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Abstract
We present an algorithm for the reconstruction of a surface with boundaries (including a non-orientable one)
in three dimensions from a suf�ciently dense sample. It is guaranteed that the output is isotopic to the unknown
sampled surface. No previously known algorithm guaranteesisotopic or homeomorphic reconstruction of sur-
faces with boundaries. Our algorithm is surprisingly simple. It `peels' slivers greedily from ana-complex of a
sample of the surface. No other post-processing is necessary. We provide several experimental results from an
implementation of our basic algorithm and also a modi�ed version of it.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Surface Reconstruction—

1. Introduction

This paper is concerned with the design of a provably cor-
rect algorithm that can reconstruct surfaces withbound-
aries in three dimensions. In the last decade a number of
algorithms for the problem of surface reconstruction have
been proposed [AB99,ACDL02,ACSTD07,BC00,FCOS05,
HDD� 92, JWS08, KBH06, OBA� 03, PKKG03, WOK05].
Among them, the ones that come with theoretical guaran-
tees [AB99, ACDL02, BC00, Dey07] assume that the sam-
pled surface is smooth andclosed(compact and no bound-
ary). The proofs and the algorithms fail if boundaries are
allowed.

For a provably correct reconstruction algorithm, typically
one looks for guarantees on the geometric and topological
similarities between the output and the sampled surface. Ge-
ometric guarantees generally mean small Hausdorff distance
between the sampled surfaceS � R3 and the output. Topo-
logical guarantee, however, may be of homotopy equiva-
lence, homeomorphism, or isotopy–listed in the increasing
order of topological similarity. It is desirable that the output
be isotopic toS. Isotopymeans that there is a smooth defor-
mation ofR3 that brings the output toS while maintaining a
homeomorphism between the two all the time.

The case of closed smooth surfaces is now well under-
stood. There exist established algorithms and software that
can reconstruct such surfaces with isotopy guarantee from
point data [AB99, ACDL02] even if they are contaminated

with noise [Dey07]. However, the important case ofsur-
faces with boundariesis less understood. The theory of com-
pact reconstruction put forward by Chazal, Cohen-Steiner,
and Lieutier [CCSL06] applies to such surfaces. However,
this result only guarantees a homotopy equivalence between
the sampled surface and the output. In fact, the algorithm
which constructsa-complexes may return a single point for
a disk. In this paper we show that a very simple algorithm
can reconstruct all smooth surfacesS � R3, with or with-
out boundary, while guaranteeing an isotopy and a small
Hausdorff distance between the output andS. The algorithm
computes ana-complex and then `peels' tetrahedra from it
greedily. No other post-processing is necessary. We argue
mainly about the isotopy since Hausdorff distance claim fol-
lows from dense sampling.

For closed surface reconstructions, a fundamental prop-
erty used for proofs is that a closed surface is homeomorphic
(and isotopic) to the restricted Delaunay triangulation ofa
suf�ciently dense point sample. (See Section2.1 for a de�-
nition of the restricted Delaunay triangulation.) As shownin
Section 4.1 and illustrated in Figure3, this is not true for a
surfaceS with boundary. To overcome this problem we use
a collar extension ofS. We show that a restricted Delaunay
triangulation of a suf�ciently dense point sample ofS is iso-
topic to this collar extension. We emphasize that the collaris
only needed for the proof of correctness, it does not need to
be sampled or used in any way by the algorithm.

Reconstruction algorithms such as Crust and Co-
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cone [AB99, ACDL02] identify candidate triangles for the
reconstructed surface and then use a prune-and-walk ap-
proach to extract a manifold. Such an approach fails when
boundaries are present, since the pruning repeatedly removes
boundary triangles until no triangles are left. We present a
`sliver peeling' approach based on the following idea. We
prove the existence of acanonical peeling sequenceof tetra-
hedra from ana-complex induced by adeformation retrac-
tion of the associated union ofa-balls. For a closed surface
S, this sequence peels thea-complex to the restricted Delau-
nay triangulation which is known to be isotopic toS. Even
though one cannot compute the canonical peeling sequence
in absence ofS, we show that a greedy peeling produces an
output isotopic to that produced by the canonical peeling se-
quence. For surfaces with boundaries, the argument remains
essentially the same except that now one has to argue with
the restricted Delaunay triangulation of a collar extension.

Another problem that arises in reconstructing surfaces
with boundaries is the existence of non-unique solutions.
For instance, it can be impossible to distinguish between the
point sample of a sphere with a small disk removed and a
sphere which happens to not have any sample points in a
small disk. We use an input parametera which allows us
to distinguish between boundary regions and small regions
which have no sample points.

One noteworthy feature of our algorithm is that it can re-
construct non-orientable surfaces (necessarily open onesas
they are embedded inR3). Since there is no global orien-
tation of normals for such surfaces, it is dif�cult to extract
such a surface from a complex by any consistent walk. The
technique of sliver `peeling' resolves this problem.

Our algorithm works nicely for dense uniform samples in
practice as the theory predicts. However, it faces problems
when the sample is not uniform. We extend our basic `peel-
ing' algorithm to handle non-uniform samples and show ex-
perimental results for this modi�cation. Our algorithm is not
geared to handle noise in data.

2. Preliminaries

We set up some basic notations and concepts that are needed
to describe the reconstruction algorithm.

2.1. Complexes, feature size, and sampling

Voronoi and Delaunay Complexes:For a point setP � R3,
we use VorP and DelP to denote the Voronoi and Delaunay
complexes ofP. The Voronoi cell ofp is Vp. The Voronoi
face dual to a Delaunay simplexs 2 DelP is denotedVs . The
restricted Delaunay complexof P with respect to a topolog-
ical spaceX � R3 is DelX(P) = f s 2 DelP : Vs \ X 6= ;g .

Alpha-Complex: For a > 0, the a-ball of p, denoted
B(p;a), is the closed ball centered atp and of radiusa. The

union ofa-balls for a setP is

Ba (P) =
[

p2 P

B(p;a):

Thea-complexCa (P) of P is the restricted Delaunay com-
plex of P with respect toBa (P). That is,

Ca (P) = f s 2 DelP : Vs \ B a (P) 6= ;g :

It is well-known thatBa (P) and Ca (P) have the same
homotopy type [Ede95]. If P is a suf�ciently dense sam-
ple from a shapeS, it is known thatBa (P) and Ca (P)
have topological similarity toS for appropriatea [CCSL06,
CSEH05,NSW08]. In particular,Ba (P) andCa (P) become
homotopy equivalent toS when the sample is suf�ciently
dense [CCSL06,NSW08], a fact we need for our results.

