A Simple Algorithm for Homeomorphic Surface Reconstruction

Nina Amenta * Sunghee Choi † Tamal K. Dey ‡ Naveen Leekha §

Abstract

The problem of computing a piecewise linear approximation to a surface from a set of sample points is important in solid modeling, computer graphics and computer vision. A recent algorithm [1] using the Voronoi diagram of the sample points gave a guarantee on the distance of the output surface from the original sampled surface assuming that the sample was sufficiently dense. We give a similar algorithm, simplifying the computation and the proof of the geometric guarantee. In addition, we guarantee that our output surface is homeomorphic to the original surface; to our knowledge this is the first such topological guarantee for this problem.

1 Introduction

A number of applications in CAD, computer graphics, computer vision and mathematical modeling involve the computation of a piecewise lin-
algorithms.

Clearly, it is not possible to compute a surface that is faithful to the topology and geometry of the original unless the sampling is sufficiently dense, so any such analysis must include some assumption about the sampling density. Amenta and Bern [1] assumed that the distance between samples is proportional to the distance to the medial axis, and presented a surface reconstruction algorithm based on Voronoi diagrams. They proved that the output of their algorithm, the crust, is close to the surface S, under the assumption that S is a smooth (twice-differentiable) 2-manifold without boundary and that the sampling meets their assumption. Their algorithm uses two passes of Voronoi diagram computation, and also two postprocessing steps, called normal filtering and trimming. In this paper, we give a simpler, single-pass Voronoi-based algorithm, and eliminate the normal filtering step. Amenta and Bern [1] did not prove that the crust is homeomorphic to S. In this paper, we present the first such proof.

Our algorithm is based on the following structural theorem. Let T be a set of triangles satisfying three conditions:

I. T contains all triangles whose dual Voronoi edges intersect S,

II. each triangle in T is small, that is, the radius of its circumcircle is much smaller than the distance to the medial axis at its vertices, and

III. all triangles in T are "flat", that is, the triangle normals make small angles with the surface normals at their vertices.

Assuming again that S is smooth and the sampling is sufficiently dense, condition I ensures that T contains a piecewise-linear manifold homeomorphic to S. Using conditions II and III we show that any piecewise-linear 2-manifold N extracted from T which spans all the sample points and for which every adjacent pair of triangles meets at an obtuse angle must be homeomorphic to S.

We compute T by filtering triangles from the Delaunay triangulation as follows. Let p be a sample point and let e be a Voronoi edge in the Voronoi cell of p. We can estimate the surface normal at p by the vector from p to the farthest Voronoi vertex in the Voronoi cell of p as shown in [1]. We then determine if e has a point x, where px makes an angle close to $\pi/2$ with the estimated normal at the sample point p. If this condition is satisfied for all three Voronoi cells adjacent to e, its dual is included in the candidate set T. We prove that T satisfies conditions I, II and III and that an acceptable piecewise-linear manifold N can be selected from T by the manifold extraction step of [1]. Thus, in theory, our algorithm produces a piecewise-linear manifold. Unfortunately in the usual case in which the required sampling assumptions are not met, this manifold extraction step is not particularly robust. Instead of implementing the manifold extraction step as described in [1], we implement a heuristic which gives reasonable results in practice.

After some definitions and preliminaries in Section 2, we will describe the algorithm in detail in Section 3; our implementation is described later in Section 7. We prove in Section 4 that T satisfies conditions I, II and III, and in Section 5 we derive some additional geometric consequences of these conditions. In Section 6 we show a homeomorphism between the output and the original surface. Sections 4, 5 and 6 will therefore establish that the output of our algorithm is both geometrically and topologically correct.

2 Definitions and Preliminaries

We assume that surface S is a smooth manifold without boundary, embedded in \mathbb{R}^3. We adopt the following definition of sampling density from [1],[2].
Medial axis and \(\epsilon \)-sampling

The \textit{medial axis} of a surface \(S \) in \(\mathbb{R}^3 \) is the closure of the set of points which have more than one closest point on \(S \). The \textit{local feature size}, \(f(p) \), at point \(p \in S \) is the least distance of \(p \) to the medial axis. The maximal balls tangent to \(S \) at \(p \) are centered on points of the medial axis; call these the \textit{medial balls} at \(p \). Notice that \(f(p) \) is not necessarily the same as the radius of the medial balls at \(p \). A very useful property of \(f(\cdot) \) is that it is 1-Lipschitz, that is, \(f(p) \leq f(q) + |pq| \) for any two points \(p, q \) on \(S \). A point set \(P \) is called an \(\epsilon \)-sample of a surface \(S \) if every point \(p \in S \) has a sample within distance \(\epsilon f(p) \).

Main theorem

Given these definitions, we can state formally the main theorem of this paper.

Theorem 1 Let \(P \) be an \(\epsilon \)-sample for a smooth surface \(S \), with \(\epsilon \leq 0.06 \). Our algorithm computes a piecewise-linear 2-manifold \(N \) homeomorphic to \(S \), such that any point on \(N \) is at most \(\frac{1.15 \epsilon}{\epsilon} f(x) \) from some point \(x \in S \).

