
Parameter-free Topology Inference and

Sparsification of Data on Manifolds

Tamal K. Dey

Department of Computer Science and Engineering
The Ohio State University

Januray, 2017

Joint work with Zhe Dong and Yusu Wang

(SODA, Barcelona) Parameter-Free Topo January 2017 1 / 23



Surface Reconstruction

Crust, Cocone are parameter-free
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Point cloud→Complex→Homology inference

Figure: Point cloud
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Point cloud→Complex→Homology inference

Figure: Point cloud Figure: Rips complex
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Point cloud→Complex→Homology inference

Figure: Point cloud Figure: Rips complex Figure: Loops
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Rips complex Rα(P ): parameter α
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Sample density

Globally uniform sample

- Estimate α by NN distance
- Works, but stringent

requirement
- Assume dense wrt smallest

feature size ρ and assume
parameter α << ρ

Locally dense sample

- Sample density varies with
“local” feature size

- How to estimate α
- Worse, there may not exist a

‘global’ α;
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Difficulty with global α for locally dense sampling
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Adaptive α

Goal:
compute a function f : P → R bounded by ‘lfs’ and ‘wfs’

adjust sample density following f =⇒ sparsification
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Data Sparsification

P ⊂M ⊂ Rd, a dense discrete sample of a manifold.

Compute Q ⊂ P so that

. |Q| << |P | and ‘locally uniform’

. topology of M can still be inferred from Q
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Local feature size
Medial axis A := A(M)

Local feature size lfs(x) := d(x,A);

Locally ε-dense sample P [ABE 1998]
I ∀x ∈M, ∃p ∈ P such that d(x, p) ≤ ε · lfs(x);
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Weak feature size

Distance function d : Rk → R, d(x) = d(x,M)

Critical points of d where the gradient vanishes [Grove’93]

Offset topology changes at critical points
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Weak feature size

CM : set of critical points of d

Local weak feature size lwfs(x) := d(x,CM)

Weak feature size

wfs(M) := inf
x∈M

lwfs(x) [CL06]
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Locally uniform sample

Definition
Q is δ-sparse ε-dense sample wrt f :M→ R if

∀x ∈M, ∃q ∈ Q, d(x, q) ≤ εf(x)

for any q, s ∈ Q, one has d(q, s) ≥ δf(q)

Ideal would be to have f ∈ {lfs, lwfs}
Computing lfs(·) or lwfs(·) from P is difficult

Introduce Lean-set feature size f = Lnfs
I which can be computed efficiently
I also satisfies ∀x ∈M, c1 · lfs(x) ≤ Lnfs(x) ≤ c2 · lwfs(x)
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Lean set

Definition
A pair (p, q) ∈ P × P is β-good if

max{∠(Np, pq),∠(Nq, pq)} ≤ π
2
− β

the ball B
(
p+q
2
, cβd(p, q)

)
contains no point from P

I where cβ = 1
3 tanβ.
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Lean set

Definition
Given P ⊂M, the β-lean set is:

Lβ := {midpoint p+q
2
| (p, q) is β − good}

Lβ can be approximated with a set of O(n) size

(SODA, Barcelona) Parameter-Free Topo January 2017 14 / 23



Lean set

Definition
Given P ⊂M, the β-lean set is:

Lβ := {midpoint p+q
2
| (p, q) is β − good}

Lβ can be approximated with a set of O(n) size

(SODA, Barcelona) Parameter-Free Topo January 2017 14 / 23



Lean set

Definition
Given P ⊂M, the β-lean set is:

Lβ := {midpoint p+q
2
| (p, q) is β − good}

Lβ can be approximated with a set of O(n) size

(SODA, Barcelona) Parameter-Free Topo January 2017 14 / 23



Lean set

Definition
Given P ⊂M, the β-lean set is:

Lβ := {midpoint p+q
2
| (p, q) is β − good}

Lβ can be approximated with a set of O(n) size

(SODA, Barcelona) Parameter-Free Topo January 2017 14 / 23



Lean-set feature size

Definition
For any x ∈M, the Lean-set feature size is:

Lnfsβ(x) := d(x, Lβ)
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Approximation by Lnfs
P is an locally ε-dense sample of M

I That is, P ⊂M and for any x ∈M, d(x, P ) ≤ ε · lfs(x)

Theorem (Approximation)

Given a local ε-dense sample ofM, for any x ∈M, one has:

c1 · lfs(x) ≤ Lnfsβ(x) ≤ c2 · lwfs(x)

• c1, c2 depend on β and ε
• In particular, β close to π

4
works for ε small enough
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Sparsification using Lnfs

Lβ: computed lean set; Lnfsβ(p) := d(p, Lβ)

δ: sparsification constant (can be chosen to depend only on β)

Lean(P , β,δ) by iterative deletions
I Put each p ∈ P in max priority queue with priority Lnfsβ(p)
I While (queue not empty)

F q ← Extractmax(queue);
F Q← Q ∪ {q};
F delete p from queue if d(p, q) ≤ δ · Lnfsβ(p)
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Sparsification

Theorem (Sparsification)

Given a local ε-dense sample P ⊂M, the Lean(P ,β,δ) computes a
δ-sparse, 4

3
δ-dense sample Q ⊂ P wrt Lnfsβ(·).

126500 points 6016 points
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Homology inference by scaled distance

Define scaled distance h(x) := d(x,M)
d(x,M)+Lnfsβ(x)

Offset wrt h: Mα := h−1[0, α]

Pα := ∪p∈PB(p, αLnfsβ));

Proposition

If P is a δ-dense wrt Lnfsβ(·), then for α > 0

M α
1+2α
⊆ Pα+δ+αδ ⊆Mα+δ+αδ
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Homology inference by scaled distance

Define Cα(P ): nerve of Pα (adaptive Čech wrt Lnfsβ(·))

Proposition

For β < θ < π
4
, α + δ ≤ 1

3
cos 2θ

1+cos 2θ
, and P a δ-dense sample wrt

Lnfsβ(·), one has:

im
(
Hi(C

α+δ(P ))→ Hi(C
3(α+δ)(P ))

) ∼= Hi(M)

Adaptive Rips
Rα(P ) := {σ | d(p, q) ≤ α ·

(
Lnfsβ(p) + Lnfsβ(q)

)
}

Interleaving: Cα(P ) ⊆ Rα(P ) ⊆ C2α(P )
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Homology inference

Theorem

β = π
5
, δ = 1

26
cos 2β

1+cos 2β

Q ⊆ P be δ-sparse, 4
3
δ-dense wrt Lnfsβ(·) where P ⊂M is

locally ε-dense

Then, im
(
Hi(R

2δ(Q))→ Hi(R
12δ(Q))

) ∼= Hi(M)

Compute Q by Lean(P, β, δ)

Compute persistence Hi(R
2δ(Q))→ Hi(R

12δ(Q)) where
Rα(P ) := {σ | d(p, q) ≤ α ·

(
Lnfsβ(p) + Lnfsβ(q)

)
}

Each q ∈ Q has O(1) neighbors, so complex size linear in |Q|
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Open questions

. Extending lean-set based sparsification to noisy data?

. What about non-manifolds?

. Potential use in topological data analysis.
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Thank you !
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