Local feature size: We consider a smooth surfaceS with
smooth boundaries¶S. The surface normalnx to S at x
is then well-de�ned in the surface interior and also on the
boundary by taking thelimit. At a boundary pointy 2 ¶S,
there is also an open half-circle of normal directions with the
two orientations of the surface normalny as thelimit points.

The local feature size functionis a measure of the local
level of detail. For a closed surface, it is de�ned as the dis-
tance,d(x;M ), to the medial axisM of the surface [AB99].
For a smooth surface with smooth boundaries, this is still
well-de�ned but does not capture the required minimum
sampling (to see this, consider for example a �at disk). We
considerM 0, the medial axis of the boundary¶Sseparately
and de�ne:

lfs(x) = minf d(x;M );
�
d(x;M 0) + d(x;¶S)

�
=2g:

Note that theM 0can intersect the surfaceSand sod(x;M 0)
may be zero. However, ifd(x;M 0) is zero, thenx is “far”
from ¶Sand so lfs(x) is still non-zero.

With the above de�nition of lfs, Proposition1 extends
three essential properties of closed surfaces to surfaces with
boundaries. For a trianglet we usent to denote its normal.
Unless speci�ed otherwise we measure angles between vec-
tors by the acute angle made by their supporting lines. The
notationO(e) means a value that is less thance for some
constantc > 0 whene is suf�ciently small.

Proposition 1 Let e � 1 and x;y;z 2 S. If kx � yk =
O(e)lfs(x) and the circumradius oft = 4 xyz is at most
O(e)lfs(x), then:

(i) (Normal variation is small)\ nxny = O(e),
(ii) (Short edges are close to tangent)\ nx~xy � p=2� O(e),
(iii)(Small triangles are almost parallel to the surface)

\ ntnx = O(e).

Essentially the same proof [AB99, ACDL02] applies here
as for the same properties for closed surfaces once (i) is
established. The proof of (i) can be carried out along the
lines presented in [CDR05]. Although the de�nition of lfs
in [CDR05] differs from the one used here, for a pointx 2 S,
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lfs(x) remains smaller than the medial balls touchingS at x
which is essential for the proof to go through. See appendix
for the proof.

Sampling condition: The standard sampling condition re-
quires that for anyx 2 S, B(x;elfs(x)) contains a sam-
ple [AB99]. In the presence of boundaries, this is not suf-
�cient for correct reconstruction. There is no unique tight-
ening of the condition. We use a global measurer =
infx2 S lfs(x) and de�neP to be ane-sample ofS if B(x;er)
contains a point inP for any x 2 S. We do not require the
boundaries to be sampled by pointslying on them. Requiring
such a sampling of the boundaries would make the problem
easier but less realistic.

2.2. Peeling tetrahedra

Our idea is to compute a subcomplexK of an alpha complex
Ca (P) for suf�ciently small a and then peel tetrahedra from
it to arrive at a triangulated surface. The existence and com-
putation of the peeling order are justi�ed by a deformation
retraction of the ball unionBa (P). Before describing this
retraction, we elaborate on tetrahedra peeling and observe
some of its key properties.

Let s 2 K be a tetrahedron with an edgee andt1; t2 be
two triangles ofs incident toe. We says is peelableby e
if no triangles other thant1 and t2 are incident toe in K.
A new complexK0 is obtained by removing the collection
of simplicesf s; t1; t2;eg from K. In that case we sayK0 is
obtained bypeeling efrom K and writeK e! K 0. A peeling
takes out two triangles of a tetrahedron while leaving the
other two. IfK0 is obtained fromK by peeling a sequence
edgese1;e2; :::;ek, we writeK

e1;e2;:::;ek! K 0. A peeling does
not delete any vertex and therefore the vertex set ofK and
K0 remains the same.

We need one more de�nition before stating our generic
results on peeling. Two edge sequencesf eig and f gig by
which a complexK is peeled are calledcompatibleif for all
pair of edgese 2 f eig andg 2 f gig wheree andg peel the
same tetrahedron inK, eithere= g or eandg are vertex dis-
joint. Essentially two compatible peeling sequences peel a
tetrahedron either at the same edge or at two vertex disjoint
edges if both of them peel it. Two such sequences may dif-
fer in length. Figure1 illustrates how compatibility ensures
isotopy. The peeling of vertex disjoint edgese1 and e3 in
sequencesf e2;e1g andf e3;e2g leads to isotopy.

Our main observation is Proposition2 below which says
that if a simplicial 3-complex is peeled by two compatible
sequences both of which removeall tetrahedra, the resulting
2-complexes are necessarily isotopic. Notice that we do not
require any extra condition on the input 3-complex for this
proposition. Its proof by induction uses Proposition3 whose
proof appears in the appendix.

Figure 1: The sequencesf e2;e1g andf e3;e2g are compati-
ble, butf e4;e1g is not compatible with either of them.

Proposition 2 SupposeK0 is a simplicial 3-complex with
k � 0 tetrahedra. IfK0

e1;e2;:::;ek! K 1 and K0
g1;g2;:::;gk! K 2

for two compatible sequences of edgesf e1;e2; :::;ekg and
f g1;g2; :::;gkg, thenK1 andK2 are isotopic.

Proof We prove by induction onk. Fork = 1, K0 has a sin-
gle tetrahedron which is peelable bye1 andg1. If e1 = g1,
K1 = K2. If e1 6= g1, they are opposite edges of the single
tetrahedron inK0. Clearly, peeling bye1 andg1 gives two
isotopic complexes. We now assume that for anyk0 < k the
proposition is true and verify it fork. Let K0

g1! K 0. Since
f g1g andf e1;e2; :::;ekg are compatible, by Proposition3 be-
low there is a sequencef e0

1;e0
2; :::;e0

k� 1g of edges compati-

ble with f e1; :::;ekg so thatK0 e0
1;e0

2;:::;e0
k� 1! K 3 whereK3 is

isotopic toK1. By assumptionK0 g2;g3;:::;gk! K 2, and also the
sequencesf g2;g3; :::;gkg andf e0

1;e0
2; :::;e0

k� 1g are compat-
ible since both of them are compatible withf e1;e2; :::;ekg.
Then, by inductive hypothesisK2 andK3 are isotopic which
implies thatK2 andK1 are isotopic.

