\square Data integration
\square Combining data from multiple sources into a coherent store
\square Schema integration: e.g., A.cust-id \equiv B.cust-\#
\square Integrate metadata from different sources
\square Entity identification:
\square Identify real world entities from multiple data sources, e.g., Bill Clinton $=$ William Clinton
\square Detecting and resolving data value conflicts
\square For the same real world entity, attribute values from different sources are different
\square Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

\square Redundant data occur often when integration of multiple databases
\square Object identification: The same attribute or object may have different names in different databases
\square Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue

Handling Redundancy in Data Integration

\square Redundant data occur often when integration of multiple databases
\square Object identification: The same attribute or object may have different names in different databases
\square Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
\square Redundant attributes may be able to be detected by correlation analysis and covariance analysis
\square Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Correlation Analysis (for Categorical Data)

X^{2} (chi-square) test:
\square To discover the correlation relationship between two attributes, A and B.

Correlation Analysis (for Categorical Data)

$\square \mathrm{X}^{2}$ (chi-square) test:
\square To discover the correlation relationship between two attributes, A and B.
\square Suppose \underline{A} has \underline{c} distinct values $\left\{\underline{a_{1}}, \underline{a_{2}}, \ldots, \underline{a_{c}}\right\}, \underline{B}$ has \underline{r} distinct values $\left\{\underline{b_{1}}, \underline{b_{2}}, \ldots\right.$, br\}.
\square Contingency table: How many times the joint event ($\underline{A_{i}}, \underline{B_{i}}$), "attribute A takes on values ai and attribute B takes on value bj", happens based on the observed data tuples.

Correlation Analysis (for Categorical Data)

$\square \mathrm{X}^{2}$ (chi-square) test:
\square To discover the correlation relationship between two attributes, A and B.
\square Suppose \underline{A} has \underline{c} distinct values $\left\{\underline{a_{1}}, \underline{a_{2}}, \ldots, \underline{a_{c}}\right\}, \underline{B}$ has \underline{r} distinct values $\left\{\underline{b_{1}}, \underline{b_{2}}, \ldots\right.$, br\}.
\square Contingency table: How many times the joint event $\left(\underline{A_{i}}, \underline{\mathrm{~B}}\right)$, "attribute A takes on values ai and attribute B takes on value bj", happens based on the observed data tuples.

$$
\chi^{2}=\sum_{i=1}^{c} \sum_{j=1}^{r} \frac{\left(o_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

Where $\mathbf{O}_{i j}$ is the observed frequency (or, actual count) of the joint event ($\left.\underline{A}_{i}, \underline{B_{i}}\right)$, and $\mathbf{e}_{i j}$ is the expected frequency:

Correlation Analysis (for Categorical Data)

$\square X^{2}$ (chi-square) test:
\square To discover the correlation relationship between two attributes, A and B.
\square Suppose \underline{A} has \underline{c} distinct values $\left\{\underline{a_{1}}, \underline{a_{2}}, \ldots, \underline{a_{c}}\right\}, \underline{B}$ has \underline{r} distinct values $\left\{\underline{b_{1}}, \underline{b_{2}}, \ldots\right.$, br\}.
\square Contingency table: How many times the joint event ($\left.\underline{A_{i}}, \underline{B_{i}}\right)$, "attribute A takes on values ai and attribute B takes on value bj", happens based on the observed data tuples.

$$
\chi^{2}=\sum_{i=1}^{c} \sum_{j=1}^{r} \frac{\left(o_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

Where $\mathbf{O}_{i j}$ is the observed frequency (or, actual count) of the joint event ($\left.\underline{A}_{i}, \underline{B_{i}}\right)$, and $\mathbf{e}_{i j}$ is the expected frequency:

$$
e_{i j}=\frac{\operatorname{count}\left(A=a_{i}\right) \times \operatorname{count}\left(B=b_{j}\right)}{n}
$$

Correlation Analysis (for Categorical Data)

$\square X^{2}$ (chi-square) test:

$$
\chi^{2}=\sum_{i=1}^{c} \sum_{j=1}^{r} \frac{\left(o_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

\square The cells that contribute the most to the X^{2} value are those whose actual count is very different from the expected count
\square The larger the X^{2} value, the more likely the variables are related

Correlation Analysis (for Categorical Data)

$\square X^{2}$ (chi-square) test:

$$
\chi^{2}=\sum_{i=1}^{c} \sum_{j=1}^{r} \frac{\left(o_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

\square Null hypothesis: The two variables are independent
\square The cells that contribute the most to the X^{2} value are those whose actual count is very different from the expected count
\square The larger the X^{2} value, the more likely the variables are related
\square Note: Correlation does not imply causality

- \# of hospitals and \# of car-theft in a city are correlated
- Both are causally linked to the third variable: population

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	$250(90)$	$200(360)$	450
Not like science fiction	$50(210)$	$1000(840)$	1050
Sum (col.)	300	1200	1500

Contingency Table

Numbers outside bracket mean the observed frequencies of a joint event, and numbers inside bracket mean the expected frequencies.

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	$250(90)$	$200(360)$	450
Not like science fiction	$50(210)$	$1000(840)$	1050
Sum (col.)	300	1200	1500

Contingency Table

Numbers outside bracket mean the observed frequencies of a joint event, and numbers inside bracket mean the expected frequencies.

