CSE5243 INTRO. TO DATA MINING

Data \& Data Preprocessing
Huan Sun, CSE@The Ohio State University

Data \& Data Preprocessing

\square What is Data: Data Objects and Attribute Types
\square Basic Statistical Descriptions of Data
\square Measuring Data Similarity and Dissimilarity
\square Data Preprocessing: An Overview
\square Summary

What is Data?

\square Collection of data objects and their attributes

What is Data?

\square Collection of data objects and their attributes

	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes

Data Objects

\square Data sets are made up of data objects
\square A data object represents an entity
\square Examples:
\square sales database: customers, store items, sales
\square medical database: patients, treatments
\square university database: students, professors, courses
\square Also called samples, examples, instances, data points, objects, tuples

Data Objects

\square Data sets are made up of data objects
\square A data object represents an entity
\square Examples:

- sales database: customers, store items, sales
- medical database: patients, treatments
university database: students, professors, courses
\square Also called samples, examples, instances, data points, objects, tuples
\square Data objects are described by attributes
\square Database rows \rightarrow data objects; columns \rightarrow attributes

Attributes

\square Attribute (or dimensions, features, variables)
\square A data field, representing a characteristic or feature of a data object.
\square E.g., customer_ID, name, address
\square Types:
\square Nominal (e.g., red, blue)
\square Binary (e.g., \{true, false\})
\square Ordinal (e.g., \{freshman, sophomore, junior, senior\})
\square Numeric: quantitative

Attribute Types

Nominal: categories, states, or "names of things"

- Hair_color = \{auburn, black, blond, brown, grey, red, white\}
- marital status, occupation, zip codes

Attribute Types

Nominal: categories, states, or "names of things"

- Hair_color = \{auburn, black, blond, brown, grey, red, white\}
- marital status, occupation, zip codes
\square Binary
- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
- e.g., gender
- Asymmetric binary: outcomes not equally important.
- e.g., medical test (positive vs. negative)
- Convention: assign 1 to most important outcome (e.g., HIV positive)

Attribute Types

\square Nominal: categories, states, or "names of things"
ㅁ Hair_color = \{auburn, black, blond, brown, grey, red, white\}

- marital status, occupation, ID numbers, zip codes
\square Binary
- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important, e.g., gender
- Asymmetric binary: outcomes not equally important.
- e.g., medical test (positive vs. negative)
- Convention: assign 1 to most important outcome (e.g., HIV positive)
\square Ordinal
- Values have a meaningful order (ranking) but magnitude between successive values is not known
\square Size $=\{$ small, medium, large $\}$, grades, army rankings

Numeric Attribute Types

\square Quantity (integer or real-valued)
\square Interval-scaled

- Measured on a scale of equal-sized units
- Values have order
- E.g., temperature in C° or F°, calendar dates
- No true zero-point

Numeric Attribute Types

\square Quantity (integer or real-valued)
\square Interval-scaled

- Measured on a scale of equal-sized units
- Values have order
- E.g., temperature in C° or F°, calendar dates
- No true zero-point
\square Ratio-scaled
- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement ($10 \mathrm{~K}^{\circ}$ is twice as high as $5 \mathrm{~K}^{\circ}$).
- e.g., temperature in Kelvin, length, counts, monetary quantities
\square Q1: Is student ID a nominal, ordinal, or numerical attribute?
\square Q2: What about eye color? Or color in the color spectrum of physics?

Discrete vs. Continuous Attributes

\square Discrete Attribute

- Has only a finite or countably infinite set of values
- E.g., zip codes, profession, or the set of words in a collection of documents
\square Sometimes, represented as integer variables
\square Note: Binary attributes are a special case of discrete attributes

Discrete vs. Continuous Attributes

\square Discrete Attribute

- Has only a finite or countably infinite set of values
\square Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes
\square Continuous Attribute
\square Has real numbers as attribute values
E.g., temperature, height, or weight
\square Practically, real values can only be measured and represented using a finite number of digits
\square Continuous attributes are typically represented as floating-point variables

Types of Data Sets: (1) Record Data

\square Relational records

- Relational tables, highly structured

Person:

Pers_ID	Surname	First_Name	City
0	Miller	Paul	London
1	Ortega	Alvaro	Valencia
2	Huber	Urs	nolation
3	Blanc	Gaston	Paris
4	Bertolini	Fabrizio	Rom

Car:

Car_ID	Model	Year	Value	Pers_ID
101	Bentley	1973	100000	0
102	Rolls Royce	1965	330000	0
103	Peugeot	1993	500	3
104	Ferrari	2005	150000	4
105	Renault	1998	2000	3
106	Renault	2001	7000	3
107	Smart	1999	2000	2

Types of Data Sets: (1) Record Data

\square Data matrix, e.g., numerical matrix, crosstabs

	China	England	France	Japan	USA	Total
Active Outdoors Crochet Glove		12.00	4.00	1.00	240.00	257.00
Active Outdoors Lycra Glove		10.00	6.00		323.00	339.00
InFlux Crochet Glove	3.00	6.00	8.00		132.00	149.00
InFlux Lycra Glove		2.00			143.00	145.00
Triumph Pro Helmet	3.00	1.00	7.00		333.00	344.00
Triumph Vertigo Helmet		3.00	22.00		474.00	499.00
Xtreme Adult Helmet	8.00	8.00	7.00	2.00	251.00	276.00
Xtreme Youth Helmet		1.00			76.00	77.00
Total	14.00	43.00	54.00	3.00	1,972.00	2,086.00

Types of Data Sets: (1) Record Data

\square Transaction data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Types of Data Sets：（1）Record Data

