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ABSTRACT

In mixtures of pitched sounds, the problem of overlapping
harmonics poses a significant challenge to monaural musi-
cal sound separation systems. In this paper we present a
new algorithm for sinusoidal parameter estimation of over-
lapping harmonics for pitched instruments. Our algorithm is
based on the assumptions that harmonics of the same source
have correlated amplitude envelopes and the phase change
of harmonics can be accurately predicted from an instru-
ment’s pitch. We exploit these two assumptions in a least-
squares estimation framework to resolve overlapping har-
monics. This new algorithm is incorporated into a separa-
tion system and quantitative evaluation shows that the re-
sulting system performs significantly better than an existing
monaural music separation system for mixtures of harmonic
instruments.

1 INTRODUCTION

Musical sound separation attempts to isolate the sound of
individual instruments in a polyphonic mixture. In recent
years this problem has attracted significant attention as the
demand for automatic analysis, organization, and retrieval
of a vast amount of online music data has exploded. A so-
lution to this problem allows more efficient audio coding,
more accurate content-based analysis, and more sophisti-
cated manipulation of musical signals [1]. In this paper, we
address the problem of monaural musical sound separation,
where multiple harmonic instruments are recorded by a sin-
gle microphone or mixed to a single channel.

A well known difficulty in music separation arises when
the harmonics of two or more pitched instruments have fre-
quencies that are the same or similar. Since Western music
favors the twelve-tone equal temperament scale [2], com-
mon musical intervals have pitch relationships very close to
simple integer ratios (≈3/2, 4/3, 5/3, 5/4, etc.). As a conse-
quence, a large number of harmonics of a given source may
be overlapped with another source in a mixture.

When harmonics overlap, the amplitude and phase of in-
dividual harmonics become unobservable. To recover an
overlapped harmonic, it has been assumed that the ampli-

tudes of instrument harmonics decay smoothly as a function
of frequency [3]. Based on this assumption, the amplitude
of an overlapped harmonic can be estimated from the ampli-
tudes of neighboring non-overlapped harmonics of the same
source. For example, Virtanen and Klapuri [4] estimated
an overlapped harmonic through non-linear interpolation of
neighboring harmonics. Every and Szymanski [5] used lin-
ear interpolation instead. Recently, Virtanen [1] proposed
a system which directly imposes spectral smoothness by
modeling the amplitudes of harmonics as a weighted sum
of fixed basis functions having smooth spectral envelopes.
However, for real instrument sounds, the spectral smooth-
ness assumption is often violated (see Figure 1). Another
method of dealing with overlapping harmonics is to use in-
strument models that contain the relative amplitudes of har-
monics [6]. However, models of this nature have limited
success due to the spectral diversity in recordings of differ-
ent notes, different playing styles, and even different builds
of the same instrument type.

Although in general, the absolute value of a harmonic’s
amplitude with respect to its neighboring harmonics is diffi-
cult to model, the amplitude envelopes of different harmon-
ics of the same source exhibit similar temporal dynamics.
This is known as common amplitude modulation (CAM)
and it is an important organizational cue in human audi-
tory perception [7] and has been used in computational au-
ditory scene analysis [8]. Although CAM has been utilized
for stereo music separation [9, 10], to our knowledge, this
cue has not been applied in existing monaural systems. In
this paper we demonstrate how CAM can be used to resolve
overlapping harmonics in monaural music separation.

Many existing monaural music separation systems oper-
ate only in the amplitude/magnitude domain [5, 6, 11, 12].
However, the relative phase of overlapping harmonics plays
a critical role in the observed amplitude of the mixture and
must be considered in order to accurately recover the ampli-
tudes of individual harmonics. We will show that the phase
change of each harmonic can be accurately predicted from
the signal’s pitch. When this and the CAM observation are
combined within a sinusoidal signal model, both the ampli-
tude and phase parameters of overlapping harmonics can be
accurately estimated.

538



ISMIR 2008 – Session 4c – Automatic Music Analysis and Transcription

This paper is organized as follows. Section 2 presents the
sinusoidal model for mixtures of harmonic instruments. In
Section 3 we justify the CAM and phase change prediction
assumptions and propose an algorithm where these assump-
tions are used in a least-squares estimation framework for
resolving overlapping harmonics. In Section 4 we present
a monaural music separation system which incorporates the
proposed algorithm. Section 5 shows quantitative evalua-
tion results of our separation system and Section 6 provides
a final discussion.