Proposition 3 SupposeK0 is a simplicial 3-complex with
K0

e1;:::;ek! K 1 for edgese1; :::;ek. Letebe an edge compatible
with e1; :::;ek so thatK0

e! K 0andepeels a tetrahedron that
is peeled by some edge in the sequencee1; :::;ek. Then, there
is a sequencee0

1; :::;e0
k� 1 compatible withe1; ::;ek so that

K0e0
1:::;e0

k� 1! K 2 andK1 is isotopic toK2.

3. Closed surface

For simplicity �rst we assume that the sampled surface has
no boundary and then describe the modi�cations needed to
accommodate boundaries. Proposition2 motivates the fol-
lowing approach:

a. Consider ana-complexK spanning the input point setP.
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b. Prove that there is acanonical edge sequencewhich peel
all tetrahedra fromK and the resulting complex is the
restricted Delaunay triangulation DelS(P).

c. Unfortunately, this canonical sequence is impossible to
compute in absence ofS. So, algorithmically �nd another
peeling sequence which peels all tetrahedra fromK.

d. Prove that the peeling sequence adopted by the algorithm
is compatible with the canonical sequence. Appeal to
Proposition2 to claim that the resulting complex is iso-
topic to DelS(P).

3.1. Canonical edge sequence

To show the existence of a canonical edge sequence, we de-
�ne a deformation retraction ret(x; t) on R3 which retracts
Ba (P) to the surfaceS. For any non medial axis pointx2 R3,
let x̃ be its closest point onS. De�ne

ret(x; t) = x̃+ ( 1� t) � (x� x̃) for t 2 [0;1]:

If a is suf�ciently small, this deformation retraction is a wit-
ness to the homotopy equivalence betweenBa andS. This
deformation retraction is reminiscent of the �ow function
used in [Ede03, GJ02]. However, a key difference is that
we consider distances to the surfaceS instead of distances to
the sampleP.

We are interested in the interpretation of the retraction
ret(x; t) in the context of sub-complexes of DelP. We de�ne

Ba;t (P) = f ret(x; t) : x2 B a (P)g andCa;t(P) = DelBa;t (P)(P):

Observe thatBa (P) = Ba;0(P) retracts toS = Ba;1(P).
In the dual a-complex Ca (P) = Ca;0(P) retracts to the
restricted Delaunay triangulation DelS(P) = Ca;1(P). Let
s1; :::; sn denote the sequence of simplices removed from
Ca;t(P) as Ca (P) = Ca;0(P) transforms to DelS(P) =
Ca;1(P). We call s1; :::; sn the canonical simplex sequence
for Ca (P). We argue that the subsequence of edges in this
simplex sequence indeed peels all simplices in the sequence
and thus form a canonical edge sequence we are looking for.

Let us look at how¶Ba;t(P) sweeps over the Voronoi di-
agram. When¶Ba;t (P) sweeps over a Voronoi vertex, edge,
or a facet completely, their dual simplices get removed from
the restricted triangulationCa;t(P). If all Voronoi edges and
facets intersectingBa;t(P) intersect its boundary¶Ba;t (P)
transversally, they go out ofBa;t (P) only when a Voronoi
vertex is swept over. This meansCa;t(P) only changes when
a tetrahedron is removed. Now let us look at how¶Ba;t (P)
sweeps over a Voronoi vertexv. In Figure2, the vertexv is
about to be swept when the dual tetrahedrons is peeled. It is
proved in Proposition6 thats is aslivertetrahedron (see sec-
tion 3.3for de�nition) if a is small. In particular, this means
two of the Voronoi edges incident tov make large angle close
to p with ~vṽ and the other two make small angle close to 0
with it. As a result whenv is swept over, exactly two of the
Voronoi edges, saye1 ande2, incident tov leaveBa;t (P).
Interpreting dually, the tetrahedrons is peeled fromCa;t(P)

Figure 2: Sweeping a Voronoi vertex.

at the edge, saye, dual to the Voronoi facet containinge1
ande2. The subsequence of edges likee from the canonical
simplex sequence form the desired canonical edge sequence.

The above argument dwells on two facts: (i) Voronoi
facets and edges intersect¶Ba;t (P) transversally, and (ii) all
tetrahedra inCa (P) are slivers. We show these two facts.

3.2. Transversal intersections

To talk about transversal intersections between Voronoi
edges, facets and¶Ba;t(P), we need to de�ne a notion of
normals to¶Ba;t (P) since it is not necessarily a smooth sur-
face. Consider¶Ba (P) = ¶Ba;0(P). This is the boundary
of a spherical polyhedron. The boundaries of the facets in
this spherical polyhedron constitute non-smooth regions in
¶Ba (P). A point x(t) 2 ¶Ba;t(P) is given byx(t) = x̃+ ( 1�
t)(x� x̃) wherex 2 ¶Ba (P). It follows thatx(t) is a smooth
point in¶Ba;t (P) if x is smooth in¶Ba (P). For a non-smooth
point x(t) 2 ¶Ba;t (P), consider the set of normalsNx(t) that
are limit points of the normals to the smooth points in any
neighborhood ofx(t). The normal cone atx(t) is given by
the convex hull ConvNx(t) .

We �rst establish a bound on the angles between normals
to ¶Ba (P) at smooth points and the normals ofS and then
extend the bound for all points in¶Ba;t (P), t 2 [0;1]. Propo-
sition 4 is proved in the appendix. Recall thatP is assumed
to be ane-sample ofS.

Proposition 4Let a = ker andke � 1=2. Letx be any point
in ¶Ba;t (P). The normal of¶Ba;t(P) at x and the normal to
S at x̃ form an angle of at most 4sin� 1(2=k).

Let us now consider a pointx on a Voronoi facet or edge
that¶Ba;t (P) is about to sweep. Let 6er � a � 6er + O(er).
For this choice ofa, we havek = 6 in Proposition4 which
assures that a normal to a pointx on ¶Ba;t (P) makes an
angle of at most 4sin� 1(1=3) � 80� with the surface nor-
mal at x̃. By Proposition1, the Voronoi edges and facets
intersectingBa;t (P) make an angle ofO(e) with the sur-
face normals. A standard calculation reveals that they inter-
sect¶Ba;t (P) with an angle of at most 4sin� 1(1=3) + O(e)
which is smaller thanp

2 if e is suf�ciently small. There-
fore, Voronoi edges and facets cannot intersect¶Ba;t (P) tan-
gentially implying that all peelings are associated with a
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Voronoi vertex going out ofBa;t (P). Thus, a canonical sim-
plex sequences1; :::; sn induces a canonical edge sequence
at which tetrahedra are peeled which effectively removes all
of f s1; :::; sng. We have:

Proposition 5 For 6re � a � 6er + O(er), let K = Ca (P).
There is a canonical edge sequencef e1;e2:::;ekg where
K

e1;e2;:::;ek! DelS(P).