\square Document data：Term－frequency vector（matrix）of text documents

	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{3}}$	$\begin{aligned} & \text { ⿳亠丷厂犬} \\ & \text { O} \end{aligned}$	$<\frac{0}{0}$	$\stackrel{\text { ¢ }}{\underline{\text { ® }}}$	$\begin{aligned} & \text { © } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{3} \\ & 0 \end{aligned}$	כ	－0	$\begin{aligned} & \text { 苛 } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{C}{7} \end{aligned}$	0 ¢ O
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Types of Data Sets: (2) Graphs and Networks

\square Transportation network
\square World Wide Web

Types of Data Sets: (2) Graphs and Networks

\square Transportation network
\square World Wide Web

- Molecular Structures
\square Social or information networks

Types of Data Sets: (3) Ordered Data

\square Video data: sequence of images
\square Temporal data: time-series

\square Sequential Data: transaction sequences
\square Genetic sequence data

Human
Chimpan
Chimpanzee
Macaque
Human
Chimpanzee
Macaque
Human Chimpanzee
Macaque
Macaque
Human Chimpanzee Macaque
Human Chimpanzee
Macaque
Macaque
Human Chimpanzee
Macaque

Human Chimpanzee Macaque

GTTTTGAGG . . ATGTTCAACAAATGCTCCTTTCATTCCTCTATTTACAGACCTGCCGCA GTTTTGAGG...ATGTTCAATAAATGCTGCTTTCACTCCTCTATTTACAGACCTGCCGCA
GACAATTCTGCTAGCAGCCTTTGTGC TATTATCTGTTTTCTAAACTTAGTAATTGAGTGT ACAATTCTGCTAGCAGCCTTTGTGCTATTATCTGTTTTCTAAACTTAGTAATTGAGTG ACAATTCTGCTAGCAGCCTTTGTGCTATTATCTGTTTTCTAAACTTAGTAATTGAGTGI

GATCTGGAGACTAA-CTCTGAAATAAATAAGC TGATTATTTATTTATTTTCTCAAAACAA ATCTGGAGAC TAAACTCTGAAATAAATAAGC TGATTATTTATTTATTTTCTCAAAACAA AGAATACGATTTAGCAAATTACTTCTTAAGATATTATTTTACATTTCTATATTCTCCTA AGAATACGATTTAGCAAATTACTTCTTAAGATACTATTTTACATTTCTATATTCTCCTA CAGAATATGATTTAGCAAATTACCTCTTAAGATATTATTTTGCACITCTATATTCTCCTA CCCTGAGTTGATGTGTGAGCAATATGTCACTTTCATAAAGCCAGGTATACA.... TTATG CCTGAGTTGATGTGTGAGCCGTATGTCACTTTCATAAAGCCAGGTATACA…TTATG ACAGGTAAGTAAAAAACATATTATTTATTCTACGTTTTT
ACAGGTAAGTAAAAAACATATTATTTATTCTACGTTTTTGTCCAAAAAATTTTAAATTTC GACAGGTAAGTAAAAAACATATTATTTATTCTACGTTTTTGTCCAAGAATTTTAAATTTC

ACTGTTGCGCGTGTGTTGGTAA ... TGTAAAACAAACTCAGTACA
AACTGTTGCGCGTGTGTTGGTAA AACTGTTGTGCATGTGTTGGTAA....CGTAAAACAAATTCAGTACG

Types of Data Sets: (4) Spatial, image and multimedia data

\square Spatial data: maps

Chapter 2. Getting to Know Your Data

\square Data Objects and Attribute Types
\square Basic Statistical Descriptions of Data
\square Measuring Data Similarity and Dissimilarity
\square Data Preprocessing: An Overview
\square Summary

Basic Statistical Descriptions of Data

Motivation

\square To better understand the data: central tendency, variation and spread

Measuring the Central Tendency: (1) Mean

\square Mean (algebraic measure) (sample vs. population):
Note: n is sample size and N is population size.

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \mu=\frac{\sum x}{N}
$$

Measuring the Central Tendency: (1) Mean

\square Mean (algebraic measure) (sample vs. population):
Note: n is sample size and N is population size.

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \mu=\frac{\sum x}{N}
$$

\square Weighted arithmetic mean: $\overline{\bar{x}}=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}$
\square Trimmed mean:
\square Chopping extreme values (e.g., Olympics gymnastics score computation)

Measuring the Central Tendency: (2) Median

\square Median:
\square Middle value if odd number of values, or average of the middle two values otherwise

Measuring the Central Tendency: (2) Median

Median:

\square Middle value if odd number of values, or average of the middle two values otherwise
\square Estimated by interpolation (for grouped data):
Approximate
median

age	frequency
$1-5$	200
$6-15$	450

$n / 2-\left(\sum \text { freq }\right)_{l} \quad \operatorname{Interval}$ width $\left(\mathrm{L}_{2}-\mathrm{L}_{1}\right)$

Low interval limit

Measuring the Central Tendency: (3) Mode

\square Mode: Value that occurs most frequently in the data
\square Unimodal
\square Empirical formula:

$$
\text { mean }- \text { mode }=3 \times(\text { mean }- \text { median })
$$

\square Multi-modal

- Bimodal
- Trimodal

Symmetric vs. Skewed Data

\square Median, mean and mode of symmetric, positively and negatively skewed data
symmetric

negatively skewed

Properties of Normal Distribution Curve

$\leftarrow-— — —$ Represent data dispersion, spread $---\longrightarrow \rightarrow$

Measures Data Distribution: Variance and Standard Deviation

\square Variance and standard deviation (sample: s, population: σ)
\square Variance: (algebraic, scalable computation)

$$
\begin{aligned}
& s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n-1}\left[\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \\
& \sigma^{2}=\frac{1}{N} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\frac{1}{N} \sum_{i=1}^{n} x_{i}^{2}-\mu^{2}
\end{aligned}
$$

\square Standard deviation $s(o r \sigma)$ is the square root of variance s^{2} (or σ^{2})