2 SINUSOIDAL MODELING

Modeling a harmonic sound source as the summation of in-
dividual sinusoidal components is a well established tech-
nique in musical instrument synthesis and audio signal pro-
cessing [13, 14]. Within an analysis frame m where sinu-
soids are assumed constant, the sinusoidal model of a mix-
ture consisting of harmonic sounds can be written as

xm(t) =
∑

n

Hn∑

hn=1

ahn
n (m)cos(2πfhn

n (m)t + φhn
n (m)),

(1)
where ahn

n (m), fhn
n (m), and φhn

n (m) are the amplitude,
frequency, and phase of sinusoidal component hn, respec-
tively, of source n at time frame m. Hn denotes the number
of harmonics in source n. The sinusoidal model of xm(t)
can be transformed to the spectral domain by using the dis-
crete Fourier transform (DFT). With an appropriately cho-
sen time-domain analysis window (in terms of frequency
resolution and sidelobe suppression), and assuming perfect
harmonicity, the spectral value of xm(t) at frequency bin k
can be written as

X(m, k) =
∑

n

Shn
n (m)W (kfb − hnFn(m)). (2)

Here, W is the complex-valued DFT of the analysis win-
dow, fb is the frequency resolution of the DFT, and Fn(m)
denotes the pitch of source n at time frame m. We call
Shn

n (m) the sinusoidal parameter of harmonic hn of source
n, where Shn

n (m) = ahn
n (m)

2 eiφhn
n (m). As a proof of con-

cept, we further assume that pitches of individual sources
are known.

3 RESOLVING OVERLAPPING HARMONICS

Given ground truth pitches of each source, one can identify
non-overlapped and overlapped harmonics. When a har-
monic of a source is not overlapped, the estimation of the
sinusoidal parameter, Shn

n (m), from observed spectral val-
ues, X(m, k), in corresponding frequency bins is straight-
forward (see Section 4). However, when harmonics from
different sources overlap, finding Shn

n (m) for each active
harmonic is an ill-defined problem. To address this, we
make use of non-overlapped harmonics of the same source
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Figure 1. Logarithm of the amplitude envelopes for the first
20 harmonics of a clarinet playing a G#.
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Figure 2. Box plots of correlation coefficient between dif-
ferent harmonics of the same source. Results are calculated
using 40 five second instrument performances, with correla-
tion calculated for each note of each performance.

as well as the phase change estimated from the pitch infor-
mation.

3.1 Common Amplitude Modulation (CAM)

CAM assumes that the amplitude envelopes of sinusoidal
components from the same source are correlated. Figure 1
shows the envelopes of the first 20 harmonics of a clarinet
tone. We can see that in this case the CAM assumption holds
while the spectral smoothness assumption does not. As fur-
ther support for the CAM assumption, we calculated the cor-
relation coefficient between the strongest harmonic of an in-
dividual instrument tone with other harmonics in the same
tone as a function of difference in amplitude. The ampli-
tude envelope of each harmonic was calculated by predict-
ing each harmonic’s frequency from the ground truth pitch
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Figure 3. True and predicted phase change for harmonic 1
from a five second excerpt of a flute recording.

and using the approach described in Section 4 for param-
eter estimation of non-overlapped harmonics (since every
harmonic in a performance by a single instrument is non-
overlapped).

Figure 2 shows box plots of the results obtained using
40 five second instrument performances with the correlation
calculated for each note of each performance. The upper
and lower edges of each box represent the upper and lower
quartile ranges, the middle line shows the median value and
the whiskers extend to the extent of the sample. For clar-
ity, outliers are excluded from the plot. We can see that the
correlation is high for harmonics with energy close to that
of the strongest harmonic and tapers off as the energy in the
harmonic decreases. This suggests that the amplitude enve-
lope of an overlapped harmonic could be approximated from
the amplitude envelopes of non-overlapped harmonics of the
same source. Since the low-energy harmonics do not have a
strong influence on the perception of a signal, the decreased
correlation between the strongest harmonic and lower en-
ergy harmonics does not significantly degrade performance.