3.3. Slivers and top-down peeling

Now we show that all tetrahedra inCa (P) are 2-2-�at . We
also refer to them assliversalthough strictly speaking they
may not be slivers by standard de�nition in meshing. A tetra-
hedrons is callede-�at if all normals to its triangles differ
by O(e) angle. For a suf�ciently smalle, ane-�at tetrahedron
can only be in two con�gurations with respect to the internal
dihedral angles at its edges. These internal dihedral angles
are eitherp � O(e) or O(e). If two angles arep � O(e) and
other four areO(e), we say it is a 2-2-�at tetrahedron (corre-
sponds to slivers.) Otherwise, when three angles arep� O(e)
and the other three areO(e), we say it a 1-3-�at tetrahedron.
No other con�guration is possible for ane-�at tetrahedron.

Proposition 6 Let a = O(e)r . Fort 2 [0;1] let s 2 Ca;t(P).
(i) If s is a triangle,\ ns np = O(e) wherep is any vertex of
s. (ii) If s is a tetrahedron, it is 2-2-�at.

Proof (i) Since the dual Voronoi edge is intersected by
Ba;t (P), the circumradius ofs is at mosta = O(e)r . The
claim follows from Proposition1(iii). (ii) First observe that
s is ane-�at tetrahedron due to (i). Ifs were 1-3-�at, there is
a vertexp of s which subtends a solid angle close to 2p. The
line of the normalnp intersects the opposite trianglet of s,
for otherwisenp has to be almost parallel tot contradicting
Proposition1(iii). We now apply the argument of Lemma 11
of [ACDL02] to claim that this is impossible.

Let us now go back to the scenario when a Voronoi vertex
v is about to be swept over. The edgee at which the dual
tetrahedron ofv is peeled, subtends a large dihedral angle
p � O(e). We use this observation to ensure a compatible
edge sequence in the algorithm. The following de�nition
helps. We say a 2-2-�at tetrahedron is peeledtop-downif
it is peeled at an edge subtending a large dihedral angle of
p � O(e). We also say an edge sequencee1;e2; :::;ek is top-
downif all tetrahedra are peeled top-down by the sequence.
Since any top-down edge sequence peels a 2-2-�at tetrahe-
dron only at edges that subtend large dihedral angles, two
such sequences must be compatible.

Proposition 7 For a complex containing only 2-2-�at tetra-
hedra, any two top-down peeling sequences are compatible.

3.4. Algorithm

We already indicated that we cannot determine the canonical
sequence becauseS is not known. But, thanks to Proposi-
tion 2, if we �nd any edge sequence forK that is compatible

with the canonical one, we obtain a 2-complex isotopic to
DelS(P). Our algorithm below �nds such a sequence.

PEEL(P;a)
1. Compute thea-complexK := Ca (P);
2. While there is a peelable tetrahedron inK, peel it

top-down;
3. Output the resulting 2-complex.

Theorem 1For 6er � a � 6er + O(er) the algorithm PEEL

computes a subcomplex ofCa (P) that is a manifold triangu-
lation isotopic toS, and is within a small Hausdorff distance.

Proof First, we argue that the algorithm peels all tetrahedra
from Ca (P). By Proposition5 there is a canonical edge se-

quencee1;e2; :::;ek so thatCa (P)
e1;e2;:::;ek! DelS(P).

Suppose that the algorithm gets “stuck” with tetrahedra
s1; : : : ; ss none of which is peelable, and lets i be the tetra-
hedron among these that �rst appears in the canonical se-
quence of peeling. Sinces i is �rst, the canonical sequence
�nds s i peelable at a moment when all of the others j , j 6= i,
are still present. This is a contradiction and our algorithm
should also �nds i peelable.
Lete0

1;e0
2; :::;e0

k be the edge sequence by which the algorithm

peelsCa (P), that is,Ca (P)
e0

1;e0
2;:::;e0

k! T whereT is the output
complex. In the canonical sequencee1;e2; :::;ek, each peel
is top-down. Each peel conducted by the algorithm is also
top-down. Therefore, the sequencesf eig andf e0

i g are com-
patible (Proposition7). By Proposition2, T is isotopic to
DelS(P). The claim about Hausdorff distance follows from
standard calculations asT consists of triangles with small
circumradii, see [AB99,Dey07].

4. Surface with boundaries

We show that the algorithm PEEL computes a surface iso-
topic toS even if S has a non-empty boundary. A �rst dif-
�culty to overcome is that a surface with boundaries do not
necessarily admit a restricted Delaunay triangulation which
is homeomorphic to the surface no matter how dense the
sample is. We use a collar extension to counter this dif�culty.

4.1. Collar extension

Recall that we do not require the boundary curves of the sur-
face themselves be well-sampled. Under this condition, fora
good sample, DelS(P) may not be an isotopic or homeomor-
phic reconstruction ofS (though it is homotopy equivalent to
it). See the picture on left in Figure3. The restricted Delau-
nay triangulation there is not a proper manifold (there is a
pinching at the boundary). This can be repaired though by
considering the Delaunay triangulation restricted to the sur-
face with addedcollar. Let x be any point in the boundary
¶S. Consider the tangent �bergx atx that is perpendicular to
¶Satx. A segment of this �ber of lengthµ is denotedgµ

x. Let
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x’

�w�6

x

Figure 3: Left: The restricted Delaunay triangulation in the
`almost' planar con�guration has a non-manifold feature in
its boundary. Right: The collar is obtained by extending from
every boundary point x a “�ber” in the tangent plane at x.

Sµ = S[ f gµ
xgx2 ¶S. See the picture on right in Figure3. It is

a standard result in differential topology that every smooth
surface can be extended with a collar while maintaining an
isotopy if the extension lengthµ is suf�ciently small.

We need to investigate how much the normal changes
within the collar compared to the normal at the original
boundary. Note that the normal can indeed change along an
extension �ber. The following proposition is proved in the
appendix.

Proposition 8 Let x be a boundary point andgµ
x its exten-

sion �ber. For x0 2 gµ
x � Sµ with kx � x0k � µ we have

tan\ nxnx0 = O(µ=r ).

Finally, we want to show that the Delaunay triangula-
tion restricted toSµ is a good canonical reconstruction when
µ = O(re) is chosen appropriately. For a suf�ciently small
µ, the bound on the normal in the collar implies that Voronoi
edges and facets intersectSµ almost orthogonally in the col-
lar (which is already known forS). We also need a similar
fact for the boundary¶Sµ.