How to derive 90 ?

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	$250(90)$	$200(360)$	450
Not like science fiction	$50(210)$	$1000(840)$	1050
Sum (col.)	300	1200	1500

Contingency Table

Numbers outside bracket mean the observed frequencies of a joint event, and numbers inside bracket mean the expected frequencies.

How to derive 90 ?

$$
(450 * 300) / 1500=90
$$

$$
e_{i j}=\frac{\operatorname{count}\left(A=a_{i}\right) \times \operatorname{count}\left(B=b_{j}\right)}{n}
$$

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	$250(90)$	$200(360)$	450
Not like science fiction	$50(210)$	$1000(840)$	1050
Sum (col.)	300	1200	1500

How to derive 90 ?

$$
450 / 1500 * 300=90
$$

Contingency Table

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	$250(90)$	$200(360)$	450
Not like science fiction	$50(210)$	$1000(840)$	1050
Sum (col.)	300	1200	1500

How to derive 90 ?

$$
450 / 1500 * 300=90
$$

Contingency Table
$\square X^{2}$ (chi-square) calculation

$$
\chi^{2}=\frac{(250-90)^{2}}{90}+\frac{(50-210)^{2}}{210}+\frac{(200-360)^{2}}{360}+\frac{(1000-840)^{2}}{840}=507.93
$$

$$
\chi^{2}=\sum_{i=1}^{c} \sum_{j=1}^{r} \frac{\left(o_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	$250(90)$	$200(360)$	450
Not like science fiction	$50(210)$	$1000(840)$	1050
Sum (col.)	300	1200	1500

How to derive 90 ?

$$
450 / 1500 * 300=90
$$

$\square X^{2}$ (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$
\chi^{2}=\frac{(250-90)^{2}}{90}+\frac{(50-210)^{2}}{210}+\frac{(200-360)^{2}}{360}+\frac{(1000-840)^{2}}{840}=507.93
$$

Given a threshold 10.828
\square It shows that like_science_fiction and play_chess are correlated in the group

Review: Variance for Single Variable (Numerical Data)

\square The variance of a random variable X provides a measure of how much the value of X deviates from the mean or expected value of X :

$$
\sigma^{2}=\operatorname{var}(X)=E\left[(\mathrm{X}-\mu)^{2}\right]=\left\{\begin{array}{cl}
\sum_{x}(x-\mu)^{2} f(x) & \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x & \text { if } X \text { is continuous }
\end{array}\right.
$$

\square where σ^{2} is the variance of X, σ is called standard deviation μ is the mean, and $\mu=E[X]$ is the expected value of X

Review: Variance for Single Variable (Numerical Data)

\square The variance of a random variable X provides a measure of how much the value of X deviates from the mean or expected value of X :

$$
\sigma^{2}=\operatorname{var}(X)=E\left[(\mathrm{X}-\mu)^{2}\right]=\left\{\begin{array}{cl}
\sum_{x}(x-\mu)^{2} f(x) & \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x & \text { if } X \text { is continuous }
\end{array}\right.
$$

\square where σ^{2} is the variance of X, σ is called standard deviation μ is the mean, and $\mu=\mathrm{E}[\mathrm{X}]$ is the expected value of X

- It can also be written as:

$$
\sigma^{2}=\operatorname{var}(X)=E\left[(\mathrm{X}-\mu)^{2}\right]=E\left[\mathrm{X}^{2}\right]-\mu^{2}=E\left[\mathrm{X}^{2}\right]-[E(x)]^{2}
$$

Covariance for Two Variables

Covariance between two variables X_{1} and X_{2}

$$
\sigma_{12}=E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=E\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2}=E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right]
$$

where $\mu_{1}=\mathrm{E}\left[X_{1}\right]$ is the mean or expected value of X_{1}; similarly for μ_{2}

Single variable

$$
\sigma^{2}=\operatorname{var}(X)=E\left[(\mathrm{X}-\mu)^{2}\right]=E\left[\mathrm{X}^{2}\right]-\mu^{2}=E\left[\mathrm{X}^{2}\right]-[E(x)]^{2}
$$

Covariance for Two Variables

\square Covariance between two variables X_{1} and X_{2}

$$
\sigma_{12}=E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=E\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2}=E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right]
$$

where $\mu_{1}=\mathrm{E}\left[X_{1}\right]$ is the respective mean or expected value of X_{1}; similarly for μ_{2}
\square Sample covariance between X_{1} and $\mathrm{X}_{2}: \quad \hat{\sigma}_{12}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i 1}-\hat{\mu}_{1}\right)\left(x_{i 2}-\hat{\mu}_{2}\right)$
\square Sample covariance is a generalization of the sample variance:

$$
\hat{\sigma}_{11}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i 1}-\hat{\mu}_{1}\right)\left(x_{i 1}-\hat{\mu}_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i 1}-\hat{\mu}_{1}\right)^{2}=\hat{\sigma}_{1}^{2}
$$

$$
\text { For unbiased estimator, } \mathrm{n}=>\mathrm{n}-1
$$

Covariance for Two Variables

\square Covariance between two variables X_{1} and X_{2}

$$
\sigma_{12}=E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=E\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2}=E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right]
$$

where $\mu_{1}=E\left[X_{1}\right]$ is the respective mean or expected value of X_{1}; similarly for μ_{2}
\square Positive covariance: If $\sigma_{12}>0$
\square Negative covariance: If $\sigma_{12}<0$
\square Independence: If X_{1} and X_{2} are independent, $\sigma_{12}=0$, but the reverse is not true
\square Some pairs of random variables may have a covariance 0 but are not independent

- Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence

Example: Calculation of Covariance

Suppose two stocks X_{1} and X_{2} have the following values in one week:

- Day 1: $\left(X_{1}, X_{2}\right)=(2,5)$,
- Day 2: $\left(X_{1}, X_{2}\right)=(3,8)$,
- Day 3: $\left(X_{1}, X_{2}\right)=(5,10)$,
- Day 4: $\left(X_{1}, X_{2}\right)=(4,11)$,
- Day 5: $\left(X_{1}, X_{2}\right)=(6,14)$.

Example: Calculation of Covariance

\square Suppose two stocks X_{1} and X_{2} have the following values in one week:

- Day 1: $\left(X_{1}, X_{2}\right)=(2,5)$,
- Day 2: $\left(X_{1}, X_{2}\right)=(3,8)$,
- Day 3: $\left(X_{1}, X_{2}\right)=(5,10)$,
- Day 4: $\left(X_{1}, X_{2}\right)=(4,11)$,
- Day 5: $\left(X_{1}, X_{2}\right)=(6,14)$.
\square Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?

Example: Calculation of Covariance

\square Suppose two stocks X_{1} and X_{2} have the following values in one week:

- $(2,5),(3,8),(5,10),(4,11),(6,14)$
\square Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?

Example: Calculation of Covariance

\square Suppose two stocks X_{1} and X_{2} have the following values in one week:
$\square(2,5),(3,8),(5,10),(4,11),(6,14)$
\square Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
\square Covariance formula:

$$
\begin{aligned}
\sigma_{12} & =E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=E\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2}=E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right] \\
\sigma_{12} & =E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right]
\end{aligned}
$$

Example: Calculation of Covariance

\square Suppose two stocks X_{1} and X_{2} have the following values in one week:
$\square(2,5),(3,8),(5,10),(4,11),(6,14)$
\square Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
\square Covariance formula

$$
\begin{aligned}
\sigma_{12} & =E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=E\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2}=E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right] \\
\sigma_{12} & =E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right]
\end{aligned}
$$

\square Its computation can be simplified as:
$\square E\left(X_{1}\right)=(2+3+5+4+6) / 5=20 / 5=4$

Example: Calculation of Covariance

\square Suppose two stocks X_{1} and X_{2} have the following values in one week:
$\square(2,5),(3,8),(5,10),(4,11),(6,14)$
\square Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
\square Covariance formula

$$
\begin{aligned}
& \sigma_{12}=E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=E\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2}=E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right] \\
& \sigma_{12}=E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right]
\end{aligned}
$$

\square Its computation can be simplified as:
$\square E\left(X_{1}\right)=(2+3+5+4+6) / 5=20 / 5=4$
$\square \mathrm{E}\left(\mathrm{X}_{2}\right)=(5+8+10+11+14) / 5=48 / 5=9.6$

Example: Calculation of Covariance

\square Suppose two stocks X_{1} and X_{2} have the following values in one week:
$\square(2,5),(3,8),(5,10),(4,11),(6,14)$
\square Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
\square Covariance formula

$$
\begin{aligned}
\sigma_{12} & =E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=E\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2}=E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right] \\
\sigma_{12} & =E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right]
\end{aligned}
$$

\square Its computation can be simplified as:
$\square E\left(X_{1}\right)=(2+3+5+4+6) / 5=20 / 5=4$
$\square E\left(X_{2}\right)=(5+8+10+11+14) / 5=48 / 5=9.6$

- $\sigma_{12}=\underline{(2 \times 5+3 \times 8+5 \times 10+4 \times 11+6 \times 14) / 5-4 \times 9.6=4}$

$$
E\left[X_{1} X_{2}\right]
$$

Example: Calculation of Covariance

\square Suppose two stocks X_{1} and X_{2} have the following values in one week:
$\square(2,5),(3,8),(5,10),(4,11),(6,14)$
\square Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
\square Covariance formula

$$
\begin{aligned}
\sigma_{12} & =E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=E\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2}=E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right] \\
\sigma_{12} & =E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right]
\end{aligned}
$$

\square Its computation can be simplified as:
$\square E\left(X_{1}\right)=(2+3+5+4+6) / 5=20 / 5=4$
$\square E\left(X_{2}\right)=(5+8+10+11+14) / 5=48 / 5=9.6$

- $\sigma_{12}=(2 \times 5+3 \times 8+5 \times 10+4 \times 11+6 \times 14) / 5-4 \times 9.6=4$
\square Thus, X_{1} and X_{2} rise together since $\sigma_{12}>0$

