On Characterizing the Data Movement Complexity of Computational DAGs for Parallel Execution

Venmugil Elango1 Fabrice Rastello2 Louis-Noël Pouchet3 J. Ramanujam4 P. Sadayappan1

1The Ohio State University 2Inria 3University of California Los Angeles 4Louisiana State University

26th ACM Symposium on Parallelism in Algorithms and Architectures —Supported by the U.S. National Science Foundation—
Outline

1. Introduction
2. Background
3. Decomposition
4. Red-Blue-White Pebble Game
5. Min-Cut based I/O Complexity
6. Parallel I/O Complexity
7. Example
Motivation

Hardware Prospective (source: SciDAC 2010)

Here is a table showing the expected changes in various hardware parameters over the years 2009 to 2018:

<table>
<thead>
<tr>
<th>Systems</th>
<th>2009</th>
<th>2011</th>
<th>2015</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Peak Flops/s</td>
<td>2 Peta</td>
<td>20 Peta</td>
<td>100-200 Peta</td>
<td>1 Exa</td>
</tr>
<tr>
<td>System Memory</td>
<td>0.3 PB</td>
<td>1 PB</td>
<td>5 PB</td>
<td>10 PB</td>
</tr>
<tr>
<td>Node Performance</td>
<td>125 GF</td>
<td>200 GF</td>
<td>400 GF</td>
<td>1-10 TF</td>
</tr>
<tr>
<td>Node Memory BW</td>
<td>25 GB/s</td>
<td>40 GB/s</td>
<td>100 GB/s</td>
<td>200-400 GB/s</td>
</tr>
<tr>
<td>Node Concurrency</td>
<td>12</td>
<td>32</td>
<td>0(100)</td>
<td>0(1000)</td>
</tr>
<tr>
<td>Interconnect BW</td>
<td>1.5 GB/s</td>
<td>10 GB/s</td>
<td>25 GB/s</td>
<td>50 GB/s</td>
</tr>
<tr>
<td>System Size (Nodes)</td>
<td>18,700</td>
<td>100,000</td>
<td>500,000</td>
<td>0(Million)</td>
</tr>
<tr>
<td>Total Concurrency</td>
<td>225,000</td>
<td>3 Million</td>
<td>50 Million</td>
<td>0(Billion)</td>
</tr>
<tr>
<td>Storage</td>
<td>15 PB</td>
<td>30 PB</td>
<td>150 PB</td>
<td>300 PB</td>
</tr>
<tr>
<td>I/O</td>
<td>0.2 TB/s</td>
<td>2 TB/s</td>
<td>10 TB/s</td>
<td>20 TB/s</td>
</tr>
<tr>
<td>MTTI</td>
<td>Days</td>
<td>Days</td>
<td>Days</td>
<td>0(1Day)</td>
</tr>
<tr>
<td>Power</td>
<td>6 MW</td>
<td>~10 MW</td>
<td>~10 MW</td>
<td>~20 MW</td>
</tr>
</tbody>
</table>

Data movement cost ≫ Computational cost
Data movement or I/O complexity

- Interested in characterizing minimum data movement cost of any valid schedule

```plaintext
for (i=0; i<N; i++)
    // Read row A(i,:) into fast memory
    for (j=0; j<N; j++)
        // Read C(i,j) and column B(:,j) into fast memory
        for (k=0; k<N; k++)
            C[i][j] += A[i][k] * B[k][j];
    // Write C(i,j) into slow memory
```

Untiled – Computational cost: $2N^3$; Data movement cost: $N^3 + 3N^2$

```plaintext
for (it=0; it<N; it=it+T)
    for (jt=0; jt<N; jt=jt+T)
        // Read block C(it,jt) into fast memory
        for (kt=0; kt<N; kt=kt+T)
            // Read block A(it,kt) and B(kt,jt) into fast memory
            for (i=it; i<it+T; i++)
                for (j=jt; j<jt+T; j++)
                    for (k=kt; k<kt+T; k++)
                        C[i][j] += A[i][k] * B[k][j];
        // Write block C(it,jt) into slow memory
```