Proposition 9 Let µ = ker . Let F be a Voronoi facet that
intersects¶Sµ at x. If t x is the tangent to¶Sµ at x andnF is
the normal toF, then\ t x;nF � O(ke) + cos� 1 k

1+ k where
e is suf�ciently small.

Standard arguments [Dey07] using the near orthogonality
between the surface and Voronoi faces provide the following
result (see appendix for a proof).

Theorem 2For 2er � µ � 2er + O(er), DelSµP is a mani-
fold triangulation isotopic toSµ wheneis suf�ciently small.

4.2. Boundary and peeling

We follow PEEL to remove tetrahedra fromCa (P). Assume
that 6er � a � 6er + O(er) as before. One problem we now
face is that not all points inBa (P) project in the interior ofS
by the closest point map. Observe that the proof of Proposi-
tion 4 still remains valid for surfaces with boundaries. There-
fore, at a pointx 2 B a;t (P) on a Voronoi facef , the segment

xx̃ makes small angle with a normal to¶Ba;t (P). But, unlike
the closed surface case,xx̃ may not be almost parallel tof
because if ˜x is on¶S, the angle\ xx̃;nx̃ could be large (recall
the de�nition of surface normals at boundary points). We
cannot claim that a Voronoi face inBa;t (P) is never tangent
to ¶Ba;t (P).

As a remedy we consider extendingS by a small amount
so that all points inBa (P) project in the interior of the ex-
tendedS. This requires a slightly larger balls in the union
to contain the extended surface inside. This larger union
sweeps over all Voronoi faces it intersects, but we only focus
on the subset of the Voronoi faces which intersectBa (P).

Proposition 10 Any point in Ba (P) projects to an interior
point inS3a .

Proof Let x be any point inBa (P). If x projects normally to
the interior ofS, it does so for anySµ if µ is small. Consider
x projecting to a point ˜x in ¶S. The closest point ofx on the
surfaceSµ, µ > 2a, cannot be further away than 2a from x̃.
It follows thatx projects to the interior ofSµ for µ � 3a.

ConsiderB4a (P). Observe that any point inS3a is within
a distance ofer + 3a � 4a from a sample point. It means that
B4a (P) containsS3a . We consider the retraction ofB4a (P)
to S3a . This retraction de�nes a canonical sequence of sim-
plex deletions reducingC4a (P) to DelS3a (P). We are inter-
ested in the restriction of this sequence to the simplices of
Ca (P). Because of Proposition10, we can argue similarly
as in the closed surface case that a Voronoi face inBa (P) is
never tangent to¶B4a;t (P) if 6er � a � 6er + O(er). There-
fore the canonical sequence of deleted simplices inC4a (P)
indeedinducesan edge sequence at which all tetrahedra in
Ca (P) are peeled top-down. This is the canonical sequence
of peeling we consider forCa (P).

There is one more difference from the closed surface case
that we need to address. In the closed surface caseCa (P)
retracts to DelS(P). Here, since we are considering the re-
traction ofB4a (P), we cannot claim that the induced peeling
of Ca (P) will provide DelS(P).

Let K � be the complex produced by the canonical peel-
ing of Ca (P) induced by the canonical sequence of simplex
deletions inC4a (P). First notice that sinceC4a (P) retracts
to DelS3a andK � is obtained by restricting this retraction to
Ca (P), we haveK � � DelS3a (P). Also, since DelS2er (P) �
DelS3a (P) and Ca (P) contains DelS2er (P) for a > 3er,
we have DelS2er (P) � K � . In essence, DelS2er (P) � K � �
DelS3a , that is,K � is sandwiched between two triangulations
both of which are isotopic toS. This leads to the main result
of this paper.

Theorem 3Let P be ane-sample of a smooth compact sur-
face with boundary. For suf�ciently smalle > 0 and 6er <
a � 6er + O(er), PEEL(P;a) produces a 2-complexT iso-
topic toS.

Proof The algorithm PEEL computesCa (P) in step 2. Con-
sider the complexK � produced by the canonical peeling in
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Figure 4: From top to bottom, left to right: Reconstruction of Ding, Nicolo, Venus, Botijo, Volcano, Pegasus, Tree, and Möbius
band from uniform samples.

Ca (P) induced by the canonical peeling ofC4a (P). First we
argue that ifK � is isotopic toS, our algorithm produces a
complex that is isotopic toS as well.
Let e1;e2; :::;ek be the canonical sequence of edges where
Ca (P)

e1;e2;:::;ek! K � . Since all Voronoi vertices dual to the
tetrahedra inCa (P) project normally to the interior ofS3a ,
the canonical peeling is top-down. We can apply the same
argument as in Theorem1 to claim that the algorithm �nds
a peeling sequence which reducesCa (P) to a 2-complexT
whereK � andT are isotopic. HenceT is isotopic toS if K �

is isotopic toS.
We argue thatK � is indeed isotopic toS. For convenience
we writeR1 = DelS2er (P) andR2 = DelS3a . We haveR1 �
K � � R2. By theorem2, R1 andR2 are isotopic toS and thus
are isotopic to each other. Also,K � is homotopy equivalent
to Ca (P) since each peel maintains a homotopy equivalence
between the complexes before and after the peel andCa (P)
is homotopy equivalent toS to begin with [CCSL06].
First we observe a property of the complex that represents
the difference betweenR1 andR2. Formally, letW = cl(R2 �
R1). The spacejWj cannot contain any handle or Möbius
band since thenR1 will have different topology thanR2.
Next we prove thatK � is a manifold.
We introduce the following de�nition for convenience. For a
vertexv in a complexK, let Tv denote its star. If the underly-
ing spacejTvj is a topological disk, andv is in the interior of
jTvj, we sayv is completein K. If jTvj is a topological disk
butv lies on the boundary, we sayv has a half-disk neighbor-
hood inK. Observe that each complete vertex ofR1 remains
complete inK � andR2. Also, the vertex set ofR1, R2 and
K � is same. These two facts imply that each boundary inK �

andR2 is generated from the boundaries ofR1 by possibly
attaching triangles among boundary vertices. Since connect-
ing vertices across different boundaries would require trian-
gles with edges larger than 4a, boundaries ofK � andR2 are
generated by attaching triangles that connect boundary ver-
tices in the same boundary ofR1.
Now consider an incomplete vertexv of K � . Sincev is a
boundary vertex inR1, we can assume thatv is in a bound-
ary b in R1. If v does not have a half-disk neighborhood in
K � , it is incident to at least two boundaries inK � which is
generated fromb. But thenK � would contain more bound-
aries thanR1 or R2 since each boundary ofR2 also provides
at least one boundary inK � . This is because an incomplete
vertex inR2 also remains incomplete inK � . Since the dif-
ference cl(K � � R1) � W has no handles and Möbius bands,
K � has same number of handles and Möbius bands as inR1.
Then,K � cannot have different number of boundaries from
R1 sinceK � andR1 are homotopy equivalent. It follows that
K � is a manifold since it has vertices which are either com-
plete or have a half-disk neighborhood.
Now we examine the space of cl(K � � R1) more closely. A
boundary, sayb0 in K � is generated from a boundaryb in R1
by possibly attaching triangles between vertices ofb. Fur-
thermore, a single boundaryb in R1 generates exactly one
boundary inK � . The space bounded byb andb0 in K � does
not have any handle, boundary, or Möbius strip. This means
b andb0bounds a cylinder which is possibly pinched at com-
mon vertices ofb and b0. There is a natural deformation
retraction ofK � to R1 de�ned by the obvious deformation
retraction ofb0

i s tobis along these cylinders. This deforma-
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tion retraction is a witness to an isotopy betweenK � andR1.
SinceR1 is isotopic toS, we have the claimed result.

5. Extensions and experiments

We implemented PEEL and some results are shown in Fig-
ure4. When the sample is uniformly dense, PEEL produces
correct results as these examples show. The output is a 2-
manifold without any artifact. We can even reconstruct non-
orientable surfaces such as the Möbius band example in Fig-
ure4. We chose thea to be a factor (six times) of the largest
nearest neighbor distance among the given points. Since all
these examples have almost uniform sampling, this choice
worked nicely con�rming our theory.

In practice, however, the data are often non-uniform. We
made adjustments to our algorithm to handle non-uniform
data. We emphasize that if the data is a non-uniform sample
of a surface with a boundary, there is a theoretical hurdle to
reconstruct it provably. It stems from the fact that the same
sample can be dense for two topologically different surfaces
if boundaries are allowed. Therefore, there is no unique cor-
rect reconstruction. We employ a heuristic to handle non-
uniform samples of surfaces with boundaries.

If the input is non-uniform, there may be no globala for
which ana-complex may contain an isotopic triangulation to
the sampled surface. Since nearest neighbor distances may
vary widely if non-uniform density is allowed, ana �tting
local density cannot be estimated from them. Instead we pro-
pose to estimate the local density at each input point and then
take a ball around the point whose size respects the estimated
density. As before, we consider the union of ballsU and peel
tetrahedra from the restricted Delaunay complex DelU (P).
Notice that if the balls are not too large or too small with
respect to local feature sizes, the Voronoi elements intersect-
ing U will do so transversally and therefore a deformation
retraction ofU would induce a canonical edge sequence in
the restricted complex.

First, we determine the setR of all sample points near
the boundary by the modi�ed Cocone algorithm [DG01]
(We use the software COCONE). A parameter in COCONE

regulates which points are detected as boundary. Then, for
each pointp we compute awidth wp as follows. For each
non-boundary pointp 2 P� R, the widthwp is thecocone
width [DG01]. Roughly speaking, the cocone width esti-
mates the largest distance ofp to its local Voronoi neighbors
on the surface (cocone neighbors) and thus tracks the local
sparsity/density of the sample. For a boundary pointp 2 R,
we take the largest width of its non-boundary cocone neigh-
bors aswp. Then,

U =
[

p2 P

B(p;wp):

In our implementation, for ef�ciency, we do not consider
all simplices in DelU (P). Instead a subcomplex consisting

of simplices whose dual Voronoi elements intersect the co-
cones [ACDL02,DG01] is considered. The rationale is that
this subcomplex contains the restricted Delaunay triangula-
tion of the surface and at the same time inherits a canoni-
cal edge sequence from the retraction of DelU (P). Figure5
shows the results of this extension.

6. Concluding remarks

Our results on sliver peeling may be of independent inter-
est. By getting rid of the prune-and-walk step, sliver peel-
ing makes the reconstruction process more parallelizable.
For the same reason, it also allows reconstruction of non-
orientable surfaces which is not possible with any of the ex-
isting algorithms.

The question of handling non-uniform samples with the-
oretical guarantees remains open. Our approach in section5
may very well have provable guarantees for locally uniform
samples. However, without any local uniformity, it is dif-
�cult to estimate the local density of the sample which is
required to estimate the ball sizes. Ideas from [FR02] may
be used to convert a non-uniform sample to a locally uni-
form sample and then apply the method in section5. Our
approcah does not handle noisy samples, an important case
which remains open.

Acknowledgments: We acknowledge AIM@SHAPE
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Appendix A: Proof of Proposition1

Proof The proof for the closed surface case in [CDR05]
takes the segmentxy, considers the closest point projectiong
of xy ontoS and then (a) puts an upper bound on the length
of g by a multiple of the length ofxy, and (b) bounds the
normal variation ong. In the argument for (a), the crucial
point is that forp 2 xy, the segmentpp0 from p to its pro-
jection p0 in S is normal toS at p0 and so there is an empty
tangent medial ballB at p0 whose center is in the ray from
p0 in the direction ofp and its radius is lfs(p0). The differ-
ence here is thatp0 may lie on¶S and sopp0 does not need
to be normal to the surface, but to its bounding curve; still
the same conclusion about the tangent ball holds. Using this
and arguing as in the Figure6 leads to the conclusion that
length(g) � 2kx � yk. The argument for (b) is the same as
for closed surfaces.
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Figure 6: The closest point q0 to q inS is in B0= B(q;kq�
p0k) but outside B. From this follows thatkq� q0k � 2kp�
p0k for suf�ciently smalle.

Appendix B: Proof of proposition3

Proof For the proof by induction onk we add to the con-
clusion thatK1 andK2 contain the same set of tetrahedra, if
any at all, and that the isotopy can be chosen to keepK1 \K 2
�xed. Whenk= 1,eande1 peels the same tetrahedron, sayt .
In this caseK0= K2. If e= e1, we haveK1 = K0and there is
nothing to prove. Ife6= e1, let K1 have the trianglest1; t2 of
t andK0have the trianglest3; t4 of t . Sinceeande1 are com-
patible and hence vertex disjoint, the two sets of trianglesare
disjoint. Hencet1 [ t2 can be deformed tot3 [ t4 with an iso-
topy that can keep all other points ofK1 �xed. In essence we
have an isotopy betweenK1 andK0 = K2. Clearly,K1 and
K0 = K2 contain same set of tetrahedra since both of them
are obtained fromK0 by peelingt .

