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Abstract

We present an algorithm for the reconstruction of a surfadh Wwoundaries (including a non-orientable one)
in three dimensions from a suf ciently dense sample. It iargoteed that the output is isotopic to the unknown
sampled surface. No previously known algorithm guarantsetpic or homeomorphic reconstruction of sur-
faces with boundaries. Our algorithm is surprisingly simplt “peels' slivers greedily from aa-complex of a
sample of the surface. No other post-processing is necgséér provide several experimental results from an

implementation of our basic algorithm and also a modi

edsien of it.

Categories and Subject Descript@scording to ACM CCS) |.3.3 [Computer Graphics]: Surface Reconstruction—

1. Introduction

This paper is concerned with the design of a provably cor-
rect algorithm that can reconstruct surfaces withund-
aries in three dimensions. In the last decade a number of
algorithms for the problem of surface reconstruction have
been proposedyB99,ACDL02,ACSTD07BC00,FCOS05
HDD 92, JWS08 KBH06, OBA 03, PKKG03 WOKO05].
Among them, the ones that come with theoretical guaran-
tees AB99, ACDL02, BC00, Dey07 assume that the sam-
pled surface is smooth aralosed(compact and no bound-
ary). The proofs and the algorithms fail if boundaries are
allowed.

For a provably correct reconstruction algorithm, typigall
one looks for guarantees on the geometric and topological
similarities between the output and the sampled surface. Ge
ometric guarantees generally mean small Hausdorff distanc
between the sampled surfaSe R® and the output. Topo-
logical guarantee, however, may be of homotopy equiva-
lence, homeomorphism, or isotopy—listed in the increasing
order of topological similarity. It is desirable that thetput
be isotopic tdS. Isotopymeans that there is a smooth defor-
mation ofR® that brings the output t8 while maintaining a
homeomorphism between the two all the time.

The case of closed smooth surfaces is now well under-
stood. There exist established algorithms and software tha
can reconstruct such surfaces with isotopy guarantee from
point data AB99, ACDLO02] even if they are contaminated
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with noise Dey07. However, the important case &lr-
faces with boundarieis less understood. The theory of com-
pact reconstruction put forward by Chazal, Cohen-Steiner,
and Lieutier CCSL0§ applies to such surfaces. However,
this result only guarantees a homotopy equivalence between
the sampled surface and the output. In fact, the algorithm
which construct&-complexes may return a single point for

a disk. In this paper we show that a very simple algorithm
can reconstruct all smooth surfacgs R3, with or with-

out boundary, while guaranteeing an isotopy and a small
Hausdorff distance between the output &dhe algorithm
computes am-complex and then “peels' tetrahedra from it
greedily. No other post-processing is necessary. We argue
mainly about the isotopy since Hausdorff distance claim fol
lows from dense sampling.

For closed surface reconstructions, a fundamental prop-
erty used for proofs is that a closed surface is homeomorphic
(and isotopic) to the restricted Delaunay triangulatioraof
suf ciently dense point sample. (See Sectidn for a de -
nition of the restricted Delaunay triangulation.) As shawn
Section 4.1 and illustrated in FiguB this is not true for a
surfaceS with boundary. To overcome this problem we use
a collar extension o8. We show that a restricted Delaunay
triangulation of a suf ciently dense point sample®fs iso-
topic to this collar extension. We emphasize that the c@lar
only needed for the proof of correctness, it does not need to
be sampled or used in any way by the algorithm.

Reconstruction algorithms such as Crust and Co-
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cone AB99, ACDLO02] identify candidate triangles for the

reconstructed surface and then use a prune-and-walk ap-

proach to extract a manifold. Such an approach fails when
boundaries are present, since the pruning repeatedly e=smov
boundary triangles until no triangles are left. We present a
“sliver peeling' approach based on the following idea. We
prove the existence of@nonical peeling sequenoétetra-
hedra from ara-complex induced by deformation retrac-
tion of the associated union af-balls. For a closed surface
S, this sequence peels thecomplex to the restricted Delau-
nay triangulation which is known to be isotopic $0 Even

union ofa-balls for a seP is

[
Ba(P) =
p2 P

B(p;a):
The a-complexCa(P) of P is the restricted Delaunay com-
plex of P with respect tBa (P). That is,
Ca(P)= fs 2 DelP:Vs\B a(P) 6 ;g:
It is well-known thatBa(P) and Ga(P) have the same

homotopy type Ede9]. If P is a suf ciently dense sam-
ple from a shapeS, it is known thatBa(P) and Ga(P)

though one cannot compute the canonical peeling sequencepaye topological similarity t& for appropriatea [CCSLO6

in absence 08, we show that a greedy peeling produces an
output isotopic to that produced by the canonical peeling se