Measures Data Distribution: Variance and Standard Deviation

\square Variance and standard deviation (sample: s, population: σ)
\square Variance: (algebraic, scalable computation)

$$
\begin{aligned}
& s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n-1}\left[\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \\
& \sigma^{2}=\frac{1}{N} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\frac{1}{N} \sum_{i=1}^{n} x_{i}^{2}-\mu^{2}
\end{aligned}
$$

\square Standard deviation $s(o r \sigma)$ is the square root of variance s^{2} (or σ^{2})

Standardizing Numeric Data

Z-score: $\quad z=\frac{x-\mu}{\sigma}$
\square X: raw score to be standardized, μ : mean of the population, σ : standard deviation

- the distance between the raw score and the population mean in units of the standard deviation
\square negative when the raw score is below the mean, positive when above

Standardizing Numeric Data

\square Z-score: $z=\frac{x-\mu}{\sigma}$
\square X: raw score to be standardized, μ : mean of the population, σ : standard deviation
\square the distance between the raw score and the population mean in units of the standard deviation

- negative when the raw score is below the mean, positive when above
\square Mean absolute deviation:

$$
s_{f}=\frac{1}{n}\left(\left|x_{1 f}-m_{f}\right|+\left|x_{2 f}-m_{f}\right|+\ldots+\left|x_{n f}-m_{f}\right|\right)
$$

where

$$
m_{f}=\frac{1}{n}\left(x_{1 f}+x_{2 f}+\ldots+x_{n f}\right)
$$

\square standardized measure (z-score):

$$
z_{i f}=\frac{x_{i f}-m_{f}}{S_{f}}
$$

\square Using mean absolute deviation is more robust than using standard deviation

Data \& Data Preprocessing

\square Data Objects and Attribute Types
\square Basic Statistical Descriptions of Data
\square Measuring Data Similarity and Dissimilarity
\square Data Preprocessing: An Overview
\square Summary

Similarity, Dissimilarity, and Proximity

Similarity measure or similarity function

\square A real-valued function that quantifies the similarity between two objects

- Measure how two data objects are alike: The higher value, the more alike
\square Often falls in the range [0,1]: 0 : no similarity; 1: completely similar

Similarity, Dissimilarity, and Proximity

\square Similarity measure or similarity function

- A real-valued function that quantifies the similarity between two objects
- Measure how two data objects are alike: The higher value, the more alike
- Often falls in the range [0,1]: 0 : no similarity; 1: completely similar
\square Dissimilarity (or distance) measure
- Numerical measure of how different two data objects are
\square In some sense, the inverse of similarity: The lower, the more alike
- Minimum dissimilarity is often 0 (i.e., completely similar)
\square Range $[0,1]$ or $[0, \infty)$, depending on the definition
\square Proximity usually refers to either similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

\square Data matrix
\square A data matrix of n data points with / dimensions

$$
D=\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 l} \\
x_{21} & x_{22} & \ldots & x_{2 l} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \ldots & x_{n l}
\end{array}\right)
$$

Data Matrix and Dissimilarity Matrix

- Data matrix
- A data matrix of n data points with I dimensions
\square Dissimilarity (distance) matrix
\square n data points, but registers only the distance $d(i, i)$

$$
D=\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 l} \\
x_{21} & x_{22} & \ldots & x_{2 l} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \ldots & x_{n l}
\end{array}\right)
$$ (typically metric)

- Usually symmetric
- Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables

$$
\left(\begin{array}{cccc}
0 & & & \\
d(2,1) & 0 & & \\
\vdots & \vdots & \ddots & \\
d(n, 1) & d(n, 2) & \ldots & 0
\end{array}\right)
$$

\square Weights can be associated with different variables based on applications and data semantics

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
$\boldsymbol{x} \boldsymbol{1}$	1	2
$\boldsymbol{x} \boldsymbol{2}$	3	5
$\boldsymbol{x} 3$	2	0
$\boldsymbol{x} 4$	4	5

Dissimilarity Matrix (by Euclidean Distance)

	$\boldsymbol{x} \boldsymbol{1}$	$\boldsymbol{x} \mathbf{2}$	$\boldsymbol{x} \mathbf{3}$	$\boldsymbol{x} \mathbf{4}$
$\boldsymbol{x} \mathbf{1}$	0			
$\boldsymbol{x} \mathbf{2}$	3.61	0		
$\boldsymbol{x} \mathbf{3}$	2.24	5.1	0	
$\boldsymbol{x} \mathbf{4}$	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

\square Minkowski distance: A popular distance measure

$$
d(i, j)=\sqrt[p]{\left|x_{i 1}-x_{j 1}\right|^{p}+\left|x_{i 2}-x_{j 2}\right|^{p}+\cdots+\left|x_{i l}-x_{j l}\right|^{p}}
$$

where $i=\left(x_{\mathrm{i} 1}, x_{\mathrm{i} 2}, \ldots, x_{\mathrm{i} 1}\right)$ and $j=\left(x_{\mathrm{j} 1}, x_{\mathrm{j} 2}, \ldots, x_{\mathrm{j}}\right)$ are two l-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

Distance on Numeric Data: Minkowski Distance

\square Minkowski distance: A popular distance measure

$$
d(i, j)=\sqrt[p]{\left|x_{i 1}-x_{j 1}\right|^{p}+\left|x_{i 2}-x_{j 2}\right|^{p}+\cdots+\left|x_{i l}-x_{j l}\right|^{p}}
$$

where $i=\left(x_{\mathrm{i} 1}, x_{\mathrm{i} 2}, \ldots, x_{\mathrm{i}}\right)$ and $j=\left(x_{\mathrm{i} 1}, x_{\mathrm{i} 2}, \ldots, x_{\mathrm{i}}\right)$ are two l-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)
\square Properties
$\square d(i, i)>0$ if $i \neq i$, and $d(i, i)=0$ (Positivity)
$\square \mathrm{d}(\mathrm{i}, \mathrm{i})=\mathrm{d}(\mathrm{i}, \mathrm{i})$ (Symmetry)
$\square \mathrm{d}(\mathrm{i}, \mathrm{i}) \leq \mathrm{d}(\mathrm{i}, \mathrm{k})+\mathrm{d}(\mathrm{k}, \mathrm{i})$ (Triangle Inequality)
\square A distance that satisfies these properties is a metric
\square Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