Correlation Coefficient between Two Numerical Variables

Correlation between two variables X_{1} and X_{2} is the standard covariance, obtained by normalizing the covariance with the standard deviation of each variable

$$
\rho_{12}=\frac{\sigma_{12}}{\sigma_{1} \sigma_{2}}=\frac{\sigma_{12}}{\sqrt{\sigma_{1}^{2} \sigma_{2}^{2}}}
$$

Correlation Coefficient between Two Numerical Variables

\square Correlation between two variables X_{1} and X_{2} is the standard covariance, obtained by normalizing the covariance with the standard deviation of each variable

$$
\rho_{12}=\frac{\sigma_{12}}{\sigma_{1} \sigma_{2}}=\frac{\sigma_{12}}{\sqrt{\sigma_{1}^{2} \sigma_{2}^{2}}}
$$

\square Sample correlation for two attributes X_{1} and X_{2} :

$$
\hat{\rho}_{12}=\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{1} \hat{\sigma}_{2}}=\frac{\sum_{i=1}^{n}\left(x_{i 1}-\hat{\mu}_{1}\right)\left(x_{i 2}-\hat{\mu}_{2}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i 1}-\hat{\mu}_{1}\right)^{2} \sum_{i=1}^{n}\left(x_{i 2}-\hat{\mu}_{2}\right)^{2}}}
$$

where n is the number of tuples, μ_{1} and μ_{2} are the respective means of X_{1} and X_{2}, σ_{1} and σ_{2} are the respective standard deviation of X_{1} and X_{2}

Correlation Coefficient between Two Numerical Variables

\square Correlation between two variables X_{1} and X_{2} is the standard covariance, obtained by normalizing the covariance with the standard deviation of each variable

$$
\rho_{12}=\frac{\sigma_{12}}{\sigma_{1} \sigma_{2}}=\frac{\sigma_{12}}{\sqrt{\sigma_{1}^{2} \sigma_{2}^{2}}}
$$

\square Sample correlation for two attributes X_{1} and X_{2} :

$$
\hat{\rho}_{12}=\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{1} \hat{\sigma}_{2}}=\frac{\sum_{i=1}^{n}\left(x_{i 1}-\hat{\mu}_{1}\right)\left(x_{i 2}-\hat{\mu}_{2}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i 1}-\hat{\mu}_{1}\right)^{2} \sum_{i=1}^{n}\left(x_{i 2}-\hat{\mu}_{2}\right)^{2}}}
$$

\square If $\rho_{12}>0$: A and B are positively correlated ($X_{1}^{\prime} s$ values increase as $X_{2}^{\prime} s$)

- The higher, the stronger correlation
\square If $\rho_{12}=0$: independent (under the same assumption as discussed in co-variance)
\square If $\rho_{12}<0$: negatively correlated

Visualizing Changes of Correlation Coefficient

\square Correlation coefficient value range: $[-1,1]$
\square A set of scatter plots shows sets of points and their correlation coefficients changing from 1 to 1

Covariance Matrix

\square The variance and covariance information for the two variables X_{1} and X_{2} can be summarized as 2×2 covariance matrix as

$$
\begin{aligned}
& \Sigma=E\left[(\mathbf{X}-\mu)(\mathbf{X}-\mu)^{T}\right]=E\left[\binom{X_{1}-\mu_{1}}{X_{2}-\mu_{2}}\left(X_{1}-\mu_{1} \quad X_{2}-\mu_{2}\right)\right]=\left(\begin{array}{ll}
E\left[\left(X_{1}-\mu_{1}\right)\left(X_{1}-\mu_{1}\right)\right] & E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right] \\
E\left[\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right)\right] & E\left[\left(X_{2}-\mu_{2}\right)\left(X_{2}-\mu_{2}\right)\right]
\end{array}\right) \\
& =\left(\begin{array}{ll}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{21} & \sigma_{2}^{2}
\end{array}\right)
\end{aligned}
$$

\square Generalizing it to d dimensions, we have,

Covariance Matrix

\square The variance and covariance information for the two variables X_{1} and X_{2} can be summarized as 2×2 covariance matrix as

$$
\begin{aligned}
& \Sigma=E\left[(\mathbf{X}-\mu)(\mathbf{X}-\mu)^{T}\right]=E\left[\binom{X_{1}-\mu_{1}}{X_{2}-\mu_{2}}\left(X_{1}-\mu_{1} \quad X_{2}-\mu_{2}\right)\right]=\left(\begin{array}{ll}
E\left[\left(X_{1}-\mu_{1}\right)\left(X_{1}-\mu_{1}\right)\right] & E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right] \\
E\left[\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right)\right] & E\left[\left(X_{2}-\mu_{2}\right)\left(X_{2}-\mu_{2}\right)\right]
\end{array}\right) \\
& =\left(\begin{array}{ll}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{21} & \sigma_{2}^{2}
\end{array}\right)
\end{aligned}
$$

\square Generalizing it to d dimensions, we have,

$$
D=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 d} \\
x_{21} & x_{22} & \cdots & x_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
x_{d 1} & x_{d 2} & \cdots & x_{d d}
\end{array}\right) \boldsymbol{\Sigma}=E\left[(\mathbf{X}-\mu)(\mathbf{X}-\mu)^{T}\right]=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 d} \\
\sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{d 1} & \sigma_{d 2} & \cdots & \sigma_{d}^{2}
\end{array}\right)
$$