CSEHO5NSWO04. In particular,Ba (P) andCa(P) become
homotopy equivalent t& when the sample is suf ciently

quence. For surfaces with boundaries, the argument remainsgense CCSLOGNSWO0Y, a fact we need for our results.

essentially the same except that now one has to argue with

the restricted Delaunay triangulation of a collar extensio

Another problem that arises in reconstructing surfaces
with boundaries is the existence of non-unique solutions.
For instance, it can be impossible to distinguish between th
point sample of a sphere with a small disk removed and a

sphere which happens to not have any sample points in a

small disk. We use an input parametemwhich allows us
to distinguish between boundary regions and small regions
which have no sample points.

One noteworthy feature of our algorithm is that it can re-
construct non-orientable surfaces (necessarily open asmes
they are embedded iR3). Since there is no global orien-
tation of normals for such surfaces, it is dif cult to exttac
such a surface from a complex by any consistent walk. The
technique of sliver “peeling' resolves this problem.

Our algorithm works nicely for dense uniform samples in
practice as the theory predicts. However, it faces problems
when the sample is not uniform. We extend our basic “peel-
ing' algorithm to handle non-uniform samples and show ex-
perimental results for this modi cation. Our algorithm istn
geared to handle noise in data.

2. Preliminaries

Local feature size: We consider a smooth surfa@with
smooth boundarie§S. The surface normahy to S at x

is then well-de ned in the surface interior and also on the
boundary by taking théimit. At a boundary poiny 2 S,
there is also an open half-circle of normal directions whi t
two orientations of the surface nornmglas thelimit points.

The local feature size functiors a measure of the local
level of detail. For a closed surface, it is de ned as the dis-
tanced(x;M ), to the medial axi$1 of the surface AB99].

For a smooth surface with smooth boundaries, this is still
well-de ned but does not capture the required minimum
sampling (to see this, consider for example a at disk). We
consideM © the medial axis of the boundafis separately
and de ne:

Ifs(x) = minfd(x;M ); d(x;M 0)+ d(x 1S =2g:

Note that theV °can intersect the surfaGand sad(x;M 9
may be zero. However, dl(x; M 0) is zero, therx is “far”
from S and so If$x) is still non-zero.

With the above de nition of Ifs, Propositiod extends
three essential properties of closed surfaces to surfaitks w
boundaries. For a triangtewe usen: to denote its normal.
Unless speci ed otherwise we measure angles between vec-
tors by the acute angle made by their supporting lines. The
notationO(e) means a value that is less themfor some

. . > i i
We set up some basic notations and concepts that are neede&ons’[an'C 0 wheneis suf ciently small.

to describe the reconstruction algorithm.

2.1. Complexes, feature size, and sampling

Voronoi and Delaunay Complexesfor a point seP RS,
we use VoP and DeP to denote the Voronoi and Delaunay
complexes ofP. The Voronoi cell ofp is Vp. The Voronoi
face dual to a Delaunay simplex2 DelP is denoted/s. The
restricted Delaunay complexf P with respect to a topolog-
ical spaceX R%isDelx(P)= fs 2 DelP: Vs\ X6 ig.

Alpha-Complex: For a > 0, the a-ball of p, denoted
B(p;a), is the closed ball centered piand of radiusa. The

Proposition 1 Let e 1 andx;y;z2 S. If kx yk =
O(e)lfs(x) and the circumradius of = 4 xyz is at most
O(e)lfs(x), then:

(i) (Normal variation is small) nxny = O(e),

(i) (Short edges are close to tangentesy p=2 O(e),

(iiYSmall triangles are almost parallel to the surface)
\ ntnx = O(e).

Essentially the same prooAB99, ACDL02] applies here

as for the same properties for closed surfaces once (i) is
established. The proof of (i) can be carried out along the
lines presented inGDRO0Y. Although the de nition of Ifs

in [CDRO0A] differs from the one used here, for a pok® S,
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Ifs(x) remains smaller than the medial balls touchihgt x
which is essential for the proof to go through. See appendix
for the proof.