$\square p=1$: (L_{1} norm) Manhattan (or city block) distance
\square E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$
d(i, j)=\left|x_{i 1}-x_{j 1}\right|+\left|x_{i 2}-x_{j 2}\right|+\cdots+\left|x_{i l}-x_{j l}\right|
$$

Special Cases of Minkowski Distance

$\square p=1$: (L_{1} norm) Manhattan (or city block) distance
\square E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$
d(i, j)=\left|x_{i 1}-x_{j 1}\right|+\left|x_{i 2}-x_{j 2}\right|+\cdots+\left|x_{i l}-x_{j l}\right|
$$

$\square p=2$: (L_{2} norm) Euclidean distance

$$
d(i, j)=\sqrt{\left|x_{i 1}-x_{j 1}\right|^{2}+\left|x_{i 2}-x_{j 2}\right|^{2}+\cdots+\left|x_{i l}-x_{j l}\right|^{2}}
$$

Special Cases of Minkowski Distance

$\square p=1$: (L_{1} norm) Manhattan (or city block) distance
\square E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$
d(i, j)=\left|x_{i 1}-x_{j 1}\right|+\left|x_{i 2}-x_{j 2}\right|+\cdots+\left|x_{i l}-x_{j l}\right|
$$

$\square p=2:\left(\mathrm{L}_{2}\right.$ norm) Euclidean distance

$$
d(i, j)=\sqrt{\left|x_{i 1}-x_{j 1}\right|^{2}+\left|x_{i 2}-x_{j 2}\right|^{2}+\cdots+\left|x_{i l}-x_{j 1}\right|^{2}}
$$

$\square p \rightarrow \infty$: ($\mathrm{L}_{\text {max }}$ norm, L_{∞} norm) "supremum" distance
\square The maximum difference between any component (attribute) of the vectors

$$
d(i, j)=\lim _{p \rightarrow \infty} p \sqrt[p]{\left|x_{i 1}-x_{j 1}\right|^{p}+\left|x_{i 2}-x_{j 2}\right|^{p}+\cdots+\left|x_{i l}-x_{j i}\right|^{p}}=\max _{f=1}^{l}\left|x_{i f}-x_{i f}\right|
$$

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
$\mathbf{x 1}$	1	2
$\mathbf{x} 2$	3	5
$\mathbf{x 3}$	2	0
$\mathbf{x 4}$	4	5

\mathbf{L}	$\mathbf{x} 1$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x} 1$	0			
$\mathbf{x} \mathbf{2}$	5	0		
$\mathbf{x 3}$	3	6	0	
$\mathbf{x 4}$	6	1	7	0

Manhattan
(L_{1})

$\mathbf{L 2}$	$\mathbf{x 1}$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{x 4}$
$\mathbf{x} \mathbf{1}$	0			
$\mathbf{x 2}$	3.61	0		
$\mathbf{x 3}$	2.24	5.1	0	
$\mathbf{x 4}$	4.24	1	5.39	0

Euclidean
$\left(L_{2}\right)$

\mathbf{L}_{∞}	$\mathbf{x} 1$	$\mathbf{x} 2$	$\mathbf{x} 3$	$\mathbf{x 4}$
$\mathbf{x} \mathbf{1}$	0			
$\mathbf{x} \mathbf{2}$	3	0		
$\mathbf{x 3}$	2	5	0	
$\mathbf{x 4}$	3	1	5	0

Supremum
(L_{∞})

Proximity Measure for Binary Attributes

\square A contingency table for binary data

Object j			
	1	0	sum
1	q	r	$q+r$
0	s	t	$s+t$
sum	$q+s$	$r+t$	p

\square Distance measure for symmetric binary variables:

$$
d(i, j)=\frac{r+s}{q+r+s+t}
$$

\square Distance measure for asymmetric binary variables: $d(i, j)=\frac{r+s}{q+r+s}$

Proximity Measure for Binary Attributes

\square A contingency table for binary data
Object j

Object i
0 sum

	q	r	$q+r$
0	s	t	$s+t$

\square Distance measure for symmetric binary variables: $\quad d(i, j)=\frac{r+s}{q+r+s+t}$
\square Distance measure for asymmetric binary variables: $d(i, j)=\frac{r+s}{q+r+s}$
\square Jaccard coefficient (similarity measure for asymmetric binary variables): $\quad \operatorname{sim}_{J a c c a r d}(i, j)=\frac{q}{q+r+s}$
\square Note: Jaccard coefficient is the same as "coherence": (a concept discussed in Pattern Discovery)

$$
\operatorname{coherence}(i, j)=\frac{\sup (i, j)}{\sup (i)+\sup (j)-\sup (i, j)}=\frac{q}{(q+r)+(q+s)-q}
$$

Example: Dissimilarity between Asymmetric Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

\square Gender is a symmetric attribute (not counted in)
\square The remaining attributes are asymmetric binary
\square Let the values Y and P be 1 , and the value N be 0

Example: Dissimilarity between Asymmetric Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

\square Gender is a symmetric attribute (not counted in)
Mary
\square The remaining attributes are asymmetric binary
\square Let the values Y and P be 1 , and the value N be 0

Example: Dissimilarity between Asymmetric Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

\square Gender is a symmetric attribute (not counted in)