This proof of homeomorphism between \(N \) and \(S \) follows from Theorem 19 and the geometric closeness between \(N \) and \(S \) follows from Theorem 10.

Restricted Delaunay triangulation

We assume that the input sample \(P \in \mathbb{R}^3 \) is in general position; in practice most Delaunay triangulation codes simulate general position, so this is not unreasonable. Let \(D_P \) and \(V_P \) denote the Delaunay triangulation and the Voronoi diagram of \(P \). A Voronoi cell \(V_p \subset V_P \) for each point \(p \in P \) is defined as the set of points \(x \in \mathbb{R}^3 \) such that \(|px| \leq |qx| \) for any \(q \in P \) and \(q \neq p \). The Delaunay triangulation \(D_P \) has an edge \(pq \) if and only if \(V_p, V_q \) share a face, has a triangle \(pqr \) if and only if \(V_p, V_q, V_r \) share an edge, and a tetrahedron \(pQRS \) if and only if \(V_p, V_q, V_r, \) and \(V_s \) share a Voronoi vertex.

Consider the restriction of \(V_P \) to the surface \(S \). This defines the \textit{restricted Voronoi diagram} \(V_{PS} \), with \textit{restricted Voronoi cells} \(V_{PS} = V_P \cap S \). The dual of these restricted Voronoi cells defines the \textit{restricted Delaunay triangulation} \(D_{PS} \). Specifically, an edge \(pq \) is in \(D_{PS} \) if and only if \(V_{PS} \cap V_{PS} \) is nonempty; a triangle \(pqr \) is in \(D_{PS} \) if and only if \(V_{PS} \cap V_{PS} \cap V_{RS} \) is nonempty. Assuming that \(P \) is in general position with respect to \(S \), \(S \) does not pass through a Voronoi vertex, so there is no tetrahedron in \(D_{PS} \). Edelsbrunner and Shah [15] showed that the underlying space of \(D_{PS} \) is homeomorphic to \(S \) if the following \textit{closed ball property} holds: each \(V_{PS} \) is a topological 2-ball, each nonempty pairwise intersection \(V_{PS} \cap V_{QS} \) is a topological 1-ball, and each nonempty triple intersection \(V_{PS} \cap V_{QS} \cap V_{RS} \) is a single point, that is, a 0-ball. Amenta and Bern [1] used this result to show that if \(P \) is an \(\epsilon \)-sample of \(S \) with \(\epsilon \leq 0.1 \), then \(V_{PS} \) satisfies the closed ball property, and hence \(D_P \) contains the set \(D_{PS} \) of triangles forming a piecewise-linear manifold homeomorphic to \(S \).

Conditions for homeomorphism

Our algorithm selects a set of \textit{candidate triangles} \(T \) that satisfy the following three conditions.

I. \textbf{Restricted Delaunay condition.} The set of triangles includes the restricted Delaunay triangles.

II. \textbf{Small triangle condition.} The circumcircle of each triangle \(t \in T \) is small; specifically, its radius is \(\alpha f(p) \), where \(p \) is any vertex of \(t \) and \(c > 0 \) is a constant independent of \(\epsilon \).

III. \textbf{Flat triangle condition.} The normal to each \(t \in T \) makes a small angle \(\alpha \) with the surface normal at the vertex \(p \), where \(p \) is the vertex with the largest interior angle in \(t \) and \(c > 0 \) is a constant independent of \(\epsilon \).
3 Algorithm

Our algorithm selects the candidate triangles using cocones at each sample point, and then (at least in theory) extracts a piecewise-linear manifold from T.

![Diagram of cocones]

Figure 1: The cocone for a sample in two dimensions (left), and three dimensions (right). In the left the cocone is shaded, in the right its boundary is shaded.

Cocones

The normal to S at each sample point is estimated using “poles”, which were introduced in [1]. For each Voronoi cell V_p, the Voronoi vertex farthest from the sample point p is taken as a pole. The line through p and its pole is almost normal to S and is called the estimated normal line at p; see Figure 1. For an angle θ, we define a cone-complement — the cocone at p — as the complement of the double cone with apex p making an angle of $\pi/2 - \theta$ with the axis that is aligned with the estimated normal line at p. We determine the set of Voronoi edges in V_p that intersect the cocones at all three of the sample points inducing the edge. The dual triangles of these edges form our candidate set T. We will argue that T satisfies conditions I, II and III for $\theta \leq \pi/8$.

Note that this is equivalent to the definition of T mentioned in the introduction. Any Voronoi edge e of a sample p which intersects the cocone at p must contain a point x such that the angle between the estimated normal line and the vector px is at least $\pi/2 - \theta$.

