Web Applications: Overview and Architecture

Lecture 1
Road Map in Pictures: Web App

The image shows a section of a web page with a search for ice cream in Columbus, Ohio, using Yelp. The results are filtered by location near the Ohio State University, with a map showing the locations of the ice cream shops. The shops listed include:

1. Cold Stone Creamery
 - University District
 - 5 reviews
 - $ - Ice Cream & Frozen Yogurt
2. Jeni's Splendid Ice Creams
 - Upper Arlington
 - 4 reviews
 - $$$$ - Ice Cream & Frozen Yogurt

The map provides a visual representation of the locations and can be used to navigate to the ice cream shops.
Road Map in Pictures

Browser ➔ Request ➔ Web Server ➔ Response

Controller ➔ Model ➔ View

Dispatcher ➔ Routes ➔ Web Server
Road Map in Pictures

Request

Response

Browser

Web Server

HTTP

Rails

Controller

Model

View

Dispatcher

Routes

Web Server

Rails

Ruby

HTML

CSS

JavaScript

Computer Science and Engineering ■ The Ohio State University
Road Map: Schedule of Topics

☐ A Language
 ■ Ruby

☐ Foundations
 ■ Version Control, Networking, Regular Expressions

☐ Static web pages
 ■ HTML & CSS

☐ Dynamic web pages
 ■ JavaScript

☐ Framework for web applications
 ■ Rails

☐ Applied Topics
 ■ Security, Encodings
Resources

- Class website
 - Syllabus (note exam requirement)
 - Handouts, lecture notes, lab assignments
 - Pointers to more resources
- Piazza
 - Discussion forum, news, announcements
- Slack
 - Group collaboration, messaging, chat
- Carmen
 - Grades
- Face time (not FaceTime™)
 - Instructor, TA
 - Each other
Technical Content

- Languages and Technologies
 - HTTP
 - XML, HTML, CSS, JavaScript
 - Ruby, Ruby on Rails

- Tools and techniques
 - Design patterns (MVC)
 - git, linux
 - Regular expressions, unicode, time

- Advanced topics
 - Programming languages, networking, cryptography, databases, operating systems
Stability of Content: Concepts

- Conceptual underpinnings will be relevant forever

- In this course:
 - Single-point of control over change
 - Abstraction (vs realization)
 - Design patterns
 - Regular Expressions (the math part)
 - Cryptography (the math part)
 - Motivation for version control
 - Time-space performance trade-offs
Stability of Content: Technology

- Some technologies have been around a long time, and will likely be relevant for many more years
- Examples in this course:
 - Linux
 - SQL
 - HTTP
 - HTML
 - CSS
 - JavaScript
Stability of Content: Tools

- Some tools come and go
- They are useful for getting things done now, but may not be as relevant or fashionable in 10 years
- Examples in this course
 - Ruby
 - JQuery
 - git
Stability of Content: Framework

- There are many frameworks and libraries for web development
- They come and go so quickly, there is always something new
- Examples:
 - Web frameworks like Rails, Express.js...
 - Ruby gems like Middleman, Nokogiri, Cucumber...
 - JavaScript libraries like Angular, React
 - HTML/CSS libraries like Bootstrap, Baseline, Foundation...
Meta Content: Software Eng.

- Lasting relevance
- Project development in the "real world"
 1. Vague open-ended requirements
 2. Large, complex problems
 3. Teams
Topic 1: Vague Requirements

- Two aspects to engineering:
 - Satisfying the constraints (solving the problem)
 - Optimizing the solution (better, faster, cheaper)

- Must first identify and understand the problem
 - Requirements elicitation

- Recognize tradeoffs
 - Improvement in one aspect at the expense of another
Topic 2: Size and Complexity

- “Programming in the large”
 - Does not all fit in one person’s head or schedule
 - Interfaces, modules, components, classes
- Design
 - Measure twice, cut once
- Process
 - Agile, waterfall, TDD,...
- Documentation
- Testing
Topic 3: Group Work

- Naïve view of CS: Lone wolf hacker
- Reality: large multidisciplinary teams
 - Developers, testers, marketing, HR, management, clients
 - Communication skills are critical
- Many challenges
 - Rely on others
 - Compromises become necessary
 - Personalities
- Many rewards
 - Accomplish more
 - Learn more
In This Course...

- Group work: 4 people / group
- Multidisciplinary teams
 - I will create cross-cutting technical areas
- Open-ended projects
- Communication skills
 - Presentations to class
Architecture: Desktop App

User Interface

Application

Data

Graphical events (mouse moves, button pushed)

Processing, Calculating

Persistence, Transactions, Triggers
Client-Server App: 2-Tier

Where should we cut?

- **User Interface**
 - Ultra-thin client (aka “dumb terminal”)
 - [X11, RDP, character echo from mainframe]
 - UI on client, processing just for display
 - [browser rendering static HTML]
 - Some processing on client
 - [validate form fields before submission]
 - Thick client: connect directly to DB mngr
 - [native look & feel]
 - Cache data on client
 - [responsiveness, less network congestion]
Basic Web App Skeleton: 3-Tier

User Interface

http

HTML, CSS, Javascript

Application

SQL

Data

SoftwareLogos:
- PHP
- Java
- Apache Tomcat
- IIS7
- MySQL
- SQL Server
- SQLite
Advantages over Thick Clients

- **Performance**
 - 1 (expensive) network call to app layer results in many calls to data layer
 - Compute-intensive part on faster machine

- **Flexibility**
 - Update app logic without changing client

- **Robustness**
 - Transactions, logging at app level

- **Security**
 - Login, authentication, encryption all better at app level than data level
Web App Skeleton: 4-Tier

User Interface

Presentation Layer

Business Logic

Data
Web App Skeleton: n-Tier...

User Interface
 ↕
Caching
 ↕
Presentation Layer
 ↕
Workflow
 ↕
Business Logic
 ↕
Data
Summary

- Technical aspects of course content
 - Many web technologies
- Meta content: Software engineering
 - Vague requirements
 - Large systems
 - Teams
- 2-, 3-, 4-, n-Tier Architectures