Chapter 3: Data Preprocessing

\square Data Preprocessing: An Overview
\square Data Cleaning
\square Data Integration
\square Data Reduction and Transformation
\square Dimensionality Reduction
\square Summary

Data Reduction

\square Data reduction:
\square Obtain a reduced representation of the data set

- much smaller in volume but yet produces almost the same analytical results
\square Why data reduction?-A database/data warehouse may store terabytes of data
- Complex analysis may take a very long time to run on the complete data set

Data Reduction

\square Data reduction:

- Obtain a reduced representation of the data set
- much smaller in volume but yet produces almost the same analytical results
\square Why data reduction?-A database/data warehouse may store terabytes of data
- Complex analysis may take a very long time to run on the complete data set
\square Methods for data reduction (also data size reduction or numerosity reduction)
\square Regression and Log-Linear Models
- Histograms, clustering, sampling
- Data cube aggregation
- Data compression

Data Reduction: Parametric vs. Non-Parametric Methods

\square Reduce data volume by choosing alternative, smaller forms of data representation
\square Parametric methods (e.g., regression)
\square Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)

Data Reduction: Parametric vs. Non-Parametric Methods

\square Reduce data volume by choosing alternative, smaller forms of data representation
\square Parametric methods (e.g., regression)

- Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)

ㅁ Ex.: Log-linear models-obtain value at a point in m-D space as the product on appropriate marginal subspaces
\square Non-parametric methods
\square Do not assume models
\square Major families: histograms, clustering, sampling, ...

Histogram

Clustering on the Raw Data

Parametric Data Reduction: Regression Analysis

\square Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a dependent variable (also called response variable or measurement) and of one or more independent variables (also known as explanatory variables or predictors)

\square Used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships

Parametric Data Reduction: Regression Analysis

\square Regression analysis:

- A collective name for techniques for the modeling and analysis of numerical data
- Consists of values of a dependent variable (also called response variable or measurement)
- Consists of values of one or more independent variables (also known as explanatory variables or predictors)

Parametric Data Reduction: Regression Analysis

\square Regression analysis:

- A collective name for techniques for the modeling and analysis of numerical data
- Consists of values of a dependent variable (also called response variable or measurement)
- Consists of values of one or more independent variables (also known as explanatory variables or predictors)

Parametric Data Reduction: Regression Analysis

- Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a dependent variable (also called response variable or measurement) and of one or more independent variables (also known as explanatory variables or predictors)

\square The parameters are estimated so as to give a "best fit" of the data
\square Most commonly the best fit is evaluated by using the least squares method, but other criteria have also been used

Parametric Data Reduction: Regression Analysis

\square Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a dependent variable (also called response variable or measurement) and of one or more independent variables (also known as explanatory variables or predictors)
\square The parameters are estimated so as to give a "best fit" of the data
\square Most commonly the best fit is evaluated by using the least squares method, but other criteria have also been used

\square Used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships

Linear and Multiple Regression

\square Linear regression: $Y=w X+b$
\square Data modeled to fit a straight line
\square Often uses the least-square method to fit the line
\square Two regression coefficients, w and b, specify the line and are to be estimated by using the data at hand

- Using the least squares criterion to the known values

of $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$

Linear and Multiple Regression

\square Linear regression: $Y=w X+b$

- Data modeled to fit a straight line
\square Often uses the least-square method to fit the line
\square Two regression coefficients, w and b, specify the line and are to be estimated by using the data at hand
\square Using the least squares criterion to the known values

of $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$
\square Nonlinear regression:
- Data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables
\square The data are fitted by a method of successive approximations

Multiple Regression

\square Multiple regression: $Y=b_{0}+b_{1} X_{1}+b_{2} X_{2}$
\square Allows a response variable Y to be modeled as a linear function of multidimensional feature vector

- Many nonlinear functions can be transformed into the above

Histogram Analysis

\square Divide data into buckets and store average (sum) for each bucket
\square Partitioning rules:
\square Equal-width: equal bucket range
\square Equal-frequency (or equal-depth)

Clustering

\square Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
\square Can be very effective if data is clustered but not if data is "smeared"
\square Can have hierarchical clustering and be stored in multi-dimensional index tree structures
\square There are many choices of clustering definitions and
 clustering algorithms
\square Cluster analysis will be studied in later this semester

Sampling

\square Sampling: obtaining a small sample s to represent the whole data set N
\square Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
\square Key principle: Choose a representative subset of the data
\square Simple random sampling may have very poor performance in the presence of skew
\square Develop adaptive sampling methods, e.g., stratified sampling:

Types of Sampling

\square Simple random sampling: equal probability of selecting any particular item
\square Sampling without replacement
\square Once an object is selected, it is removed from the population

\square Sampling with replacement
\square A selected object is not removed from the population

Types of Sampling

\square Simple random sampling: equal probability of selecting any particular item
\square Sampling without replacement
\square Once an object is selected, it is removed from the population
\square Sampling with replacement
\square A selected object is not removed from the population
\square Stratified sampling
\square Partition (or cluster) the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)

Chapter 3: Data Preprocessing

\square Data Preprocessing: An Overview
\square Data Cleaning
\square Data Integration
\square Data Reduction and Transformation
\square Dimensionality Reduction
\square Summary