Computing T is absolutely straightforward. We first compute the Delaunay triangulation of P, and the Voronoi vertices dual to every tetrahedron, and we find the pole v_p of every sample point. Denote any ray from p to a point $y \in V_p$ as \tilde{y}. Let e be an edge in the Voronoi cell V_p, and let w_1, w_2 be its two endpoints. We compute $\angle w_1^*v_p^*$ and $\angle w_2^*v_p^*$ and check if the range of angles determined by these two angles intersects the desired range $[\pi/2-\theta, \pi/2+\theta]$. If it does, we mark e. We include a Delaunay triangle t in T if its dual edge e is marked by all three Voronoi cells adjacent to e.

Manifold extraction

For completeness, we review the manifold extraction step of the crust algorithm [1]. First, we delete all triangles incident to sharp edges. An edge is called sharp if the angle between any two consecutive triangles around the edge is more than $3\pi/2$. An edge with a single incident triangle is also sharp. Next, we extract the outer boundary N of the set of triangles by a depth-first walk along the outer boundary of each of its connected components. As mentioned earlier, we use a heuristic to implement the manifold extraction to deal with practical data that may not satisfy the sampling condition required by our theory.

4 Conditions

We use the following three lemmas from [1]. The first two establish that the vector from a sample to its pole estimates the normal at the sample.

Lemma 2 Let y be any point in V_p such that $|py| \geq \delta f(p)$ for $\delta > 0$. The acute angle between \tilde{y} and n_p is less than $\sin^{-1} \frac{\delta}{\delta(1-\epsilon)} + \sin^{-1} \frac{\epsilon}{1-\epsilon}$.

Here \sin^{-1} denotes the arcsin function. Using Lemma 2 and the fact that $|pv_p| > f(p)$ (recall that v_p is the pole of p), we can bound the deviation of v_p^* from the surface normal n_p.
Lemma 3 The acute angle between \(n_p \) and \(\vec{v}_p \) is less than \(2\sin^{-1}\frac{\epsilon}{\sqrt{2}} \).

We also use the following lemma [1], which establishes that, within a bounded region around \(p \), the surface normal is also a Lipschitz function.

Lemma 4 Let \(p, q \) be two points on \(S \) so that \(|pq| < \rho \min\{f(p), f(q)\} \) with \(\rho < 1/3 \). Then the angle between \(n_p \) and \(n_q \) is at most \(\frac{\rho}{1-3\rho} \) radians.

Restricted Delaunay condition

Condition I requires the restricted Delaunay triangles to be in \(T \). We begin with a technical observation, which says that the line segment connecting two points close together on \(S \) must be nearly parallel to the surface.

Observation 5 A line segment connecting two points \(x, x' \in S \), such that the distance \(|x, x'| \leq \epsilon f(x) \), with \(\epsilon \leq \sqrt{2} \), makes an acute angle with the surface normal \(n_x \) at \(x \) of at least \(\pi/2 - \sin^{-1}\epsilon/2 \).

This follows from the fact that \(x' \) must lie outside the two tangent balls of radius \(f(x) \) at \(x \).

Lemma 6 Let \(y \) be any point in the restricted Voronoi cell \(V_{p,S} \). The acute angle between \(n_p \) and \(\vec{y} \) is larger than \(\pi/2 - \epsilon \), for \(\epsilon < 0.1 \).

Proof. The distance \(|yp| \leq \epsilon f(y) \), since \(y \in V_{p,S} \) and \(P \) is an \(\epsilon \)-sample. By the Lipschitz condition \(f(y) \leq f(p) + |py| \leq \frac{f(y)}{\epsilon} \), and hence \(|py| \leq \epsilon f(y) \leq \frac{1}{\epsilon} f(p) \). We can therefore apply Observation 5.

We can now prove that \(T \) satisfies Condition I.

Theorem 7 All restricted Delaunay triangles are in \(T \), for \(\epsilon \leq 0.1 \) and \(\theta = \pi/8 \).

Proof. Let \(e \) be the dual edge of a restricted Delaunay triangle. Consider the point \(y = \epsilon n \). We have \(y \in V_{p,S} \) for each of the three points \(p \in P \) determining \(e \). For each such \(p \), the acute angle between \(n_p \) and \(\vec{y} \) is larger than \(\pi/2 - \epsilon \) by Lemma 6. Therefore \(\angle \vec{y}n \leq \pi/2 - \epsilon \), \(\alpha \) is the acute angle between \(\vec{v}_p \) and \(n_p \), and \(|px| < \frac{15\epsilon}{1-\epsilon} f(p) \) for \(\theta = \pi/8 \).

Small triangle condition

Now we show that \(T \) meets Condition II.

Lemma 8 Let \(x \) be any point in \(V_p \) so that the acute angle between \(\vec{x} \) and \(n_p \) is at least \(\frac{\pi}{2} - \theta - \frac{\epsilon}{2} \). Then \(|px| < \frac{15\epsilon}{1-\epsilon} f(p) \), for \(\theta = \pi/8 \) and \(\epsilon \leq 0.06 \).