		Jim		
		1	0	Erow
	1	1	1	2
Jack	0	1	3	4
	$\sum_{c o}$	2	4	6

\square The remaining attributes are asymmetric binary
\square Let the values Y and P be 1 , and the value N be 0
\square Distance: $\quad d(i, j)=\frac{r+s}{q+r+s}$

$$
\begin{aligned}
& d(\text { jack, mary })=\frac{0+1}{2+0+1}=0.33 \\
& d(\text { jack, jim })=\frac{1+1}{1+1+1}=0.67 \\
& d(\text { jim }, \text { mary })=\frac{1+2}{1+1+2}=0.75
\end{aligned}
$$

Proximity Measure for Categorical Attributes

\square Categorical data, also called nominal attributes

- Example: Color (red, yellow, blue, green), profession, etc.
\square Method 1: Simple matching
- m: \# of matches, p: total \# of variables

$$
d(i, j)=\frac{p-m}{p}
$$

\square Method 2: Use a large number of binary attributes
\square Creating a new binary attribute for each of the M nominal states

Ordinal Variables

\square An ordinal variable can be discrete or continuous
\square Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
\square Can be treated like interval-scaled
\square Replace an ordinal variable value by its rank: $r_{i f} \in\left\{1, \ldots, M_{f}\right\}$
\square Map the range of each variable onto $[0,1]$ by replacing i-th object in the f-th variable by

$$
z_{i f}=\frac{r_{i f}-1}{M_{f}-1}
$$

■Example: freshman: 0 ; sophomore: 1/3; junior: 2/3; senior 1

- Then distance: $d($ freshman, senior $)=1, d($ junior, senior $)=1 / 3$
\square Compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

\square A dataset may contain all attribute types
\square Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
\square One may use a weighted formula to combine their effects:

$$
d(i, j)=\frac{\sum_{f=1}^{p} w_{i j}^{(f)} d_{i j}^{(f)}}{\sum_{f=1}^{p} w_{i j}^{(f)}}
$$

- If f is numeric: Use the normalized distance
- If f is binary or nominal: $\mathrm{d}_{\mathrm{ij}}{ }^{(\mathrm{f})}=0$ if $\mathrm{x}_{\mathrm{if}}=\mathrm{x}_{\mathrm{if}}$; or $\mathrm{d}_{\mathrm{ij}}{ }^{(\mathrm{f})}=1$ otherwise
- If f is ordinal
\square Compute ranks z_{if} (where $z_{i f}=\frac{r_{i f}-1}{M_{f}-1}$)
\square Treat z_{if} as interval-scaled
- Treat $z_{\text {if }}$ as interval-scaled

Cosine Similarity of Two Vectors

\square A document can be represented by a bag of terms or a long vector, with each attribute recording the frequency of a particular term (such as word, keyword, or phrase) in the document

Document	teamcoach	hockey	baseball	soccer	penalty	score	win	loss	season	
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

\square Other vector objects: Gene features in micro-arrays
\square Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
\square Cosine measure: If d_{1} and d_{2} are two vectors (e.g., term-frequency vectors), then

$$
\cos \left(d_{1}, d_{2}\right)=\frac{d_{1} \bullet d_{2}}{\left\|d_{1}\right\| \times\left\|d_{2}\right\|}
$$

where \bullet indicates vector dot product, $||d||:$ the length of vector d

Example: Calculating Cosine Similarity

\square Calculating Cosine Similarity: $\frac{d_{1} \bullet d_{2}}{\cos \left(d_{1}, d_{2}\right)=} \quad \operatorname{sim}(A, B)=\cos (\theta)=\frac{A \cdot B}{\|A\|\|B\|}$
where \bullet indicates vector dot product, $||d||:$ the length of vector d

Example: Calculating Cosine Similarity

\square Calculating Cosine Similarity:

$$
\cos \left(d_{1}, d_{2}\right)=\frac{d_{1} \bullet d_{2}}{\left\|d_{1}\right\| \times\left\|d_{2}\right\|} \quad \operatorname{sim}(A, B)=\cos (\theta)=\frac{A \cdot B}{\|A\|\|B\|}
$$

where \bullet indicates vector dot product, $||d||:$ the length of vector d
\square Ex: Find the similarity between documents 1 and 2.

$$
d_{1}=(5,0,3,0,2,0,0,2,0,0) \quad d_{2}=(3,0,2,0,1,1,0,1,0,1)
$$

\square First, calculate vector dot product

$$
\begin{aligned}
& d_{1} \bullet d_{2}=5 \times 3+0 \times 0+3 \times 2+0 \times 0+2 \times 1+0 \times 1+0 \times 1+2 \times 1+0 \\
& \times 0+0 \times 1=25
\end{aligned}
$$

\square Then, calculate $\left|\left|d_{1}\right|\right|$ and $\left|\left|d_{2}\right|\right|$

$$
\begin{aligned}
& \left\|d_{1}\right\|=\sqrt{5 \times 5+0 \times 0+3 \times 3+0 \times 0+2 \times 2+0 \times 0+0 \times 0+2 \times 2+0 \times 0+0 \times 0}=6.481 \\
& \left\|d_{2}\right\|=\sqrt{3 \times 3+0 \times 0+2 \times 2+0 \times 0+1 \times 1+1 \times 1+0 \times 0+1 \times 1+0 \times 0+1 \times 1}=4.12
\end{aligned}
$$

\square Calculate cosine similarity: $\cos \left(d_{1}, d_{2}\right)=26 /(6.481 \times 4.12)=0.94$

KL Divergence: Comparing Two Probability Distributions

\square The Kullback-Leibler (KL) divergence: Measure the difference between two probability distributions over the same variable x

- From information theory, closely related to relative entropy, information divergence, and information for discrimination
$\square D_{K 1}(p(x)| | q(x))$: divergence of $q(x)$ from $p(x)$, measuring the information lost when
 $q(x)$ is used to approximate $p(x)$

$$
D_{K L}(p(x) \| q(x))=\int_{-\infty}^{\infty} p(x) \ln \frac{p(x)}{q(x)} d x
$$