Sampling condition: The standard sampling condition re-
quires that for anyx 2 S, B(x;elfs(x)) contains a sam-
ple [AB99]. In the presence of boundaries, this is not suf-
cient for correct reconstruction. There is no unique tight
ening of the condition. We use a global measure

infy slfs(x) and de neP to be ane-sample ofS if B(x; er)
contains a point irP for anyx 2 S. We do not require the
boundaries to be sampled by poihtig on them. Requiring
such a sampling of the boundaries would make the problem
easier but less realistic.

2.2. Peeling tetrahedra

Our idea is to compute a subcompkéxof an alpha complex
Ca(P) for suf ciently small a and then peel tetrahedra from
it to arrive at a triangulated surface. The existence and com
putation of the peeling order are justi ed by a deformation
retraction of the ball unioBa(P). Before describing this

retraction, we elaborate on tetrahedra peeling and observe

some of its key properties.

Lets 2 K be a tetrahedron with an edgeandts;t, be
two triangles ofs incident toe. We says is peelableby e
if no triangles other thaty andt, are incident toe in K.
A new complexK0 is obtained by removing the collection
of simplicesf s;ty;tp; eg from K. In that case we sa&ois
obtained bypeeling efrom K and writeK 1k %A peeling
takes out two triangles of a tetrahedron while leaving the
other two. IfKCis obtained fromK by peeling a sequence
% © A peeling does
not delete any vertex and therefore the vertex sé€ @ind
K °remains the same.

.....

We need one more de nition before stating our generic
results on peeling. Two edge sequentegy andfgig by
which a compleX is peeled are callecdompatibleif for all
pair of edges 2 f g andg 2 f gig wheree andg peel the
same tetrahedron IK, eithere= g or eandg are vertex dis-
joint. Essentially two compatible peeling sequences peel a

tetrahedron either at the same edge or at two vertex disjoint

edges if both of them peel it. Two such sequences may dif-
fer in length. Figurel illustrates how compatibility ensures
isotopy. The peeling of vertex disjoint edges and es in
sequencebey; e1g andf e3; exg leads to isotopy.

Our main observation is Propositi@below which says
that if a simplicial 3-complex is peeled by two compatible
sequences both of which remoatt tetrahedra, the resulting
2-complexes are necessarily isotopic. Notice that we do not
require any extra condition on the input 3-complex for this
proposition. Its proof by induction uses Proposit®whose
proof appears in the appendix.
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Figure 1: The sequenced®,; e;g andf e3; e,g are compati-
ble, butf e4; e1g is not compatible with either of them.

Proposition 2 SupposeK g i;___a simplicial 3-complex with
k

Proof We prove by induction ok. Fork = 1, Kq has a sin-
gle tetrahedron which is peelable by andg;. If e; = g3,

K1 = K. If e1 6 g1, they are opposite edges of the single
tetrahedron irKo. Clearly, peeling bye; andg; gives two
isotopic complexes. We now assume that for &y k the
proposition is true and verify it fok. Let Ko Pk 2 Since
fgigandf e; e;:::; exg are compatible, by Propositid@be-
low there is a sequende; ed;:::;6) ;g of edges compati-

) o el .
ble with fey;:::; e so thatK ‘ _____ K 3 whereKs is
isotopic toK 1. By assump’[iort(ogz’q.3 """ % 2, and also the

ible since both of them are compatible with;; e;:::; &Q.
Then, by inductive hypothesi§é, andK 3 are isotopic which
implies thatk , andK 1 are isotopic. [

Proposition 3 SupposeK is a simplicial 3-complex with

Ko
with eg;:::; e so thatk g 1% Cande peels a tetrahedron that
is peeled by some edge in the sequemce:; e. Then, there
is a sequenced;:::;e) ; compatible withey;::; e so that

0e‘l’:::;qﬂJ o .
KO ™ K, andK is isotopic toK ».

3. Closed surface

For simplicity rst we assume that the sampled surface has
no boundary and then describe the modi cations needed to
accommodate boundaries. Propositbmotivates the fol-
lowing approach:

a. Consider aa-complexK spanning the input point set



. Prove that there is@nonical edge sequenagich peel
all tetrahedra fronK and the resulting complex is the
restricted Delaunay triangulation DgP).