Proof. If the angle between \(\vec{x} \) and \(n_p \) is at least \(\alpha = \sin^{-1}\frac{\epsilon}{\delta(1-\epsilon)} + \sin^{-1}\frac{\epsilon}{1-\epsilon} \), then \(|px| < \delta f(p) \) according to Lemma 2. With \(\delta = \frac{15\epsilon}{1-\epsilon} \) we have

\[
\alpha = \sin^{-1} \frac{1}{1.15} + \sin^{-1} \frac{\epsilon}{1-\epsilon}
\]

which is less than \(\pi/2 - \theta - 2\sin^{-1}\frac{\epsilon}{1-\epsilon} \) for \(\theta = \pi/8 \) and \(\epsilon \leq 0.06 \).

Lemma 9 Let \(p \) be a vertex of any triangle \(t \in T \). The radius of the smallest Delaunay ball of \(t \) is at most \(\frac{15\epsilon}{1-\epsilon} f(p) \) for \(\epsilon \leq 0.06 \) and \(\theta = \pi/8 \).

Proof. Let \(e \) be the dual edge of \(t \) and \(p \) any vertex of \(t \). By our choice of \(e \), there is a point \(x \in e \) so that \(\vec{x} \) makes an angle in the range \([\pi/2 - \theta, \pi/2 + \theta] \) with \(\vec{v}_p \). Taking into account the angle between \(\vec{v}_p \) and \(n_p \) we conclude that this ray makes an acute angle more than \(\pi/2 - \theta - 2\sin^{-1}\frac{\epsilon}{1-\epsilon} \) with \(n_p \). From Lemma 8, \(|px| < \frac{15\epsilon}{1-\epsilon} f(p) \) for \(\theta = \pi/8 \) and \(\epsilon \leq 0.06 \).

Theorem 10 Let \(r \) denote the radius of the circumcircle of any triangle \(t \in T \). Then, for each vertex \(p \) of \(t \), \(r \leq \frac{15\epsilon}{1-\epsilon} f(p) \) for \(\epsilon \leq 0.06 \) and \(\theta = \pi/8 \).
Proof. The radius of the smallest Delaunay ball, bounded in Lemma 9, is an upper bound on the radius of the circumcircle of t, which is centered at the intersection of the line containing e with the plane containing t.

Flat triangle condition

Here we show that T meets Condition III.

Theorem 11 The normal to any triangle $t \in T$ makes an acute angle of no more than $\alpha + \sin^{-1}(\frac{2}{\sqrt{3}} \sin 2\alpha)$ with n_p where p is the vertex subtending the largest interior angle of t, where $\alpha \leq \sin^{-1}\frac{11.5}{1-\epsilon}$ and $\epsilon \leq 0.06$.

Proof. Consider the medial balls M_1 and M_2 touching S at p with the centers on the medial axis. Let D be the ball with the circumcircle of t as a diameter; refer to Figure 2. The radius r of D is equal to the radius of the circumcircle of t. Denote the circles of interesection of D with M_1 and M_2 as C_1 and C_2 respectively. The normal to S at p passes through m, the center of M_1. This normal makes an angle less than α with the normals to the planes of C_1 and C_2, where

\[
\alpha \leq \sin^{-1} \frac{r}{|pm|} \leq \sin^{-1} \frac{1.15 \epsilon}{1-\epsilon}
\]

since $|pm| \geq f(p)$ by the definition of f and $r \leq \frac{1}{1-\epsilon} f(p)$ by Theorem 10. This angle bound also applies to the plane of C_2, which implies that the planes of C_1 and C_2 make a wedge, say W, with an acute dihedral angle no more than 2α.

The other two vertices q, s of t cannot lie inside M_1 or M_2. This implies that t lies completely in the wedge W. Consider a cone at p inside the wedge W formed by the three planes; π_t, the plane of t, π_1, the plane of C_1 and π_2, the plane of C_2. A unit sphere centered around p intersects the cone in a spherical triangle uvw, where u, v and w are the points of intersections of the lines $\pi_1 \cap \pi_2$, $\pi_1 \cap \pi_1$ and $\pi_1 \cap \pi_2$ respectively with the unit sphere. See the picture on right in Figure 2. Without the loss of generality, assume that the angle $\angle uvw \leq \angle uww$. We have the following facts. The arc length of uw, denoted $|uw|$, is at least $\pi/3$ since p subtends the largest angle in t and t lies completely in the wedge W. The spherical angle $\angle uww$ is less than or equal to 2α. We are interested in the spherical angle $\beta = \angle uvw$ which is also the acute dihedral angle between the planes of t and C_1. By standard sine laws in spherical geometry, we have $\sin \beta = \sin |uw| \frac{\sin \angle uww}{\sin |uw|} \leq \sin |uw| \frac{\sin 2\alpha}{\sin |uw|}$. If $\pi/3 \leq |uw| \leq 2\pi/3$, we have $\sin \pi/3 = \frac{1}{\sqrt{3}}$ and hence $\beta \leq \sin^{-1} \frac{2}{\sqrt{3}} \sin 2\alpha$.