Now considerk > 1. LetK0
e1;:::;ek� 1! K 0

1. First assume thate
peels a tetrahedron that is not peeled byek. Then it is peeled
by an edge in the sequencee1; :::;ek� 1. We can apply the in-
ductive hypothesis by which there is a sequencee0

1; :::;e0
k� 2

compatible withe1; :::;ek� 1 so thatK0 e0
1;:::;e0

k� 2! K 0
2 andK0

1
is isotopic toK0

2 with the same set of tetrahedra. Since the
isotopy keepsK0

1 \ K 0
2 �xed, the tetrahedron peeled byek

in K0
1 is also peelable atek in K0

2. Peelingek from K0
1 pro-

ducesK1. Peeling the same fromK0
2 producesK2. We have

K1 andK2 isotopic with the same set of tetrahedra and the
isotopy keepsK2 \ K 1 �xed. So, the sequencee0

1:::e0
k� 2ek

satisfy the inductive hypothesis.
Next consider the case whene peels the tetrahedron which
is peeled byek. We claim thate1; ::;ek� 1 peel the same se-
quence of tetrahedra inK0 as inK0. If not, let ej be the �rst
in the sequence which cannot satisfy this claim. Letej peel
t in K0. The only reason whyej cannot peelt in K0 is that
it is still incident to more than two triangles. But, that is im-
possible sincee1; :::;ej� 1 peeled same set of tetrahedra in
both andK0 has a subset of triangles that are inK0. Let K2

be such thatK0e1;:::;ek� 1! K 2.
Obviously,K0

e;e1;:::;ek� 1! K 2. Also notice thatK0
e1;:::;ek� 1e

!

K2. We also haveK0
e1;:::;ek� 1;ek! K 1. So, the difference be-

tweenK1 andK2 are made byek anderespectively. We have
argued for similar situation in the case whenk = 1. This ar-
gument implies thatK2 andK1 have same set of tetrahedra
and are isotopic where the isotopy keepsK1 \ K 2 �xed. We

havee0
1; :::;e0

k� 1 = e1; :::;ek� 1 satisfying the inductive hy-
pothesis.

Appendix C: Proof of Proposition4

We �rst prove the following proposition.

Proposition 11Leta = ker andke� 1=2. Letx be a smooth
point in ¶Ba (P). The angle between the normal of¶Ba (P)
atx and the normal ofS at x̃ is at most 2sin� 1(2=k).

Proof Consider a pointx in the interior facet of¶Ba (P),
lying on the boundary ofBa ( p) for p 2 P, and its closest
point x̃ onS. For convenience writeb = er. Soa = kb. Be-
causeke � 1=2 thena � r =2. We want to �rst bound the
angle\ pxx̃. The sampleq closest to ˜x lies in Bb(x̃) but out-
side of the medial ballsB = B(c;R) andB0 = B(c0;R) tan-
gent toS at x̃, whereR � r . See the �gure. Sop must lie
in cl(B(x;kq� xk) � B� B0). Under this situation,\ pxx̃ is
maximized by the angleq = \ vxx̃ as shown in the �gure.
Considering the medial ballB0, we obtain
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h
~

\ vx̃c0= cos� 1(b=2R)

Applying law of sines to triangle4 uxx̃ we have

sin\ uxx̃ =
b
a

s
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�

b
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�

and a second application to the same triangle gives
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Usinga � R=2, this implies the following bounds forh=a

1�
1
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�
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a
2R

�
�

h
a

� 1:

Then, applying the law of cosines to4 cvx, noting that
\ vxc= p � q and using sin2 q=2 = ( 1� cosq)=2, we have

sin(q=2) =

s
1
2

�
�

1�
h
a

�
�
�

1+
a + h

2(R� h)

�
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Using the bounds forh=a above anda � R=2, we obtain

sin(q=2) �

r

1�
h
a

�
1
k

r

1+
a
2R

�
2
k

and so

q � 2sin� 1 2
k

Now, note that\ pxx̃ is equal to\ ~px;nx̃, so we have found
that

\ ~px;nx̃ � 2sin� 1 2
k

:

Proof[Proof of Proposition4.] Let x = x(t) andq(x(t)) de-
note this angle. First assume thatx(t) is a smooth point in
¶Ba;t (P). We already observed thatx(t) remains smooth
in ¶Ba;t (P) for all t 2 [0;1]. Let W(t) � ¶Ba;t(P) be a
suf�ciently small smooth neighborhood ofx(t). Consider
the map f : W(0) ! W(t) given by f (w) = n(w) + ( 1 �
t)( i (w) � n(w)) wheren : W(0) ! S is the restriction of the
closest point map toW(0) andi : ¶Ba (P) ! ¶Ba (P) is the
identity. The derivativeD f maps the tangent spacesTW(0)
of W(0) to the tangent spacesTW(t) of W(t) and is given by
D f = Dn+( 1� t)(Di � Dn). Speci�cally, for a tangent vec-
tor t (0) 2 TW(0) at x(0) we havet (t) at x(t) wheret (t) =
D fx(0)(t (0)) = t x̃+( 1� t)( t (0) � t x̃) andt x̃ = Dnx(0)(t (0))
is a tangent toS at x̃. We see that tangent spaces are linearly
interpolated byt betweenTW(0) atx(0) andTS at x̃. Hence
the normals to¶Ba;t (P) at smooth points are also interpo-
lated linearly byt. It follows thatq(x(t)) is also interpolated
by t betweenq(x(0)) andq(x(1)) . Proposition11 provides
q(x(0)) � 2sin� 1(2=k). Clearlyq(x(1)) = 0. Thus, we have
q(x(t)) � q(x(0)) � 2sin� 1(2=k).
If x(t) is not a smooth point, a normal in ConvNx(t) can-

not make more than 2sin� 1(2=k) angle with any normal on
the boundary of ConvNx(t) since all these normals make at

most 2sin� 1(2=k) angle with the same surface normalnx̃. It
follows that any normal atx(t) makes at most 4sin� 1(2=k)
angle withnx̃.