More on KL Divergence

$$
D_{K L}(p(x) \| q(x))=\sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}
$$

\square The KL divergence measures the expected number of extra bits required to code samples from $p(x)$ ("true" distribution) when using a code based on $q(x)$, which represents a theory, model, description, or approximation of $p(x)$
\square The KL divergence is not a distance measure, not a metric: asymmetric ($D_{\mathrm{KL}}(P \| Q)$ does not equal $\left.D_{\text {KL }}(Q \| P)\right)$
\square In applications, P typically represents the "true" distribution of data, observations, or a precisely calculated theoretical distribution, while Q typically represents a theory, model, description, or approximation of P.
\square The Kullback-Leibler divergence from Q to P, denoted $D_{\text {KL }}(P \| Q)$, is a measure of the information gained when one revises one's beliefs from the prior probability distribution Q to the posterior probability distribution P. In other words, it is the amount of information lost when Q is used to approximate P.
\square The KL divergence is sometimes also called the information gain achieved if P is used instead of Q. It is also called the relative entropy of P with respect to Q.

Subtlety at Computing the KL Divergence

\square Base on the formula, $D_{K L}(P, Q) \geq 0$ and $D_{K L}(P \| Q)=0$ if and only if $P=Q$
\square How about when $p=0$ or $q=0$?
$\square \lim _{p \rightarrow 0} p \log p=0$

$$
D_{K L}(p(x) \| q(x))=\sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}
$$

\square when $p!=0$ but $q=0, D_{K L}(p \| q)$ is defined as ∞, i.e., if one event e is possible (i.e., $p(e)>0$), and the other predicts it is absolutely impossible (i.e., $q(e)=0$), then the two distributions are absolutely different
\square However, in practice, P and Q are derived from frequency distributions, not counting the possibility of unseen events. Thus smoothing is needed.

Subtlety at Computing the KL Divergence

\square Base on the formula, $D_{K L}(P, Q) \geq 0$ and $D_{K L}(P| | Q)=0$ if and only if $P=Q$
\square How about when $p=0$ or $q=0$?
$\square \lim _{p \rightarrow 0} p \log p=0$

$$
D_{K L}(p(x) \| q(x))=\sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}
$$

\square when $p!=0$ but $q=0, D_{K L}(p \| q)$ is defined as ∞, i.e., if one event e is possible (i.e., $p(e)>0$), and the other predicts it is absolutely impossible (i.e., $q(e)=0$), then the two distributions are absolutely different
\square However, in practice, P and Q are derived from frequency distributions, not counting the possibility of unseen events. Thus smoothing is needed
\square Example: $P:(a: 3 / 5, b: 1 / 5, c: 1 / 5) . Q:(a: 5 / 9, b: 3 / 9, d: 1 / 9)$
\square need to introduce a small constant ϵ, e.g., $\epsilon=10^{-3}$
\square The sample set observed in $P, S P=\{a, b, c\}, S Q=\{a, b, d\}, S U=\{a, b, c, d\}$
\square Smoothing, add missing symbols to each distribution, with probability ϵ
$\square P^{\prime}:(a: 3 / 5-\epsilon / 3, b: 1 / 5-\epsilon / 3, c: 1 / 5-\epsilon / 3, d: \epsilon)$
$\square Q^{\prime}:(a: 5 / 9-\epsilon / 3, b: 3 / 9-\epsilon / 3, c: \epsilon, d: 1 / 9-\epsilon / 3)$
$\square D_{K L}\left(P^{\prime} \| Q^{\prime}\right)$ can then be computed easily

Data \& Data Preprocessing

\square Data Objects and Attribute Types
\square Basic Statistical Descriptions of Data
\square Measuring Data Similarity and Dissimilarity
\square Data Preprocessing: An Overview

\square Summary

Why Preprocess the Data? -Data Quality Issues

\square Measures for data quality: A multidimensional view
\square Accuracy: correct or wrong, accurate or not
\square Completeness: not recorded, unavailable, ...
\square Consistency: some modified but some not, dangling, ...
\square Timeliness: timely update?
\square Believability: how trustable the data are correct?

- Interpretability: how easily the data can be understood?

Data Quality Issues - Examples

\square Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, and transmission error
\square Incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data

- e.g., Occupation = " " (missing data)
\square Noisy: containing noise, errors, or outliers
- e.g., Salary = "-10" (an error)
\square Inconsistent: containing discrepancies in codes or names, e.g.,
\square Age $=" 42 "$, Birthday $=" 03 / 07 / 2010 "$
- Was rating " $1,2,3$ ", now rating " A, B, C "
- discrepancy between duplicate records
- Intentional (e.g., disguised missing data)
- Jan. 1 as everyone's birthday?

Missing (Incomplete) Values

\square Reasons for missing values
\square Information is not collected
(e.g., people decline to give their age and weight)
\square Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)

Missing (Incomplete) Values

\square Reasons for missing values
\square Information is not collected
(e.g., people decline to give their age and weight)
\square Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)

How to handle them?

How to Handle Missing Data?

\square Ignore the tuple: usually done when class label is missing (when doing classification)— not effective when the \% of missing values per attribute varies considerably
\square Fill in the missing value manually: tedious + infeasible?
\square Fill in it automatically with

- a global constant : e.g., "unknown", a new class?!
- the attribute mean
\square the attribute mean for all samples belonging to the same class: smarter
\square the most probable value: inference-based such as Bayesian formula or decision tree

Noise

\square Noise refers to modification of original values
\square Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen

Two Sine Waves

Two Sine Waves + Noise

How to Handle Noisy Data?