For the range $2\pi/3 < |uw| < \pi$, we use the fact that $|uw| + |uw| \leq \pi$ since $\angle uvw \leq 2\alpha < \pi/2$ for sufficiently small ϵ. So, in this case $\frac{\sin |uw|}{\sin |uw|} < 1$. Thus, $\beta \leq \sin^{-1} \frac{2}{\sqrt{3}} \sin 2\alpha$.

The normals to t and S at p make an acute angle at most $\alpha + \beta$ proving the theorem.

The upper bound on the angle between the normal to t and n_p provided by this theorem is 14°; and the angle is $O(\epsilon)$.

![Figure 2: Normal to a small triangle and the normal to S at the vertex with the largest face angle.](image)
5 Geometric consequences

The preceding lemmas have told us a great deal about T. We know [1] that the restricted Delaunay triangulation is a piecewise-linear surface homeomorphic to S, when $\epsilon \leq 0.1$. Condition I ensures that T contains the restricted Delaunay triangulation.

Triangle interiors

Conditions II and III relate properties of each triangle $t \in T$ to the value of $f(\cdot)$ and the surface normal direction, respectively, at its vertices. Since the triangles are small, we can use the Lipschitz properties to show that similar properties hold at any point q in the interior of t. To define these properties, we map q to the nearest surface point. Let $\mu : \mathbb{R}^3 \rightarrow S$ map each point $q \in \mathbb{R}^3$ to the closest point of S. The restriction of μ to T is a well-defined function $\mu : T \rightarrow S$, since if some point q had more than one closest point on the surface, q would be a point of the medial axis; but by Theorem 10 every point $q \in T$ is within $\frac{1.15}{1-\epsilon} f(p)$ of a triangle vertex $p \in S$.

Lemma 12 Let q be any point on a triangle $t \in T$. The distance between q and and the point $x = \mu(q)$ is at most $0.088 f(x)$, for $\epsilon \leq 0.06$.

Proof. The circumsphere of t is small; the distance from q to the vertex p of t with largest angle is at most $2\delta f(p)$, with $\delta = \frac{1.15 \epsilon}{1-\epsilon} \leq 0.74$, by Theorem 10. Since there is a sample, namely, a vertex of t within $\delta f(p)$ from q, we have $|qx| \leq \delta f(p)$. We are interested in expressing this as a function of $f(x)$, so we need an upper bound on $|px|$.

The triangle vertex p has to lie outside the tangent ball at x, while, since x is the nearest surface point to q, q must lie on the segment between x and the center of this tangent ball. For any fixed $|pq|$, these facts imply that $|px|$ is maximized when the angle pqx is a right angle. Thus, $|px| \leq \sqrt{5} \delta f(p) \leq 0.17 f(p)$ for $\epsilon \leq 0.06$. This implies that $f(p) \leq 1.20 f(x)$ by Lipschitz property of $f(\cdot)$, giving $|px| \leq 0.20 f(x)$ and $|qx| \leq 0.088 f(x)$.

With a little more work, we can also show that the triangle normal agrees with the surface normal at the surface point closest to q.

Lemma 13 Let q be a point on triangle $t \in T$, and let n_x be the surface normal at $x = \mu(q)$. The acute angle between n_x and and the normal to t is at most 42° for $\epsilon \leq 0.06$. Also, the acute angle between n_x and the surface normal n_p at the vertex p of t with largest angle is at most 28°.

Proof. Applying Lemma 4, and taking $\rho = 0.20$, shows that the angle between n_x and n_p is less than 28°. The angle between the triangle normal of t and n_p is less than 14° for $\epsilon \leq 0.06$ (Theorem 11). Thus, the triangle normal and n_x make an angle of at most 42°.

Sharp edges

The manifold extraction step selects a piecewise-linear manifold from T. It begins by recursively removing all triangles in T adjacent to sharpen edges; recall that a sharp edge is one for which the angle between two adjacent triangles, in the circular order around the edge, is greater than $3\pi/2$. Let T' be the remaining set of triangles. The following lemma shows that none of the restricted Delaunay triangles are removed, so that T' is guaranteed to contain a piecewise-linear manifold homeomorphic to S.

Lemma 14 No restricted Delaunay triangle has a sharp edge, for $\epsilon \leq 0.06$.

Proof. Let t and t' be adjacent triangles in the restricted Delaunay triangulation, let e be their shared edge, and let $p \in e$ be any of their shared vertices. Since t and t' belong to the restricted Delaunay triangulation, they have circumspheres B and B', respectively, centered at points v, v' of S.
The boundaries of the circumspheres B and B' intersect in a circle C contained in a plane H, with $e \subset H$. H separates t and t', since the third vertex of each triangle must lie on the boundary of its circumsphere, and $B \subseteq B'$ on one side of H, while on the other $B' \subseteq B$. The line through v, v' is perpendicular to H, and the distance $|vv'| \leq \frac{2e}{(1-\epsilon)}f(v)$ (using the sampling condition). So segment v, v' forms an angle of at least $\pi/2 - \sin\frac{\epsilon}{1-\epsilon}$ with n_v (Observation 5).