Data Transformation

\square A function that maps the entire set of values of a given attribute to a new set of replacement values, s.t. each old value can be identified with one of the new values

Data Transformation

\square A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
\square Methods
\square Smoothing: Remove noise from data
\square Attribute/feature construction

- New attributes constructed from the given ones
- Aggregation: Summarization, data cube construction
\square Normalization: Scaled to fall within a smaller, specified range
- min-max normalization; z-score normalization; normalization by decimal scaling
\square Discretization: Concept hierarchy climbing

Normalization

\square Min-max normalization: to [new_min $A_{A^{\prime}}$ new_max m $_{A}$]

$$
v^{\prime}=\frac{v-\min _{A}}{\max _{A}-\min _{A}}\left(\text { new }{ }_{-} \text {max }_{A}-\text { new_min }{ }_{-}\right)+\text {new_min }
$$

Ex. Let income range $\$ 12,000$ to $\$ 98,000$ normalized to $[0.0,1.0]$

- Then $\$ 73,600$ is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$

Normalization

\square Min-max normalization: to $\left[\right.$ new_min ${ }_{A}$, new_max ${ }_{A}$]

$$
v^{\prime}=\frac{v-\min _{A}}{\max _{A}-\min _{A}}\left(\text { new } \text { max }_{A}-\text { new_min } \min _{A}\right)+\text { new_min }{ }_{A}
$$

\square Z-score normalization (μ : mean, σ : standard deviation):

$$
v^{\prime}=\frac{v-\mu_{A}}{\sigma_{A}}
$$

Z-score: The distance between the raw score and the population mean in the unit of the standard deviation

Ex. Let $\mu=54,000, \sigma=16,000$. Then,

$$
\frac{73,600-54,000}{16,000}=1.225
$$

Normalization

\square Min-max normalization: to $\left[\right.$ new_min ${ }_{A}$, new_max ${ }_{A}$]

$$
v^{\prime}=\frac{v-\min _{A}}{\max _{A}-\min _{A}}\left(\text { new } \text { max }_{A}-\text { new_min } \min _{A}\right)+\text { new_min }{ }_{A}
$$

\square Z-score normalization (μ : mean, σ : standard deviation):

$$
v^{\prime}=\frac{v-\mu_{A}}{\sigma_{A}}
$$

Z-score: The distance between the raw score and the population mean in the unit of the standard deviation
\square Normalization by decimal scaling

$$
v^{\prime}=v / 10^{j} \quad, \text { Where } j \text { is the smallest integer such that } \operatorname{Max}\left(\left|v^{\prime}\right|\right)<1
$$

Discretization

\square Three types of attributes
\square Nominal—values from an unordered set, e.g., color, profession
\square Ordinal-values from an ordered set, e.g., military or academic rank
\square Numeric—real numbers, e.g., integer or real numbers
\square Discretization: Divide the range of a continuous attribute into intervals

- Interval labels can then be used to replace actual data values
- Reduce data size by discretization
\square Supervised vs. unsupervised
\square Split (top-down) vs. merge (bottom-up)
- Discretization can be performed recursively on an attribute
\square Prepare for further analysis, e.g., classification

Data Discretization Methods

\square Binning
\square Top-down split, unsupervised
\square Histogram analysis
\square Top-down split, unsupervised
\square Clustering analysis
\square Unsupervised, top-down split or bottom-up merge
\square Decision-tree analysis
\square Supervised, top-down split
\square Correlation (e.g., χ^{2}) analysis

- Unsupervised, bottom-up merge
\square Note: All the methods can be applied recursively

Simple Discretization: Binning

\square Equal-width (distance) partitioning
\square Divides the range into N intervals of equal size: uniform grid
\square if A and B are the lowest and highest values of the attribute, the width of intervals will be: $W=(B$ $-A) / N$.

- The most straightforward, but outliers may dominate presentation
- Skewed data is not handled well

Simple Discretization: Binning

\square Equal-width (distance) partitioning

- Divides the range into N intervals of equal size: uniform grid
\square if A and B are the lowest and highest values of the attribute, the width of intervals will be: $W=(B$ $-A) / N$.
\square The most straightforward, but outliers may dominate presentation
\square Skewed data is not handled well
\square Equal-depth (frequency) partitioning
- Divides the range into N intervals, each containing approximately same number of samples
\square Good data scaling
- Managing categorical attributes can be tricky

Example: Binning Methods for Data Smoothing

\square Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

- Partition into equal-frequency (equi-width) bins:
- $\operatorname{Bin} 1: 4,8,9,15$
- Bin 2: $21,21,24,25$
- Bin 3: 26, 28, 29, 34
- Smoothing by bin means:
$-\operatorname{Bin} 1: 9,9,9,9$
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29
\square Smoothing by bin boundaries:
- $\operatorname{Bin} 1: 4,4,4,15$
- Bin 2: $21,21,25,25$
- $\operatorname{Bin} 3: 26,26,26,34$

Discretization by Classification \& Correlation Analysis

\square Classification (e.g., decision tree analysis)

- Supervised: Given class labels, e.g., cancerous vs. benign
\square Using entropy to determine split point (discretization point)
- Top-down, recursive split
- Details to be covered in "Classification" sessions