\square Binning
\square First sort data and partition into (equal-frequency) bins
\square Then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
\square Regression
\square Smooth by fitting the data into regression functions
\square Clustering

- Detect and remove outliers
\square Semi-supervised: Combined computer and human inspection
\square Detect suspicious values and check by human (e.g., deal with possible outliers)

Data Cleaning as a Process

\square Data discrepancy detection
\square Use metadata (e.g., domain, range, dependency, distribution)

- Check field overloading
\square Check uniqueness rule, consecutive rule and null rule
- Use commercial tools

■ Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections

- Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)
\square Data migration and integration
- Data migration tools: allow transformations to be specified
\square ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface
\square Integration of the two processes
\square Iterative and interactive

Data \& Data Preprocessing

\square Data Objects and Attribute Types
\square Basic Statistical Descriptions of Data
\square Measuring Data Similarity and Dissimilarity
\square Data Preprocessing: An Overview
\square Summary

Summary

\square Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled
\square Many types of data sets, e.g., numerical, text, graph, Web, image.
\square Gain insight into the data by:
\square Basic statistical data description: central tendency, dispersion

- Measure data similarity
\square Data quality issues and preprocessing
\square Many methods have been developed but still an active area of research

References

$\square \quad$ W. Cleveland, Visualizing Data, Hobart Press, 1993
$\square \quad$ T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
$\square \quad$ U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
$\square \quad$ L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley \& Sons, 1990.
$\square \quad$ H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997
\square D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
\square D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
\square S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21 (9), 1999
$\square \quad$ E. R. Tufte. The Visual Display of Quantitative Information, $2^{\text {nd }}$ ed., Graphics Press, 2001
\square C. Yu, et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009

References

$\square \quad$ W. Cleveland, Visualizing Data, Hobart Press, 1993
$\square \quad$ T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
$\square \quad$ U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
$\square \quad$ L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley \& Sons, 1990.
$\square \quad$ H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997
\square D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
\square D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
\square S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21 (9), 1999
$\square \quad$ E. R. Tufte. The Visual Display of Quantitative Information, $2^{\text {nd }}$ ed., Graphics Press, 2001
\square C. Yu, et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009

Backup slides

Basic Statistical Descriptions of Data

\square Motivation

\square To better understand the data: central tendency, variation and spread

- Data dispersion characteristics
- Median, max, min, quantiles, outliers, variance, ...
\square Numerical dimensions correspond to sorted intervals
\square Data dispersion:
\square Analyzed with multiple granularities of precision - Boxplot or quantile analysis on sorted intervals
\square Dispersion analysis on computed measures

$\square \quad$ Folding measures into numerical dimensions
\square Boxplot or quantile analysis on the transformed cube

Basic Statistical Descriptions of Data

\square Motivation

\square To better understand the data: central tendency, variation and spread

- Data dispersion characteristics
- Median, max, min, quantiles, outliers, variance, ...
- Numerical dimensions correspond to sorted intervals
\square Data dispersion:
\square Analyzed with multiple granularities of precision - Boxplot or quantile analysis on sorted intervals
\square Dispersion analysis on computed measures

\square Folding measures into numerical dimensions
\square Boxplot or quantile analysis on the transformed cube

Graphic Displays of Basic Statistical Descriptions

Boxplot: graphic display of five-number summaryHistogram: x-axis are values, y-axis represents frequencies\square Quantile plot: each value x_{i} is paired with f_{i} indicating that approximately $100 \% * f_{i}$ of data are $\leq x_{i}$
\square Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
\square Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Measuring the Dispersion of Data: Quartiles \& Boxplots

\square Quartiles: Q_{1} (25 ${ }^{\text {th }}$ percentile), Q_{3} (75 $5^{\text {th }}$ percentile)
\square Inter-quartile range: $I Q R=Q_{3}-Q_{1}$
\square Five number summary: min, Q_{1}, median, Q_{3}, max
\square Boxplot: Data is represented with a box
$\square Q_{1}, Q_{3}$, IQR: The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
\square Median $\left(Q_{2}\right)$ is marked by a line within the box
\square Whiskers: two lines outside the box extended to Minimum and Maximum

\square Outliers: points beyond a specified outlier threshold, plotted individually
\square Outlier: usually, a value higher/lower than $1.5 \times$ IQR

Visualization of Data Dispersion: 3-D Boxplots

Histogram Analysis

Histogram: Graph display of tabulated frequencies, shown as bars
\square Differences between histograms and bar chart

Olympic Medals of all Times (till 2012 Olympics)

Histogram

Histogram Analysis

\square Histogram: Graph display of tabulated frequencies, shown as bars
\square Differences between histograms and bar charts
\square Histograms are used to show distributions of variables while bar charts are used to compare variables

- Histograms plot binned quantitative data while bar charts plot categorical data
\square Bars can be reordered in bar charts but not in histograms
\square Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the

Olympic Medals of all Times (till 2012 Olympics)
 categories are not of uniform width

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
\square The same values for: min, Q1, median, Q3, max

- But they have rather different data distributions

Quantile Plot

\square Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
\square Plots quantile information
\square For a data x_{i} and data sorted in increasing order, f_{i} indicates that approximately $100 * f_{i} \%$ of the data are below or equal to the value x_{i}

Quantile-Quantile (Q-Q) Plot

\square Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
\square View: Is there a shift in going from one distribution to another?
\square Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2

Scatter plot

Provides a first look at bivariate data to see clusters of points, outliers, etc.
\square Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Positively and Negatively Correlated Data?