This normal differs, in turn, from n_p, by at most $\frac{\epsilon}{1-\epsilon}$ (Lemma 4), so H is nearly parallel to n_p, at an angle of at most 9°. The normals of both t and t' differ from the surface normal at p by at most 14° (Theorem 11).

Thus we have t on one side of H, t' on the other, and the smaller angle between H and either triangle is at least 67°. Hence the smaller angle between t and t' is at least 67°, and e is not sharp.

6 Homeomorphism

A function $\mu : \mathbb{X} \to \mathbb{Y}$ defines a homeomorphism between two compact Euclidean subspaces \mathbb{X} and \mathbb{Y} if μ is continuous, one-to-one and onto. In this section, we will show a homeomorphism between S and any piecewise-linear surface made up of candidate triangles from T with two additional properties. The piecewise-linear manifold N selected by the manifold extraction step of our algorithm does in fact have these properties, thus completing the proof of Theorem 1.

Additional properties

A pair of triangles $t_1, t_2 \in N$ are adjacent if they share at least one common vertex p. Since the normals to all triangles sharing p differ from the surface normal at p by at most 42° (Lemma 13), and that normal in turn differs from the vector to the pole at p by less than 8° (Lemma 3), we can orient the triangles sharing p, arbitrarily but consistently calling the normal facing the pole the inside normal and the normal facing away from the pole the outside normal. Let α be the angle between the two inside normals of t_1, t_2. We define the angle at which the two triangles meet at p to be $\pi - \alpha$.

PROPERTY I: Every two adjacent triangles in N meet at their common vertex at an angle of greater than $\pi/2$.

Requiring this property excludes manifolds which contain sharp folds and, for instance, flat tunnels. Since the triangles of T are all nearly perpendicular to the surface normals at their vertices (Lemma 13), and the manifold extraction step eliminates triangles adjacent to sharp edges, N has this property.

PROPERTY II: Every sample in P is a vertex of N.

Lemma 14 ensures that T' contains the restricted Delaunay triangulation, which contains a triangle adjacent to every sample in P. Lemma 16, below, ensures that at least one triangle must be selected for each sample by the manifold extraction step. This implies that N has the second property as well.

Homeomorphism proof

We define the homeomorphism explicitly, using the function $\mu : N \to S$, as defined above. Our approach will be first to show that μ is well-behaved on the samples themselves, and then show that this behavior continues in the interior of each triangle of N.

Lemma 15 The restriction of μ to N is a continuous function $\mu : N \to S$.

Proof. By Theorem 10 every point $q \in N$ is within $\frac{1.5\epsilon}{1-\epsilon}f(p)$ of a triangle vertex $p \in S$. Function μ is continuous except at the medial axis of S, so that since N is continuous and avoids the medial axis, μ is continuous on N.
Lemma 16 Let \(p \) be a sample and let \(m \) be the center of a medial ball \(M \) tangent to the surface at \(p \). No candidate triangle intersects the interior of the segment \(pm \).

Proof. In order to intersect segment \(pm \), a candidate triangle \(t \) would have to intersect \(M \), and so would the smallest Delaunay ball \(D \) of \(t \). Let \(H \) be the plane of the circle where the boundaries of \(M \) and \(D \) intersect. We show that \(H \) separates the interior of \(pm \) and \(t \).

On one side of \(H \), \(M \) is contained in \(D \), and on the other, \(D \) is contained in \(M \). Since the vertices of \(t \) lie on \(S \) and hence not in the interior of \(M \), \(t \) has to lie in the open halfspace, call it \(H^+ \), in which \(D \) is outside \(M \). Since \(D \) is Delaunay, \(p \) cannot lie in the interior of \(D \); but since \(p \) lies on the boundary of \(M \), it therefore cannot lie in \(H^+ \). We claim that \(m \notin H^+ \) either. (see Figure 3.) Since \(m \in M \), if it lay in \(H^+ \) then \(m \) would have to be contained in \(D \). Since \(m \) is a point of the medial axis, this would mean that the radius of \(D \) would be at least \(1/2 \ f(p') \) for any vertex \(p' \) of \(t \), contradicting, by Lemma 9, the assertion that \(t \) is a candidate triangle. Therefore \(p, m \) and hence the segment \(pm \) cannot lie in \(H^+ \), and \(H \) separates \(t \) and \(pm \).

Since any point \(q \) such that \(\mu(q) = p \) lies on such an open segment \(pm \), we have the following.

Corollary 17 The function \(\mu \) is one-to-one from \(N \) to every sample \(p \).

In what follows, we will show that \(\mu \) is indeed one-to-one on all of \(N \).

Our proof proceeds in three short steps. We show that \(\mu \) induces a homeomorphism on each triangle, then on each pair of adjacent triangles, and finally on \(N \) as a whole.

Lemma 18 Let \(U \) be a region contained within one triangle \(t \in N \) or in adjacent triangles of \(N \). The function \(\mu \) defines a homeomorphism between \(U \) and \(\mu(U) \subset S \).