3.2 Predicting Phase Change using Pitch

According to the sinusoidal model in the time domain (see
Equation (1)), the phase of a sinusoid at frame m + 1 is
related to the phase at frame m by

φhn
n (m + 1) = 2πhnFn(m)T + φhn

n (m), (3)

where T denotes the frame shift in seconds. Equivalently
we can write

∆φhn
n (m) = 2πhnFn(m)T. (4)

Therefore the phase change can be predicted from the pitch
of a harmonic source. Figure 3 shows the phase change be-
tween successive time frames as measured from the first har-
monic of a flute recording, and the predicted phase change
using the true pitch of the signal. The predicted phase from
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Figure 4. Box plots of phase change prediction error as a
function of harmonic number. Results are calculated using
40 five second instrument performances, with error (in radi-
ans) calculated as absolute difference between true change
in phase from frame m to m + 1 and predicted change in
phase for frame m.

Equation (4) is wrapped to [−π, π]. This example clearly
shows that the phase change of a harmonic component can
be accurately predicted from the pitch.

In Figure 4 we show box plots of the error between the
true phase change of a harmonic component and the pre-
dicted phase change of a harmonic component as a function
of harmonic number. The results are taken over the same
performances as in Figure 2. As can be seen, for lower-
numbered harmonics, the predicted phase change matches
well to the true changes.

3.3 Estimating Amplitudes and Phases of Overlapped
Harmonics

Using the amplitude envelope and phase change informa-
tion, we can express the sinusoidal parameter of harmonic
hn, Shn

n (m), in terms of a reference time frame m0 as fol-
lows:

Shn
n (m) = Shn

n (m0)rhn
m0→mei

∑ m
l=m0

∆φhn
n (l). (5)

Here, rhn
m0→m = ahn

n (m)

ahn
n (m0)

is the amplitude scaling factor
between frames m0 and m for harmonic hn. The discussion
in Section 3.1 suggests that the scaling factor of harmonic
hn can be approximated from the scaling factor of another

harmonic of source n, i.e., rhn
m0→m ≈ r

h∗
n

m0→m = a
h∗

n
n (m)

a
h∗

n
n (m0)

,

where h∗
n is a non-overlapped harmonic with strong energy.

As discussed in Section 3.2, the phase change of harmonic
hn can be predicted using the pitch Fn(m). If we write

Rn(m, k) = r
h∗

n
m0→mei

∑ m
l=m0

∆φhn
n (l)W (kfb − hnFn(m)),

(6)
then Equation (2) becomes

X(m, k) =
∑

n

Rn(m, k)Shn
n (m0). (7)
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If harmonics from different sources overlap in a time-
frequency (T-F) region with time frames from m0 to m1 and
frequency bins from k0 and k1, we can write Equation (7)
for each T-F unit in the region and the set of equations can
be represented as

X = RS, (8)
where,

X =





X(m0, k0)
...

X(m0, k1)
...

X(m1, k1)




, (9)

R =





R1(m0, k0) . . . RN (m0, k0)
...

...
R1(m0, k1) . . . RN (m0, k1)

...
...

R1(m1, k1) . . . RN (m1, k1)




, and (10)

S =




Sh1

1 (m0)
...

ShN
N (m0)



 . (11)

The coefficient matrix R is constructed according to Equa-
tion (6) for each T-F unit. X is a vector of the observed
spectral values of the mixture in the overlapping region. We
seek a solution for S to minimize the sum of squared error

J = (X − RS)H(X − RS). (12)

The least-squares solution is given by

S = (RHR)−1RHX, (13)

where H denotes conjugate transpose. After Shn
n (m0) is

estimated for each of the sources active in the overlapping
region, we use Equation (5) to calculate Shn

n (m) for all m ∈
[m0,m1].