Tiled – Computational cost: $2N^3$; Data movement cost: $\frac{2N^3}{T} + 2N^2$
Data movement or I/O complexity

- Interested in characterizing minimum data movement cost of any valid schedule

```plaintext
for (i=0; i<N; i++)
    //Read row A(i,:) into fast memory
    for (j=0; j<N; j++)
        //Read C(i,j) and column B(:,j) into fast memory
            for (k=0; k<N; k++)
                C[i][j] += A[i][k] * B[k][j];
    //Write C(i,j) into slow memory
```

Untiled – Computational cost: $2N^3$; Data movement cost: $N^3 + 3N^2$

```plaintext
for (it=0; it<N; it=it+T)
    for (jt=0; jt<N; jt=jt+T)
        //Read block C(it,jt) into fast memory
            for (kt=0; kt<N; kt=kt+T)
                //Read block A(it,kt) and B(kt,jt) into fast memory
                    for (i=it; i<it+T; i++)
                        for (j=jt; j<jt+T; j++)
                            for (k=kt; k<kt+T; k++)
                                C[i][j] += A[i][k] * B[k][j];
                    //Write block C(it,jt) into slow memory
```

Tiled – Computational cost: $2N^3$; Data movement cost: $\frac{2N^3}{T} + 2N^2$

Data movement Complexity: Lower bound on data movement cost
Computational directed acyclic graph (CDAG)

- Directed acyclic graph
 - Vertices - Inputs, Outputs and Computational operations
 - Edges - Flow of values (data dependencies)
- No specification of order of execution
- No association of memory locations

```c
for (i = 1; i < 4; ++i)
    S += A[i-1] + A[i];
```

Diagram of a computational directed acyclic graph (CDAG) showing the flow of values from inputs to output.
Red-Blue pebble game

- Two types of pebbles
 - Red pebbles - Fixed number - Small fast memory
 - Blue pebbles - Unlimited - Large slow memory
- **Initial state**: Blue pebbles on all input vertices
- **Goal**: Blue pebbles on output vertices
Red-Blue pebble game - 3 red pebbles

R1 (Input) Blue → Red
R2 (Output) Red → Blue
R3 (Compute) Place red pebble, if all its predecessors are red
R4 (Delete) Remove red pebble anytime

Complete calculation:
Sequence of application of rules
Red-Blue pebble game - 3 red pebbles

R1 (Input) Blue → Red
R2 (Output) Red → Blue
R3 (Compute) Place red pebble, if all its predecessors are red
R4 (Delete) Remove red pebble anytime

Complete calculation:
R1 R1 R1
Red-Blue pebble game - 3 red pebbles

R1 (Input) Blue → Red
R2 (Output) Red → Blue
R3 (Compute) Place red pebble, if all its predecessors are red
R4 (Delete) Remove red pebble anytime

Complete calculation:
R1 R1 R1 R4 R3
Red-Blue pebble game - 3 red pebbles

R1 (Input) Blue → Red
R2 (Output) Red → Blue
R3 (Compute) Place red pebble, if all its predecessors are red
R4 (Delete) Remove red pebble anytime

Complete calculation:
R1 R1 R1 R4 R3 R4 R3
Red-Blue pebble game - 3 red pebbles

R1 (Input) Blue \rightarrow Red
R2 (Output) Red \rightarrow Blue
R3 (Compute) Place red pebble, if all its predecessors are red
R4 (Delete) Remove red pebble anytime

Complete calculation:
$R1 \; R1 \; R1 \; R4 \; R3 \; R4 \; R3 \; R4 \; R1$
Red-Blue pebble game - 3 red pebbles

R1 (Input)	Blue → Red
R2 (Output) | Red → Blue
R3 (Compute) | Place red pebble, if all its predecessors are red
R4 (Delete) | Remove red pebble anytime