Proof. We know that \(\mu \) is well-defined and continuous on \(U \), so it only remains to show that it is one-to-one. First, we prove that if \(U \) is in one triangle \(t \), \(\mu \) is one-to-one. For a point \(q \in t \), the vector \(n_q \) from \(\mu(q) \) to \(q \) is perpendicular to the surface at \(\mu(q) \); since \(S \) is smooth the direction of \(n_q \) is unique and well defined. If there was some \(y \in t \) with \(\mu(y) = \mu(q) \), then \(q, \mu(q) \) and \(y \) would all be colinear and \(t \) itself would have to contain the line segment between \(q \) and \(y \), contradicting Lemma 13, which says that the normal of \(t \) is nearly parallel to \(n_q \).

Now, we consider the case in which \(U \) is contained in more than one triangle. Let \(q \) and \(y \) be two points in \(U \) such that \(\mu(q) = \mu(y) = x \), and let \(v \) be a common vertex of the triangles that contain \(U \). Since \(\mu \) is one-to-one in one triangle, \(q \) and \(y \) must lie in the two distinct triangles \(t_q \) and \(t_y \). Let \(n_x \) be the surface normal at \(x \). The line \(l \) through \(x \) with direction \(n_x \) pierces the patch \(U \) at least twice; if \(y \) and \(q \) are not adjacent intersections along \(l \), redefine \(q \) so that this is true (\(\mu(q) = x \) for any intersection \(q \) of \(l \) with \(U \)). Now consider the orientation of the patch \(U \) according to the direction to the pole at \(v \). Either \(l \) passes from inside to outside and back to inside when crossing \(y \) and \(q \), or from outside to inside and back to outside.

The acute angles between the triangle normals of \(t_q, t_y \) and \(n_x \) are less than 42° (Lemma 13), that is, the triangles are stabbed nearly perpendicularly by \(n_x \). But since the orientation of \(U \) is opposite at the two intersections, the angle between the two oriented triangle normals is greater than zero, meaning that \(t_q \) and \(t_y \) must meet at \(v \) at an acute angle. This would contra-
dict Property I, which is that \(t_q \) and \(t_y \) meet at \(v \) at an obtuse angle. Hence there are no two points in \(y, q \) with \(\mu(q) = \mu(y) \).

We finish the theorem using a theorem from topology.

Theorem 19 The mapping \(\mu \) defines a homeomorphism from the triangulation \(N \) to the surface \(S \) for \(\epsilon \leq 0.06 \).

Proof. Let \(S' \subset S \) be \(\mu(N) \). We first show that \((N, \mu) \) is a covering space of \(S' \). Informally, \((N, \mu) \) is a covering space for \(S' \) if function \(\mu \) maps \(N \) smoothly onto \(S' \), with no folds or other singularities; see Massey [19], Chapter 5. Showing that \((N, \mu) \) is a covering space is weaker than showing that \(\mu \) defines a homeomorphism, since, for instance, it does not preclude several connected components of \(N \) mapping onto the same component of \(S' \), or more interesting behavior, such as a torus wrapping twice around another torus to form a double covering.

Formally, the \((N, \mu) \) is a covering space of \(S' \) if, for every \(x \in S' \), there is a path-connected elementary neighborhood \(V_x \) around \(x \) such that each path-connected component of \(\mu^{-1}(V_x) \) is mapped homeomorphically onto \(V_x \) by \(\mu \).

To construct such an elementary neighborhood, note that the set of points \(|\mu^{-1}(x)| \) corresponding to a point \(x \in S' \) is non-zero and finite, since \(\mu \) is one-to-one on each triangle of \(N \) and there are only a finite number of triangles. For each point \(q \in \mu^{-1}(x) \), we choose an open neighborhood \(U_q \) of around \(q \), homeomorphic to a disk and small enough so that \(U_q \) is contained only in triangles that contain \(q \).

We claim that \(\mu \) maps each \(U_q \) homeomorphically onto \(\mu(U_q) \). This is because it is continuous, it is onto \(\mu(U_q) \) by definition, and, since any two points \(x \) and \(y \) in \(U_q \) are in adjacent triangles, it is one-to-one by Lemma 18.

Let \(U'(x) = \cap_{q \in U^{-1}(x)} \mu(U_q) \), the intersection of the maps of each of the \(U_q \). \(U'(x) \) is the intersection of a finite number of open neighborhoods, each containing \(x \), so we can find an open disk \(V_x \) around \(x \). \(V_x \) is path connected, and each component of \(\mu^{-1}(V_x) \) is a subset of some \(U_q \) and hence is mapped homeomorphically onto \(V_x \) by \(\mu \). Thus \((N, \mu) \) is a covering space for \(S' \).