Positively and Negatively Correlated Data

\square The left half fragment is positively correlated
\square The right half is negative correlated

Chapter 2. Getting to Know Your Data

\square Data Objects and Attribute Types
\square Basic Statistical Descriptions of Data
\square Data Visualization

Measuring Data Similarity and Dissimilarity
\square Summary

Data Visualization

\square Why data visualization?
\square Gain insight into an information space by mapping data onto graphical primitives

- Provide qualitative overview of large data sets
\square Search for patterns, trends, structure, irregularities, relationships among data
- Help find interesting regions and suitable parameters for further quantitative analysis
\square Provide a visual proof of computer representations derived
\square Categorization of visualization methods:
\square Pixel-oriented visualization techniques
\square Geometric projection visualization techniques
- Icon-based visualization techniques
\square Hierarchical visualization techniques
\square Visualizing complex data and relations

Pixel-Oriented Visualization Techniques

\square For a data set of m dimensions, create m windows on the screen, one for each dimension
\square The m dimension values of a record are mapped to m pixels at the corresponding positions in the windows
\square The colors of the pixels reflect the corresponding values

(a) Income

(b) Credit Limit

(c) transaction volume

(d) age

Laying Out Pixels in Circle Segments

\square To save space and show the connections among multiple dimensions, space filling is often done in a circle segment

Representing about 265,000 50-dimensional Data Items with the 'Circle Segments' Technique

Geometric Projection Visualization Techniques

\square Visualization of geometric transformations and projections of the data
\square Methods
\square Direct visualization
\square Scatterplot and scatterplot matrices
\square Landscapes
\square Projection pursuit technique: Help users find meaningful projections of multidimensional data
\square Prosection views
\square Hyperslice
\square Parallel coordinates

Direct Data Visualization

Scatterplot Matrices

- Matrix of scatterplots (x-ydiagrams) of the k-dim. data [total of ($\mathrm{k}^{2} / 2-\mathrm{k}$) scatterplots]

Landscapes

\square Visualization of the data as perspective landscape
\square The data needs to be transformed into a (possibly artificial) 2D spatial representation which preserves the characteristics of the data

Pacific Northwest Laboratory
news articles visualized as a landscape

Parallel Coordinates

$\square \mathrm{n}$ equidistant axes which are parallel to one of the screen axes and correspond to the attributes
\square The axes are scaled to the [minimum, maximum]: range of the corresponding attribute
\square Every data item corresponds to a polygonal line which intersects each of the axes at the point which corresponds to the value for the attribute

Parallel coordinate plot, Fisher's Iris data

Parallel Coordinates of a Data Set

Icon-Based Visualization Techniques

\square Visualization of the data values as features of icons
\square Typical visualization methods

- Chernoff Faces
\square Stick Figures
\square General techniques
\square Shape coding: Use shape to represent certain information encoding
\square Color icons: Use color icons to encode more information
\square Tile bars: Use small icons to represent the relevant feature vectors in document retrieval

Chernoff Faces

\square A way to display variables on a two-dimensional surface, e.g., let x be eyebrow slant, y be eye size, z be nose length, etc.
\square The figure shows faces produced using 10 characteristics--head eccentricity, eye size, eye spacing, eye eccentricity, pupil size, eyebrow slant, nose size, mouth shape, mouth size, and mouth opening): Each assigned one of 10 possible values, generated using Mathematica (S. Dickson)
\square REFERENCE: Gonick, L. and Smith, W. The
 Cartoon Guide to Statistics. New York: Harper Perennial, p. 212, 1993
\square Weisstein, Eric W. "Chernoff Face." From MathWorld--A Wolfram Web Resource. mathworld.wolfram.com/ChernoffFace.html

Stick Figure

- A census data figure showing age, income, gender, education, etc.
- A 5-piece stick figure (1 body and 4 limbs w. different angle/length)

Hierarchical Visualization Techniques

\square Visualization of the data using a hierarchical partitioning into subspaces
\square Methods
\square Dimensional Stacking
\square Worlds-within-Worlds

- Tree-Map

\square Cone Trees
- InfoCube

Dimensional Stacking

\square Partitioning of the n-dimensional attribute space in 2-D subspaces, which are 'stacked' into each other
\square Partitioning of the attribute value ranges into classes. The important attributes should be used on the outer levels.
\square Adequate for data with ordinal attributes of low cardinality
\square But, difficult to display more than nine dimensions
\square Important to map dimensions appropriately

Dimensional Stacking

Visualization of oil mining data with longitude and latitude mapped to the outer x-, y-axes and ore grade and depth mapped to the inner $x-, y$-axes

Worlds-within-Worlds

\square Assign the function and two most important parameters to innermost world
\square Fix all other parameters at constant values - draw other (1 or 2 or 3 dimensional worlds choosing these as the axes)

- Software that uses this paradigm
- N -vision: Dynamic interaction through data glove and stereo displays, including rotation, scaling (inner) and translation (inner/outer)
- Auto Visual: Static interaction by means of queries

Tree-Map

\square Screen-filling method which uses a hierarchical partitioning of the screen into regions depending on the attribute values
\square The x - and y-dimension of the screen are partitioned alternately according to the attribute values (classes)

Schneiderman@UMD: Tree-Map of a File System

Schneiderman@UMD: Tree-Map to support large data sets of a million items

InfoCube

\square A 3-D visualization technique where hierarchical information is displayed as nested semi-transparent cubes
\square The outermost cubes correspond to the top level data, while the subnodes or the lower level data are represented as smaller cubes inside the outermost cubes, etc.

Three-D Cone Trees

\square 3D cone tree visualization technique works well for up to a thousand nodes or so

\square First build a 2D circle tree that arranges its nodes in concentric circles centered on the root node
\square Cannot avoid overlaps when projected to 2D
\square G. Robertson, J. Mackinlay, S. Card. "Cone Trees: Animated 3D Visualizations of Hierarchical Information", ACM SIGCHI'91
\square Graph from Nadeau Software Consulting website: Visualize a social network data set that models the way an infection spreads from one person to the next

Visualizing Complex Data and Relations: Tag Cloud

\square Tag cloud: Visualizing user-generated tags
\square The importance of tag is represented by font size/color
\square Popularly used to visualize word/phrase distributions

KDD 2013 Research Paper Title Tag Cloud

Newsmap: Google News Stories in 2005

Visualizing Complex Data and Relations: Social Networks

\square Visualizing non-numerical data: social and information networks

A typical network structure

A social network