. Unfortunately, this canonical sequence is impossible to
compute in absence & So, algorithmically nd another
peeling sequence which peels all tetrahedra fkom

. Prove that the peeling sequence adopted by the algorithm
is compatible with the canonical sequence. Appeal to
Proposition2 to claim that the resulting complex is iso-
topic to Delg(P).

3.1. Canonical edge sequence

We are interested in the interpretation of the retraction
ret(x;t) in the context of sub-complexes of DRIWe de ne

Ba;t(P) = fret(x;t) :x2Ba(P)g andCa;t(P) = Delg,p)(P):
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el (5]

Figure 2: Sweeping a Voronoi vertex.

To show the existence of a canonical edge sequence, we de-2t the edge, sag, dual to the Voronoi facet containing

ne a deformation retraction rét;t) on R® which retracts
Ba(P) to the surfacé&. For any non medial axis poirt2 RS,
let X be its closest point 08. De ne

retix;t)= X+(1 t) (x X fort2[0;1]:

If a is suf ciently small, this deformation retraction is a wit-
ness to the homotopy equivalence betwBgnandS. This
deformation retraction is reminiscent of the ow function
used in Ede03 GJ0J. However, a key difference is that
we consider distances to the surf&imstead of distances to
the samplé~.

andey. The subsequence of edges l&é&om the canonical
simplex sequence form the desired canonical edge sequence.

The above argument dwells on two facts: (i) Voronoi

facets and edges interséi3a;t(P) transversally, and (ii) all
tetrahedra irCa (P) are slivers. We show these two facts.

3.2. Transversal intersections

To talk about transversal intersections between Voronoi

edges, facets anfBa:t(P), we need to de ne a notion of
normals tofBa:t(P) since it is not necessarily a smooth sur-
face. ConsideffBa(P) = 1Ba:o(P). This is the boundary

of a spherical polyhedron. The boundaries of the facets in
this spherical polyhedron constitute non-smooth regions i
1Ba(P). A pointx(t) 2 Ba:t(P) is given byx(t) = X+(1

t)(x X) wherex 2 {Ba(P). It follows thatx(t) is a smooth

Observe thatBa(P) = Ba.o(P) retracts toS = Bga.1(P).

In the dual a-complex Ga(P) = C,.0(P) retracts to the
restricted Delaunay triangulation Bg€P) = C,.1(P). Let
s1;::;sn denote the sequence of simplices removed from
Ga;t(P) as Ga(P) = Gyo(P) transforms to De(P) =
Ga:1(P). We calls1;:::;sn the canonical simplex sequence
for Ga(P). We argue that the subsequence of edges in this
simplex sequence indeed peels all simplices in the sequence
and thus form a canonical edge sequence we are looking for.

Let us look at howBa:t(P) sweeps over the Voronoi di-
agram. Wher[Ba:t(P) sweeps over a Voronoi vertex, edge,
or a facet completely, their dual simplices get removed from
the restricted triangulatio@a;t(P). If all Voronoi edges and
facets intersectingga:t(P) intersect its boundar§iBa:t(P)
transversally, they go out @a:t(P) only when a Voronoi
vertex is swept over. This meaf@s;:(P) only changes when
a tetrahedron is removed. Now let us look at hfiBa:t(P)
sweeps over a Voronoi vertex In Figure2, the vertexv is
about to be swept when the dual tetrahedsds peeled. Itis
proved in Propositiol thats is aslivertetrahedron (see sec-
tion 3.3for de nition) if a is small. In particular, this means
two of the Voronoi edges incident tanake large angle close
to p with v¥ and the other two make small angle close to 0
with it. As a result wherv is swept over, exactly two of the
Voronoi edges, sag, ande,, incident tov leaveBa:t(P).
Interpreting dually, the tetrahedrenis peeled fronCa:t(P)

pointin{Ba:t(P) if xis smooth iMfBa (P). For a non-smooth
pointx(t) 2 Ba;t(P), consider the set of normalgy) that
are limit points of the normals to the smooth points in any
neighborhood ok(t). The normal cone at(t) is given by
the convex hull @nv Ny, .