Appendix D: Proof of Proposition8

Proof Let b be the boundary curve ofS containingx. The
tangent plane atx0 contains the �bergx and sonx0 lies in
a plane orthogonal togx. Thus, to determinenx0 one needs
to investigate what the slope of the surface is when mov-
ing in the direction orthogonal togx when seen as a func-
tion de�ned on the tangent planeTx (the tangent plane at
x). To be precise, sayx = ( 0;0;0) and x0 = ( µ;0;0), and
consider anothery0 = ( µ;D;dD) in the collar close tox0

whose closest point inS is y, that is,y02 gy. Thus, we have
that tan\ nxnx0 = d when D ! 0. We assumed � 0. Let
B = B(c;R) be the tangent ball tob at x with center ingx
and radiusR = lfs(x). Sincex 2 S then y lies in the cup
C = cl (B0 � B) whereB0 = ( y0; r) wherer = ky0 � xk =

p
µ2 + D2 + n2D2 (y cannot be further away fromy0 thanx).

See top �gure. Letz 2 C be the furthest point inC from x.
From the geometry we �nd that

r0= kz� xk = 2Rsin(\ xcz=2)

= 2Rsinarctan
D

p
1+ d2

p
D2(1+ d2) + ( R� µ)2

=
2D

p
1+ d2

1� µ=R
+ o(D):

Within B00= B(x; r0), all the medial balls aroundbatx (all of

x

x'

y'

y''

dD

c

D

z

B

B'

C

m

-mR

x
dD

D

x'

y''

y'

m

v

C'

R

r'

h

h
v

R

r'

radius lfs(x)) constraint the location ofy to a cone-like shape
C0 as illustrated in the middle �gure. Letv be the top most
point ofC0 (with highestzcoordinate). A simple calculation

shows that the height ofv is (see bottom �gure)h= r02

2R: Note
thath is second order inDwhile dD(the height ofy0 ) is �rst
order inD. By Proposition1, for x andy on b � S we have
the bound

\ nxny � c
kx� yk

R
;

© 2009 The Author(s)
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wherec is a constant. Now, writingy = ( y1; y2; y3), we know
y2 � r0 andjy1j; jy3j � k yk2=2R (as in the expression forh
above). Since\ nxny = \ ~xx0~yy0, then

tan\ nxny =

p
(y2 � D)2 + ( dD� y3)2

µ� y1

and so putting this together with the upper bound we obtain

c

q
y2

1 + y2
2 + y2

3

R
� tan� 1

p
(y2 � D)2 + ( dD� y3)2

µ� y1
:

>From here

c

q
y2

1 + y2
2 + y2

3

R
� tan� 1 maxfj y2 � Dj; jdD� y3jg

µ� y1
:

First, taking this inequality with the termjy2 � Dj in the max,
asD ! 0, we obtain (note thaty1; y3 are second order inD
and so they can be neglected)

D
1+ cµ=R

� y2 �
D

1� cµ=R
:

So

y2 � min

(
2
p

1+ d2

1� µ=R
;

1
1� cµ=R

)

D:

Next, taking that inequality with the termjdD� y3j in the
max, asD! 0, we obtain

d �
cµ
R

min

(
2
p

1+ d2

1� µ=R
;

1
1� cµ=R

)

= O(µ=R):

Appendix E: Proof of Proposition9

Proof Let F be formed by samplesp;q. Consider the empty
ball B(x;kp � xk). The closest point ˜x of x in S is on ¶S
by our collar extension and ˜x is in B. Since ˜x has a sample
within er, the radius ofB, kp� xk, is at mostµ+ er.
SinceB intersectsS and the radius ofB is O(er), it inter-
sectsS in a topological ball (apply the argument of Lemma
1.1 [Dey07]). The pointsp;q 2 S forming the Voronoi facet
F lie on its opposite sides. It means that the plane ofF in-
tersectsS and since it intersects it almost orthogonally, it
intersects¶Sas well.
The tangents of¶S and ¶Sµ at points ˜x andx respectively
are parallel by construction. Furthermore, the tangents atall
points of ¶S within B vary by O(ke) angle since any two
such points are withinO(ker ) distance. So, we measure the
angle between the normalnF and the tangentt x̄ at x̄ where
the plane ofF intersects¶S. This angle is withinO(ke) of
the angle\ t x;nF which we want to bound.
Consider the disk at which the plane containingxx̄ and t x̄
intersectsB. See Figure7. Clearly,\ t x̄;nF is no larger than
the angleq as shown in the �gure.

q

m

er

q
x
_

F

t

x

x
_

Figure 7: Proposition9

We obtain

cosq =
µ

µ+ er
=

k
1+ k

:

Therefore, \ t x;nF � \ t x̄;nF + O(ke) = O(ke) +
cos� 1( k

1+ k ) as claimed.

Appendix F: Proof of Theorem2

Proof First we verify that it is a manifold triangulation
homeomorphic toSµ. We need to show that each of the
restricted Voronoi face satis�es thetopological ball prop-
erty [ES94]: for Vt 2 VorP, Vt \ Sµ andVt \ ¶Sµ are topo-
logical balls of the appropriate dimension. The proof for the
closed surfaces applies here when there is no intersection
with the boundary. All that is essential is that Voronoi faces
that intersectSµ do so almost orthogonally [Dey07], which
is also the case here inside the collar according to Proposi-
tion 8. So it is only necessary to verify the ball property on
the boundary¶Sµ. By Proposition9, ¶Sµ intersects a Voronoi
facet at an angleO(ke) + cos� 1 2=3 for k � 2. This angle is
no more than 50� for suf�ciently small e. This �xed bound
is enough to carry out the standard proofs from the litera-
ture [Dey07] to establish that¶Sµ intersects Voronoi facets
and cells with topological ball property. Therefore, DelSµ(P)
is homeomorphic toSµ and hence toS asSµ andS are iso-
topic by our construction.
We argue that DelSµ(P) is indeed isotopic toS. Consider
S4µ. We project DelSµ(P) by the closest point map toS4µ.
Since the circumradii of the triangles in DelSµ(P) are at most
2µ, it can be shown that the closest point mapn : DelSµ(P) !
S4µ is injective [ACDL02]. The map also induces an isotopy
between DelSµ(P) and its imageT = n(DelSµ(P)) � S4µ. If
we show thatT andS are isotopic, we are done.
Let us examine the difference betweenT and S both of
which are contained inS4µ. Formally we de�neW = ( S�
T). The spacejWj cannot have any handle, boundary, or
Möbius bands sinceS does not have them and according to
surface classi�cation theoremS andS4µ should have same
number of them. Therefore, cl(W) is a set of cylinders pos-
sibly pinched at the points where¶S and ¶T intersect. A
natural deformation retraction from¶T over these cylinders
to ¶S is a witness to an isotopy betweenT andS.
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