Figure 5 shows the effectiveness of the proposed algo-
rithm in recovering two overlapping harmonics for two in-
struments. In this case, the third harmonic of the first source
overlaps with the fourth harmonic of the second source. Fig-
ure 5(c) shows the magnitude spectrum of the mixture in the
overlapping region. Note that the amplitude modulation re-
sults from the relative phase of the two harmonics. The es-
timated magnitude spectra of the two harmonics are shown
in Figure 5(d) and (e). For comparison, the magnitude spec-
tra of the two sources obtained from pre-mixed signals are
shown in Figure 5(a) and (b). It is clear that the estimated
magnitude spectra are very close to the true magnitude spec-
tra.

4 A MONAURAL MUSIC SEPARATION SYSTEM

We incorporate the proposed algorithm into a monaural mu-
sic separation system to evaluate its effectiveness. The dia-
gram of the system is shown in Figure 6. The input to the
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Figure 5. LS estimation of overlapped harmonics. (a) The
magnitude spectrum of a harmonic of the first source in the
overlapping T-F region. (b) The magnitude spectrum of a
harmonic of the second source in the same T-F region. (c)
The magnitude spectrum of the mixture at the same T-F
region. (d) The estimated magnitude spectrum of the har-
monic from the first source. (e) The estimated magnitude
spectrum of the harmonic from the second source.

system is a polyphonic mixture and pitch contours of indi-
vidual sources. As mentioned previously, we use ground
truth pitch estimated from the clean signals for each source.
In the harmonic labeling stage, the pitches are used to iden-
tify overlapping and non-overlapping harmonics.

To formalize the notion of overlapping harmonics, we
say that harmonics hn1 and hn2 for sources n1 and n2, re-
spectively, overlap when their frequencies are sufficiently
close, |fhn1

n1 (m) − f
hn2
n2 (m)| < θf . If one assumes the sig-

nals strictly adhere to the sinusoidal model, the bandwidth
of W determines how many frequency bins will contain en-
ergy from a sinusoidal component and one can set an ampli-
tude threshold to determine θf .

For non-overlapped harmonics, sinusoidal parameters are
estimated by minimizing the sum of squared error between
the mixture and the predicted source energy,

J =
∑

k∈Khn
n (m)

|X(m, k)−W (kfb − hnFn(m))Shn
n (m)|2,

(14)
where Khn

n (m) is the set of frequency bins associated with
harmonic hn in frame m. The solution is given by:

Shn
n (m) =

∑
k∈Khn

n (m) X(m, k)W (hFn(m) − kfb)
∑

k∈Khn
n (m) |W (hFn(m) − kfb)|2

.

(15)
As described in Section 3.3, we utilize the amplitude en-

velope of non-overlapped harmonics to resolve overlapping
harmonics. Since the envelope information is sequential,

541



ISMIR 2008 – Session 4c – Automatic Music Analysis and Transcription

Figure 6. System diagram

we resolve overlapped hn for time frames [m0,m1] using
a non-overlapped harmonic h∗

n. To determine appropriate
time frames for this processing, we first identify sequences
of time frames for which a harmonic hn is overlapped with
one or more other harmonics. If the pitch of any of the
sources contributing to the overlapping region changes, we
break the sequence of frames into subsequences. Given a
sequence of frames, we choose the strongest harmonic for
each source that is unobstructed in the entire sequence as
h∗

n. We use θf to determine the bin indices, [k0, k1], of the
overlapping region.

For each overlapping region, we perform least-squares
estimation to recover the sinusoidal parameters for each in-
strument’s harmonics. To utilize the mixture signal as much
as possible, we estimate the source spectra differently for
the overlapped and non-overlapped harmonics. For all non-
overlapped harmonics, we directly distribute the mixture en-
ergy to the source estimate,

Ŷ no
n (m, k) = X(m, k) ∀k ∈ Khn

n (m). (16)

For the overlapped harmonics, we utilize the sinusoidal
model and calculate the spectrogram using

Ŷ o
n (m, k) = Shn

n (m)W (kfb − fhn
n (m)). (17)

Finally, the overall source spectrogram is Ŷn = Ŷ no
n + Ŷ o

n
and we use the overlap-add technique to obtain the time-
domain estimate, ŷn(t), for each source.