Complete calculation:

R1 R1 R1 R4 R3 R4 R4 R1 R4 R3
Red-Blue pebble game - 3 red pebbles

R1 (Input) Blue → Red
R2 (Output) Red → Blue
R3 (Compute) Place red pebble, if all its predecessors are red
R4 (Delete) Remove red pebble anytime

Complete calculation:
R1 R1 R1 R4 R3 R4 R4 R1 R4 R3 R4 R3
Red-Blue pebble game - 3 red pebbles

- **R1 (Input)**: Blue → Red
- **R2 (Output)**: Red → Blue
- **R3 (Compute)**: Place red pebble, if all its predecessors are red
- **R4 (Delete)**: Remove red pebble anytime

Complete calculation:

R1 R1 R1 R4 R3 R4 R4 R1 R4 R3 R4 R3 R4 R1
Red-Blue pebble game - 3 red pebbles

R1 (Input) Blue → Red
R2 (Output) Red → Blue
R3 (Compute) Place red pebble, if all its predecessors are red
R4 (Delete) Remove red pebble anytime

Complete calculation:
R1 R1 R1 R4 R3 R4 R3 R4 R1 R4 R3 R4 R3 R4 R1 R4 R3
Red-Blue pebble game - 3 red pebbles

R1 (Input) Blue → Red
R2 (Output) Red → Blue
R3 (Compute) Place red pebble, if all its predecessors are red
R4 (Delete) Remove red pebble anytime

Complete calculation:
R1 R1 R1 R4 R3 R4 R3 R4 R4 R4 R3 R3 R3 R4 R3 R4 R4 R3
Red-Blue pebble game - 3 red pebbles

R1 (Input) Blue \rightarrow Red
R2 (Output) Red \rightarrow Blue
R3 (Compute) Place red pebble, if all its predecessors are red
R4 (Delete) Remove red pebble anytime

Complete calculation:
$R1\ R1\ R1\ R4\ R3\ R4\ R3\ R4\ R1\ R4\ R3\ R4\ R3\ R4\ R1\ R4\ R3\ R4\ R3\ R4\ R3$
Red-Blue pebble game - 3 red pebbles

R1 (Input) Blue → Red
R2 (Output) Red → Blue
R3 (Compute) Place red pebble, if all its predecessors are red
R4 (Delete) Remove red pebble anytime

Complete calculation:
R1 R1 R1 R4 R3 R4 R3 R4 R1 R4 R3 R4 R3 R4 R1 R4 R3 R4 R3 R4 R3 R4 R3 R2
I/O Cost: $\#R1 + \#R2 = 6$
S-partitioning - Graph partitioning

\[V = \bigcup_{i=1}^{h} V_i \]

- \(\forall h \) \(V_i \), \(\exists \) a **dominator set**, \(|D| \leq S \)
- \(\forall h \) \(V_i \), **minimum set**, \(|M| \leq S \)
- no cyclic dependence between subsets

- A **dominator set**, \(D \), of \(V_i \) is the set of vertices in \(V \) such that every path from input \(I \) to \(V_i \) contains some vertex in the set.
- The **minimum set**, \(M \), of \(V_i \) is the set of vertices in \(V_i \) that do not have any successors belonging to \(V_i \).
2S-partitioning and I/O complexity

- Given CDAG C, S red pebbles, and a complete calculation with I/O cost q,

$$S \times h(2S) \geq q \geq S \times (h(2S) - 1)$$
2S-partitioning and I/O complexity