We now show that \(\mu \) defines a homeomorphism between \(N \) and \(S' \). Since \(N \) is onto \(S' \) by definition, we need only show that \(\mu \) is one-to-one. Consider one connected component \(G \) of \(S' \). A theorem of algebraic topology (see for example Massey [19], Chapter 5 Lemma 3.4) says that when \((N, \mu) \) is a covering space of \(S' \), the sets \(\mu^{-1}(x) \) for all \(x \in G \) have the same cardinality. We now use Corollary 17, that \(\mu \) is one-to-one at every sample. Since each connected component of \(S \) contains some samples, it must be the case that \(\mu \) is everywhere one-to-one, and \(N \) and \(S' \) are homeomorphic.

Finally, we show that \(S' = S \). Since \(N \) is closed and compact, \(S' \) must be as well. So \(S' \) cannot include part of a connected component of \(S \), and hence \(S' \) must consist of a subset of the connected components of \(S \). Since every connected component of \(S \) contains a sample \(p \) (actually many samples), and \(\mu(p) = p \), all components of \(S \) belong to \(S' \), \(S' = S \), and \(N \) and \(S \) are homeomorphic.

7 Implementation

We have implemented the algorithm and tested it on several data sets. We faced a serious implementation difficulty with the manifold extraction step. The manifold extraction step depends heavily on the assumptions that the surface is
smooth, has no boundaries, and that the sampling is sufficiently dense. In practice the data do not satisfy these assumptions. The manifold extraction step deletes edges at boundaries, since they are sharp edges. Recursively deleting boundary edges can, in the worst case, delete the entire output of the cocone filtering step. Even when the surface has no boundaries, the output of the cocone step generally has holes which are produced due to noise and undersampling, mostly in non-smooth regions. To prevent deleting too many triangles, we use a heuristic which we call UmbrellaCheck.

We say that a vertex p has an umbrella if there exists a set of triangles incident to p which form a topological disk and no two consecutive triangles around the disk meet at a dihedral angle less than $\frac{\pi}{2}$ or more than $\frac{3\pi}{2}$. UmbrellaCheck determines if a vertex p has an umbrella or not. This is done by considering the process of deleting triangles adjacent to sharp edges only on the triangles incident to p. We recursively mark all triangles adjacent to p and to a sharp edge as “deleted”. If p has no umbrella, all triangles adjacent to p will be marked. Otherwise, an unmarked triangle incident to p remains, and we conclude that p has an umbrella. In the manifold extraction step, we actually delete a triangle incident with a sharp edge only if all of its three vertices have umbrellas.

We implemented the algorithm in C++ using the well known qhull code for Delaunay triangulation. We show outputs for two data sets Foot and Club in Figure 5. The outputs are shown before (set T) and after (surface N) the manifold extraction step. There is not much visible difference between the two outputs though the number of triangles and running times in Table 1 indicate the difference. We also provide zoomed pictures of the Foot near the ankle for the set T and the surface N. One can notice some slivers with one missing triangle in the picture for T. The remaining three triangles form almost a square with a hanging triangle on top of it. They disappear in the picture for the surface N. The surface N is computed correctly almost everywhere except at the boundaries and near sharp features, as expected.

Our running times, measured on a SUN machine with the 300MHz processor and 256 MB memory, are faster than those reported in [3] for the crust algorithm. For example, the foot took 153 seconds for extracting the set T, for which the crust algorithm required 15 minutes on a SGI Onyx machine with 512 MB memory. The difference can be explained by two factors; first, this algorithm requires only one Delaunay triangulation step, and second, the implementation of [3] used the exact-arithmetic Delaunay triangulation program qhull, which we have observed to be about four times slower than qhull on these inputs.

<table>
<thead>
<tr>
<th>objects</th>
<th>points</th>
<th>triangles</th>
<th>time(sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot set T</td>
<td>20021</td>
<td>40,341</td>
<td>153</td>
</tr>
<tr>
<td>Club set T</td>
<td>16864</td>
<td>33,692</td>
<td>122</td>
</tr>
<tr>
<td>Foot surface N</td>
<td>40,004</td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>Club surface N</td>
<td>33,670</td>
<td></td>
<td>189</td>
</tr>
</tbody>
</table>

Table 1: Experimental data.
8 Conclusions

The main advantages of our algorithm over the original crust algorithm [1] are: (i) it requires only one Voronoi diagram computation as opposed to two; (ii) it collects a set of triangles from the Delaunay triangulation by checking a single simple condition; (iii) the proofs are simpler; and (iv) we can give a topological guarantee on the output.

Our theory is supported by the output of our program on some reasonably large data sets. We should note, however, that in practice many surfaces have sharp corners and boundaries, and that sets of sample points are often noisy and fail to meet our sampling condition, so that our theoretical results do not guarantee good reconstruction in practice.

Important goals that remain in this area are to correctly reconstruct surfaces with sharp edges, corners, and boundaries, to develop reconstruction algorithms that gracefully handle noise, and to find more efficient algorithms that avoid computing the Delaunay triangulation of all the input samples.

Acknowledgement

The authors thank J. Havlicek and R. Wenger for giving insightful comments on the paper.

References

Figure 5: Experimental results