Chapter 3: Data Preprocessing

\square Data Preprocessing: An Overview
\square Data Cleaning
\square Data Integration
\square Data Reduction and Transformation
\square Dimensionality Reduction
\square Summary

Dimensionality Reduction

\square Curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse
\square Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
\square The possible combinations of subspaces will grow exponentially

Dimensionality Reduction

\square Curse of dimensionality
\square When dimensionality increases, data becomes increasingly sparse
\square Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
\square The possible combinations of subspaces will grow exponentially
\square Dimensionality reduction
\square Reducing the number of random variables under consideration, via obtaining a set of principal variables

Dimensionality Reduction

\square Curse of dimensionality
\square When dimensionality increases, data becomes increasingly sparse
\square Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful

- The possible combinations of subspaces will grow exponentially

\square Dimensionality reduction

\square Reducing the number of random variables under consideration, via obtaining a set of principal variables
\square Advantages of dimensionality reduction
\square Avoid the curse of dimensionality

- Help eliminate irrelevant features and reduce noise
\square Reduce time and space required in data mining
- Allow easier visualization

Dimensionality Reduction Techniques

\square Dimensionality reduction methodologies
\square Feature selection: Find a subset of the original variables (or features, attributes)
\square Feature extraction: Transform the data in the high-dimensional space to a space of fewer dimensions
\square Some typical dimensionality reduction methods
\square Principal Component Analysis
\square Supervised and nonlinear techniques

- Feature subset selection
- Feature creation

Principal Component Analysis (PCA)

\square PCA: A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal

components

\square The original data are projected onto a much smaller space, resulting in dimensionality reduction
\square Method: Find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

Ball travels in a straight line. Data from three cameras contain much redundancy

Principal Components Analysis: Intuition

\square Goal is to find a projection that captures the largest amount of variation in data
\square Find the eigenvectors of the covariance matrix
\square The eigenvectors define the new space

Principal Component Analysis: Details

\square Let A be an $n \times n$ matrix representing the correlation or covariance of the data.
$\square \lambda$ is an eigenvalue of A if there exists a non-zero vector \mathbf{v} such that:

$$
A v=\lambda v \text { often rewritten as }(A-\lambda l) v=0
$$

\square In this case, vector \mathbf{v} is called an eigenvector of A corresponding to λ. For each eigenvalue λ, the set of all vectors \mathbf{v} satisfying $A \mathbf{v}=\lambda \mathbf{v}$ is called the eigenspace of A corresponding to λ.

Attribute Subset Selection

\square Another way to reduce dimensionality of data
\square Redundant attributes
\square Duplicate much or all of the information contained in one or more other attributes

- E.g., purchase price of a product and the amount of sales tax paid
\square Irrelevant attributes
- Contain no information that is useful for the data mining task at hand

■ Ex. A student's ID is often irrelevant to the task of predicting his/her GPA

Heuristic Search in Attribute Selection

\square There are 2^{d} possible attribute combinations of d attributes
\square Typical heuristic attribute selection methods:
\square Best single attribute under the attribute independence assumption: choose by significance tests
\square Best step-wise feature selection:

- The best single-attribute is picked first
- Then next best attribute condition to the first, ...
\square Step-wise attribute elimination:
- Repeatedly eliminate the worst attribute
- Best combined attribute selection and elimination
- Optimal branch and bound:
- Use attribute elimination and backtracking

Attribute Creation (Feature Generation)

\square Create new attributes (features) that can capture the important information in a data set more effectively than the original ones
\square Three general methodologies

- Attribute extraction
- Domain-specific
- Mapping data to new space (see: data reduction)
- E.g., Fourier transformation, wavelet transformation, manifold approaches (not covered)
- Attribute construction
- Combining features (see: discriminative frequent patterns in Chapter on "Advanced Classification")
- Data discretization

Summary

\square Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
\square Data cleaning: e.g. missing/noisy values, outliers
\square Data integration from multiple sources:

- Entity identification problem; Remove redundancies; Detect inconsistencies
\square Data reduction
- Dimensionality reduction; Numerosity reduction; Data compression
\square Data transformation and data discretization
\square Normalization; Concept hierarchy generation

References

\square D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Comm. of ACM, 42:73-78, 1999
$\square \quad$ T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
$\square \quad$ T. Dasu, T. Johnson, S. Muthukrishnan, V. Shkapenyuk. Mining Database Structure; Or, How to Build a Data Quality Browser. SIGMOD'02
\square H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical Committee on Data Engineering, 20(4), Dec. 1997

- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
$\square \quad$ E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches. IEEE Bulletin of the Technical Committee on Data Engineering. Vol.23, No. 4
$\square \quad$ V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and Transformation, VLDB'2001
- T. Redman. Data Quality: Management and Technology. Bantam Books, 1992
$\square \quad$ R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans. Knowledge and Data Engineering, 7:623-640, 1995

Backup Slides:

Data Compression

\square String compression
\square There are extensive theories and well-tuned algorithms