- Given CDAG C, S red pebbles, and a complete calculation with I/O cost q,

$$S \times h(2S) \geq q \geq S \times (h(2S) - 1)$$

- If $H(2S) = \min h(2S)$. Then minimum I/O cost, Q,

$$Q \geq S \times (H(2S) - 1)$$
2S-partitioning and I/O complexity

- Given CDAG C, S red pebbles, and a complete calculation with I/O cost q,

$$S \times h(2S) \geq q \geq S \times (h(2S) - 1)$$

- If $H(2S) = \min h(2S)$. Then minimum I/O cost, Q,

$$Q \geq S \times (H(2S) - 1)$$

- $U(C,2S)$ – upper-bound on size of largest vertex-set

$$Q \geq S \times \left(\frac{|V|}{U(C,2S)} - 1 \right)$$
Outline

1. Introduction
2. Background
3. Decomposition
4. Red-Blue-White Pebble Game
5. Min-Cut based I/O Complexity
6. Parallel I/O Complexity
7. Example
Decomposition

- Practical algorithms - composed of many routines, e.g., Conjugate Gradient: $\text{SpMV} \rightarrow \text{dot-product} \rightarrow \text{AxPY}$
- Program is decomposed; I/O complexity for each routine calculated separately

Disjoint decomposition:
- C_1, C_2, \ldots, C_n – Disjoint partition of C (need not be acyclic)

$$Q(C_1) + Q(C_2) + \cdots + Q(C_n) \leq Q(C)$$
Decomposition and Recomputation

```c
for (i = 0; i < 4; i++)
    c[i] = a[i] + b[i]; // S1
for (i = 0; i < 4; i++)
    d[i] = c[i] * c[i]; // S2
for (i = 0; i < 4; i++)
    e[i] = c[i] + d[i]; // S3
for (i = 0; i < 4; i++)
    f[i] = d[i] * e[i]; // S4
```

Hong & Kung model depends on inputs to get the lower bound

```
CDAG with no input vertex
Q = 0
```

Need to tag some vertices as inputs for tighter bound

Recomputation prevents tagging

SPAA 2014 14 / 32
Decomposition and Recomputation

```c
for (i = 0; i < 4; i++)
    c[i] = a[i] + b[i]; // S1
for (i = 0; i < 4; i++)
    d[i] = c[i] * c[i]; // S2
for (i = 0; i < 4; i++)
    e[i] = c[i] + d[i]; // S3
for (i = 0; i < 4; i++)
    f[i] = d[i] * e[i]; // S4
```

- Hong & Kung model depends on inputs to get the lower bound
 - CDAG with no input vertex $\implies Q = 0$
- Need to tag some vertices as inputs for tighter bound
- Recomputation prevents tagging
Red-Blue-White pebble game

- Prohibits recomputation by introducing white pebbles
 - Allows to derive tighter bounds by input/output tagging/untagging
Red-Blue-White pebble game

- Prohibits recomputation by introducing white pebbles
 - Allows to derive tighter bounds by input/output tagging/untagging

Rules:

R1 (Input) Blue → Red, white

R2 (Output) Red → Blue

R3 (Compute) Place red and white pebbles, if not already white pebbled and all its predecessors have red pebble

R4 (Delete) Remove red pebble anytime
Outline

1. Introduction
2. Background
3. Decomposition
4. Red-Blue-White Pebble Game
5. Min-Cut based I/O Complexity
6. Parallel I/O Complexity
7. Example
Min-cut based I/O complexity

- 2S-partitioning focuses on frontiers of the vertex-sets

- Min-cut approach captures internal space requirement
Min-cut I/O complexity

Schedule wavefront:

Graph wavefront:

I/O complexity:

- $W^\text{min}_G(x)$: Min-cut wavefront at x
- Let $w^\text{max}_G = \max_{x \in V} \left(|W^\text{min}_G(x)| \right)$

$$2 \left(w^\text{max}_G - S \right) \leq Q(C)$$
Example: Diamond DAG

\[2(N - S) \leq Q(C) \]
Example: Diamond DAG with decomposition

$$4 \times 2(N/2 - S) \leq Q(C)$$
Parallel I/O Complexity

Architecture

$R_1^l, R_2^l, \cdots, R_{N_l}^l$ red pebbles of different shades
Parallel Red-Blue-White pebble game (P-RBW)

Rules:

- **R1 (Input)** \(R_L \rightarrow R^L_i, \) white
- **R2 (Output)** \(R^L_i \rightarrow \) blue
- **R3 (Remote get)** \(R^L_j \rightarrow R^L_i \)
- **R4 (Move up)** \(R^{l+1}_j \rightarrow R^l_i, \) \(i \) is child of \(j \)
- **R5 (Move down)** \(R^{l-1}_i \rightarrow R^l_j, \) \(i \) is child of \(j \)
- **R6 (Compute)** Place \(R^1_p \) shaded red pebble and white pebble, if not already white pebbled and all its predecessors have \(R^1_p \) shade pebble
- **R7 (Delete)** Remove any shade of red pebble anytime

Vertical I/O cost: \(\#R4 + \#R5 \)

Horizontal I/O cost: \(\#R3 \)
Vertical I/O complexity

- Eg.: 4 core machine
 - Private L1 caches of size S_1
 - Two L2 caches: M_1 and M_2
- Vertical cost: Data moved between one L2 cache and its two children

Consider a serial processor with cache size $S = 4S_1$

Serial I/O cost:

$$Q(4S_1) \leq Q(M_1)(2S_1) + Q(M_2)(2S_1)$$

Suppose M_1 has higher data transfers than M_2

$$Q(4S_1) \leq Q(M_1)(2S_1) + Q(M_2)(2S_1) \leq 2Q(M_1)(2S_1)$$

General case:

$$Q(S_l - 1 \times N_l - 1) N_l \leq Q(M_i)(N_l - 1 \times S_l - 1)$$
Vertical I/O complexity

- Eg.: 4 core machine
 - Private L1 caches of size S_1
 - Two L2 caches: M_1 and M_2
- Vertical cost: Data moved between one L2 cache and its two children
- Consider a serial processor with cache size $S = 4S_1$
- Serial I/O cost: $Q(4S_1) \leq Q^{M_1}(2S_1) + Q^{M_2}(2S_1)$
- Suppose M_1 has higher data transfers than M_2

\[Q(4S_1) \leq Q^{M_1}(2S_1) + Q^{M_2}(2S_1) \leq 2Q^{M_1}(2S_1) \]
Vertical I/O complexity

- Eg.: 4 core machine
 - Private L1 caches of size S_1
 - Two L2 caches: M_1 and M_2
- Vertical cost: Data moved between one L2 cache and its two children
- Consider a serial processor with cache size $S = 4S_1$
- Serial I/O cost: $Q(4S_1) \leq Q^{M_1}(2S_1) + Q^{M_2}(2S_1)$
- Suppose M_1 has higher data transfers than M_2

$$Q(4S_1) \leq Q^{M_1}(2S_1) + Q^{M_2}(2S_1) \leq 2Q^{M_1}(2S_1)$$

- General case:

$$\frac{Q(S_{l-1} \times N_{l-1})}{N_l} \leq Q^{M_l} \left(\frac{N_{l-1}}{N_l} \times S_{l-1} \right)$$
Tighter 2S-partitioning based vertical I/O complexity

- CDAG C with V vertices
- sub-CDAGs C^p_1 (with $\alpha_1 |V|$ vertices), C^p_2 (with $\alpha_2 |V|$ vertices) - computed by the two processors that share an L2 cache
 - $\alpha_1 |V| + \alpha_2 |V| \geq |V|/2$
Tighter 2S-partitioning based vertical I/O complexity

- CDAG C with V vertices
- sub-CDAGs C^{p_1} (with $\alpha_1 \cdot |V|$ vertices), C^{p_2} (with $\alpha_2 \cdot |V|$ vertices) - computed by the two processors that share an L2 cache
 - $\alpha_1 \cdot |V| + \alpha_2 \cdot |V| \geq |V| / 2$
- $U(2S_1)$: Size of largest vertex set of C
- $U^{p_1}(2S_1)$: Size of largest vertex set of C^{p_1}
- $U^{p_2}(2S_1)$: Size of largest vertex set of C^{p_2}
Tighter 2S-partitioning based vertical I/O complexity