5 EVALUATION

5.1 Database

To evaluate the proposed system, we constructed a database
of 20 quartet pieces by J. S. Bach. Since it is difficult to
obtain multi-track recordings, we synthesize audio signals
from MIDI files using samples of individual notes from the
RWC music instrument database [15]. For each line se-
lected from the MIDI file, we randomly assign one of four
instruments: clarinet, flute, violin or trumpet. For each note
in the line, a sample with the closest average pitch is se-
lected from the database for the chosen instrument. We cre-
ate two source mixtures (using the alto and tenor lines from
the MIDI file) and three source mixtures (soprano, alto and
tenor), and select the first 5-seconds of each piece for eval-
uation. All lines are mixed to have equal level, thus lines in

SNR improvement
Virtanen (2 sources, 2006) 11.1 dB
Proposed System (2 sources) 14.5 dB
Proposed System (3 sources) 14.7 dB

Table 1. SNR improvement

the two instrument mixtures have 0 dB SNR and those in the
three instrument mixtures have roughly -3 dB SNR. Details
about the synthesis procedure can be found in [16]. Admit-
tedly, audio signals generated in this way are a rough ap-
proximation of real recordings, but they show realistic spec-
tral and temporal variations.

5.2 Results

For evaluation we use the signal-to-noise ratio (SNR),

SNR = 10 log10

∑
t y2(t)∑

t(ŷ(t) − y(t))2
, (18)

where y(t) and ŷ(t) are the clean and the estimated instru-
ment signals, respectively. We calculate the SNR gain af-
ter separation to show the effectiveness of the proposed al-
gorithm. In our implementation, we use a frame length of
4096 samples with sampling frequency 44.1 kHz. No zero-
padding is used in the DFT. The frame shift is 1024 samples.
We choose θf = 1.5fb, one and half times the frequency
resolution of the DFT. The number of harmonics for each
source, Hn, is chosen such that fHn

n (m) < fs

2 for all time
frames m, where fs denotes the sampling frequency.

Performance results are shown in Table 1. The first row
of the table is the SNR gain for the two source mixtures
achieved by the Virtanen system [1], which is also based
on sinusoidal modeling. At each frame, this approach uses
pitch information and the least-squares objective to simulta-
neously estimate the amplitudes and phases of the harmon-
ics of all instruments. A so-called adaptive frequency-band
model is used to estimate the parameters of overlapped har-
monics. To avoid inaccurate implementation of this system,
we asked the author to provide separated signals for our set
of test mixtures. The second row in Table 1 shows the SNR
gain achieved by our system. On average, our approach
achieved a 14.5 dB SNR improvement, 3.4 dB higher than
the Virtanen system. The third row shows the SNR gain of
our system on the three source mixtures. Note that all results
were obtained using ground truth pitches. Sound demos of
the our separation system can be found at: www.cse.ohio-
state.edu/∼woodrufj/mmss.html

6 DISCUSSION AND CONCLUSION

In this paper we have proposed an algorithm for resolving
overlapping harmonics based on CAM and phase change
estimation from pitches. We incorporate the algorithm in a
separation system and quantitative results show significant
improvement in terms of SNR gain relative to an existing
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monaural music separation system. In addition to large in-
creases in SNR, the perceptual quality of the separated sig-
nals is quite good in most cases. Because reconstruction of
overlapped harmonics is accurate and we utilize the mixture
for non-overlapped harmonics, the proposed system does
not alter instrument timbre in the way that synthesis with
a bank of sinusoids can. A weakness of the proposed ap-
proach is the introduction of so-called musical noise as per-
formance degrades. One aspect of future work will be to
address this issue and create higher quality output signals.

In this study we assume that the pitches of sources are
known. However, for practical applications, the true pitches
of sources in a mixture are not available and must be esti-
mated. Since our model uses pitch to identify overlapped
and non-overlapped harmonics and pitch inaccuracy affects
both the least-squares estimation and phase change predic-
tion, good performance is reliant on accurate pitch estima-
tion. We are currently investigating methods that relax the
need for accurate prior knowledge of pitch information. Pre-
liminary results suggest that performance similar to the Vir-
tanen system using ground truth pitch can still be achieved
by our approach even with prior knowledge of only the num-
ber of sources (when combining our system with multi-pitch
detection) or rough pitch information (as provided by MIDI
data).
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