- Typically lossless, but only limited manipulation is possible without expansion
\square Audio/video compression
- Typically lossy compression, with progressive refinement
\square Sometimes small fragments of signal can be reconstructed without reconstructing the whole
\square Time sequence is not audio
- Typically short and vary slowly with time
\square Data reduction and dimensionality reduction may also be considered as forms of data compression

Lossy vs. lossless compression

Wavelet Transform: A Data Compression Technique

\square Wavelet Transform

- Decomposes a signal into different frequency subbands
- Applicable to n -dimensional signals
\square Data are transformed to preserve relative distance between objects at different levels of resolution
\square Allow natural clusters to become more distinguishable
\square Used for image compression

Wavelet Transformation

\square Discrete wavelet transform (DWT) for linear signal processing, multiresolution analysis
\square Compressed approximation: Store only a small fraction of the strongest of the wavelet coefficients
\square Similar to discrete Fourier transform (DFT), but better lossy compression, localized in space

\square Method:

- Length, L, must be an integer power of 2 (padding with 0 's, when necessary)
\square Each transform has 2 functions: smoothing, difference
- Applies to pairs of data, resulting in two set of data of length L/2
- Applies two functions recursively, until reaches the desired length

Wavelet Decomposition

\square Wavelets: A math tool for space-efficient hierarchical decomposition of functions
$\square S=[2,2,0,2,3,5,4,4]$ can be transformed to $S_{\wedge}=\left[2^{3} / 4^{\prime}-1^{1} / 4^{1} / 2,0,0,-1,-1,0\right]$
\square Compression: many small detail coefficients can be replaced by 0's, and only the significant coefficients are retained

Resolution	Averages	Detail Coefficients
8	$[2,2,0,2,3,5,4,4]$	
4	$[2,1,4,4]$	$[0,-1,-1,0]$
2	$\left[1 \frac{1}{2}, 4\right]$	$\left[\frac{1}{2}, 0\right]$
1	$\left[2 \frac{3}{4}\right]$	$\left[-1 \frac{1}{4}\right]$

Why Wavelet Transform?

\square Use hat-shape filters

- Emphasize region where points cluster
\square Suppress weaker information in their boundaries
\square Effective removal of outliers
- Insensitive to noise, insensitive to input order
\square Multi-resolution
\square Detect arbitrary shaped clusters at different scales
\square Efficient
- Complexity $\mathrm{O}(\mathrm{N})$
\square Only applicable to low dimensional data

Concept Hierarchy Generation

\square Concept hierarchy organizes concepts (i.e., attribute values) hierarchically and is usually associated with each dimension in a data warehouse
\square Concept hierarchies facilitate drilling and rolling in data warehouses to view data in multiple granularity
\square Concept hierarchy formation: Recursively reduce the data by collecting and replacing low level concepts (such as numeric values for age) by higher level concepts (such as youth, adult, or senior)
\square Concept hierarchies can be explicitly specified by domain experts and/or data warehouse designers
\square Concept hierarchy can be automatically formed for both numeric and nominal data-For numeric data, use discretization methods shown

Concept Hierarchy Generation for Nominal Data

\square Specification of a partial/total ordering of attributes explicitly at the schema level by users or experts
\square street < city < state < country
\square Specification of a hierarchy for a set of values by explicit data grouping
$\square\{$ Urbana, Champaign, Chicago\} < Illinois
\square Specification of only a partial set of attributes
\square E.g., only street < city, not others
\square Automatic generation of hierarchies (or attribute levels) by the analysis of the number of distinct values
\square E.g., for a set of attributes: \{street, city, state, country\}

Automatic Concept Hierarchy Generation

\square Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set

- The attribute with the most distinct values is placed at the lowest level of the hierarchy
- Exceptions, e.g., weekday, month, quarter, year

15 distinct values

365 distinct values

3567 distinct values

674,339 distinct values

Data Cleaning

\square Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, and transmission error
\square Incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data

- e.g., Occupation = " " (missing data)
- Noisy: containing noise, errors, or outliers
- e.g., Salary = "-10" (an error)
\square Inconsistent: containing discrepancies in codes or names, e.g.,
■ Age = "42", Birthday = "03/07/2010"
- Was rating " $1,2,3$ ", now rating " $\mathrm{A}, \mathrm{B}, \mathrm{C}$ "
- discrepancy between duplicate records
- Intentional (e.g., disguised missing data)
\square Jan. 1 as everyone's birthday?

Data Cube Aggregation

\square The lowest level of a data cube (base cuboid)

- The aggregated data for an individual entity of interest
- E.g., a customer in a phone calling data warehouse Demogrophic Dato
\square Multiple levels of aggregation in data cubes
- Further reduce the size of data to deal with
\square Reference appropriate levels
- Use the smallest representation which is enough to solve the task
\square Queries regarding aggregated information should be answered using data cube, when possible

Data Compression

\square String compression
\square There are extensive theories and well-tuned algorithms

- Typically lossless, but only limited manipulation is possible without expansion
\square Audio/video compression
- Typically lossy compression, with progressive refinement
\square Sometimes small fragments of signal can be reconstructed without reconstructing the whole
\square Time sequence is not audio
- Typically short and vary slowly with time
\square Data reduction and dimensionality reduction may also be considered as forms of data compression

Lossy vs. lossless compression

Discretization Without Supervision: Binning vs. Clustering