- CDAG \(C \) with \(V \) vertices
- sub-CDAGs \(C^{p1} \) (with \(\alpha_1 \cdot |V| \) vertices), \(C^{p2} \) (with \(\alpha_2 \cdot |V| \) vertices) - computed by the two processors that share an L2 cache
 - \(\alpha_1 \cdot |V| + \alpha_2 \cdot |V| \geq |V| / 2 \)
- \(U(2S_1) \): Size of largest vertex set of \(C \)
- \(U^{p1}(2S_1) \): Size of largest vertex set of \(C^{p1} \)
- \(U^{p2}(2S_1) \): Size of largest vertex set of \(C^{p2} \)
- \(U^{p1}(2S_1) \leq U(2S_1) ; U^{p2}(2S_1) \leq U(2S_1) \);
Tighter 2S-partitioning based vertical I/O complexity

- CDAG C with V vertices
- sub-CDAGs C^p_1 (with $\alpha_1 |V|$ vertices), C^p_2 (with $\alpha_2 |V|$ vertices) - computed by the two processors that share an L2 cache
 - $\alpha_1 |V| + \alpha_2 |V| \geq |V|/2$
- $U(2S_1)$: Size of largest vertex set of C
- $U^{p1}(2S_1)$: Size of largest vertex set of C^p_1
- $U^{p2}(2S_1)$: Size of largest vertex set of C^p_2
- $U^{p1}(2S_1) \leq U(2S_1); U^{p2}(2S_1) \leq U(2S_1)$;

\[
\left(\frac{|V|/2}{U(2S_1)} - 1 \right) \times S_1 \leq \left(\frac{\alpha_1 |V|}{U^{p1}(2S_1)} - 1 \right) \times S_1 + \left(\frac{\alpha_2 |V|}{U^{p2}(2S_1)} - 1 \right) \times S_1
\]
Horizontal I/O Complexity

- Data movement cost between nodes through inter-connection networks
- \(S \)-partitioning based horizontal I/O cost (using similar reasoning as in vertical case)

\[
Q \geq S_L \times \left(\frac{|V|/N_L}{|U(2S_L)|} - 1 \right)
\]
Outline

1. Introduction
2. Background
3. Decomposition
4. Red-Blue-White Pebble Game
5. Min-Cut based I/O Complexity
6. Parallel I/O Complexity
7. Example
Example: Conjugate gradient

1. x is the initial guess
2. p ← r ← b − Ax
3. do
4. v ← Ap //SpMV
5. b ← (r.r) //Dot-prod
6. a ← b/(p.v) //Dot-prod
7. x ← x + ap //AXPY
8. r ← r − av //AXPY
9. g ← (r.r)/b //Dot-prod
10. p ← r + gp //AXPY
11. until ((r.r) is small) //T timesteps

Vertical lower bound:

\[Q \geq \frac{T \times (2(2n^d - S)) + T \times (2(n^d - S))}{P} \]
\[= \frac{T \times (2(3n^d - 2S))}{P} \approx \frac{6n^dT}{P} \]

Horizontal upper bound: \(Q = O(4dB^{d-1}T) \)

where, \(n = \) size along each dimension, \(d = \) dimensions, \(B = n/N_{\text{nodes}}^{1/d} \), \(P = \) no. of processors
Example: Conjugate gradient - Analysis

- Machine balance = \[
\frac{\text{Peak data movement bandwidth (in GBytes/s)}}{\text{Peak computational throughput (in GFLOPs)}}
\]

<table>
<thead>
<tr>
<th>Machine</th>
<th>Vertical balance (words / FLOP)</th>
<th>Horiz. balance (words / FLOP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM BG/Q</td>
<td>0.052</td>
<td>0.006</td>
</tr>
<tr>
<td>Cray XT5</td>
<td>0.0256</td>
<td>0.005</td>
</tr>
</tbody>
</table>

For an example problem:

- Overall computational ops. = \(24n^3 T\)
- Overall memory to LLC I/O ≥ \(6n^3 T\)
- Overall inter-node I/O ≤ \(12B^2 T \times N\) nodes

The maximum required vertical words/flops is \(6 \times \frac{24}{24} = 0.25\), much higher than the architectural vertical balance = \(0.052\), leading to unavoidable bandwidth bound along the vertical direction.

The maximum required horizontal words/flops ≤ \(3\sqrt{\frac{2}{n}} \times \frac{N}{2}\) for practical problem sizes, indicating that inter-node bandwidth is not a bottleneck.
Example: Conjugate gradient - Analysis

- **Machine balance** = \(\frac{\text{Peak data movement bandwidth (in GBytes/s)}}{\text{Peak computational throughput (in GFLOPs)}} \)

<table>
<thead>
<tr>
<th>Machine</th>
<th>Vertical balance (words / FLOP)</th>
<th>Horiz. balance (words / FLOP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM BG/Q</td>
<td>0.052</td>
<td>0.006</td>
</tr>
<tr>
<td>Cray XT5</td>
<td>0.0256</td>
<td>0.005</td>
</tr>
</tbody>
</table>

- **CG for 3D problem:**
 - Overall computational ops. = \(24n^3T\)
 - Overall memory to LLC I/O \(\geq 6n^3T\)
 - Overall inter-node I/O \(\leq 12B^2T \times N_{\text{nodes}}\)

- Maximum (over all nodes) required vertical words/flops \(\geq \frac{6}{24} = 0.25\)
 - Much higher than architectural vertical balance \(\Longrightarrow\) unavoidably bandwidth bound along vertical direction

- Maximum (over all nodes) required horizontal words/flops \(\leq \frac{\sqrt[3]{N_{\text{nodes}}}}{2n}\)
 - Lower than architectural horizontal balance for practical problem sizes
 \(\Longrightarrow\) Inter-node bandwidth not a bottleneck
Example: 3D-Jacobi method

- Overall computational ops. \(= 7n^3T \)
- Overall memory to LLC I/O \(\geq n^3T / (4^{3/2}S) \)
- Overall memory to LLC I/O \(\leq 14n^3T / (3^{3/2}S) \)
- Overall inter-node I/O \(\leq 12B^2T \times N_{nodes} \)
Example: 3D-Jacobi method

- Overall computational ops. = $7n^3T$
- Overall memory to LLC I/O $\geq n^3T/(4\sqrt[3]{2S})$
- Overall memory to LLC I/O $\leq 14n^3T/(\sqrt[3]{S})$
- Overall inter-node I/O $\leq 12B^2T \times N_{nodes}$

For $S = 0.75$ MWords,

- Lower bound on vertical words/flops: 3×10^{-4}
- Upper bound on vertical words/flops: 0.022
 - Not necessarily bandwidth constrained along vertical direction
- Upper bound on horizontal words/flops: $1.714\sqrt[3]{N_{nodes}/n}$
 - Not bandwidth constrained along horizontal direction
Example: 3D-Jacobi method

- Overall computational ops. $= 7n^3T$
- Overall memory to LLC I/O $\geq \frac{n^3T}{(4^3\sqrt{2}S)}$
- Overall memory to LLC I/O $\leq 14n^3T/(3\sqrt{S})$
- Overall inter-node I/O $\leq 12B^2T \times N_{nodes}$

For $S = 0.75$ MWords,

- Lower bound on vertical words/flops: 3×10^{-4}
- Upper bound on vertical words/flops: 0.022
 - Not necessarily bandwidth constrained along vertical direction
- Upper bound on horizontal words/flops: $1.714\frac{3\sqrt{N_{nodes}}}{n}$
 - Not bandwidth constrained along horizontal direction

Jacobi might be an attractive alternative to CG on future machines despite slower convergence rate
Thank you