We rst establish a bound on the angles between normals
to Ba(P) at smooth points and the normals $fand then
extend the bound for all points ffBa:t(P),t 2 [0; 1]. Propo-
sition4 is proved in the appendix. Recall thatis assumed
to be ane-sample ofS.

Proposition 4Leta = ker andke 1=2. Letx be any point
in 1Ba:t(P). The normal offiBa:t(P) atx and the normal to
SatxXform an angle of at most 4sirJr(2=k).

Let us now consider a pointon a Voronoi facet or edge
thatfBa:t(P) is about to sweep. LeeB8 a 6er + O(er).
For this choice ofa, we havek = 6 in Proposition4 which
assures that a normal to a poiton Ba:t(P) makes an
angle of at most 4sin*(1=3) 80 with the surface nor-
mal atX. By Propositionl, the Voronoi edges and facets
intersectingBa:t(P) make an angle 0D(e) with the sur-
face normals. A standard calculation reveals that they-inte
sectfBa:t(P) with an angle of at most 4siriL(1:3) + O(¢)
which is smaller thang if eis sufciently small. There-
fore, Voronoi edges and facets cannot inter§@gtt (P) tan-
gentially implying that all peelings are associated with a
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Voronoi vertex going out oBa:t(P). Thus, a canonical sim-

at which tetrahedra are peeled which effectively removes al
of fsy;:::;sng. We have:

Proposition 5For e a  6er + O(er), letK = Ga(P).
There is a canonical edge sequerfeg;ey:::;exg where

K &% % Delg(P).

3.3. Slivers and top-down peeling

Now we show that all tetrahedra @ (P) are 2-2-at. We
also refer to them asliversalthough strictly speaking they
may not be slivers by standard de nition in meshing. A tetra-
hedrons is callede- at if all normals to its triangles differ
by O(e) angle. For a suf ciently smak, ane- at tetrahedron
can only be in two con gurations with respect to the internal
dihedral angles at its edges. These internal dihedral angle
are eithep O(e) or O(e). If two angles argg  O(e) and
other four aréd(€), we say itis a 2-2at tetrahedron (corre-
sponds to slivers.) Otherwise, when three anglep ar®(e)
and the other three af@(€), we say it a 1-3at tetrahedron.
No other con guration is possible for am at tetrahedron.

Proposition 6 Leta = O(e)r. Fort 2 [0;1] lets 2 Ca:t(P).
(i) If s isatriangle\ nsnp = O(e) wherep is any vertex of
s. (i) If s is atetrahedron, itis 2-2- at.

Proof (i) Since the dual Voronoi edge is intersected by
Ba:t(P), the circumradius of is at mosta = O(e)r. The
claim follows from Propositiori(iii). (ii) First observe that

s is ane- at tetrahedron due to (i). I§ were 1-3- at, there is

a vertexp of s which subtends a solid angle close o Zhe
line of the normahy intersects the opposite trianglef s,

for otherwisenp has to be almost parallel tocontradicting
Propositioni(iii). We now apply the argument of Lemma 11
of [ACDLO2] to claim that this is impossible. []

Let us now go back to the scenario when a Voronoi vertex
v is about to be swept over. The edgat which the dual
tetrahedron of/ is peeled, subtends a large dihedral angle
p O(e). We use this observation to ensure a compatible
edge sequence in the algorithm. The following de nition
helps. We say a 2-2- at tetrahedron is peeteg-downif

with the canonical one, we obtain a 2-complex isotopic to
Delg(P). Our algorithm below nds such a sequence.

PEeL(P,a)

1. Compute the-complexK := Ga(P);

2. While there is a peelable tetrahedrorKinpeel it
top-down;

3. Output the resulting 2-complex.

Theorem 1Foréer a 6er+ O(er) the algorithm BEL
computes a subcomplex G (P) that is a manifold triangu-
lation isotopic taS, and is within a small Hausdorff distance.

Proof First, we argue that the algorithm peels all tetrahedra
from Ga(P). By Proposition5 there is a canonical edge se-
LE Delg(P).

Suppose that the algorithm gets “stuck” with tetrahedra

hedron among these that rst appears in the canonical se-
quence of peeling. Sincg is rst, the canonical sequence
nds s peelable at a moment when all of the other j 6 i,

are still present. This is a contradiction and our algorithm
should also nds; peelable.

. ey .
peelsCa(P), thatis,Ga(P) ! T whereT is the output
complex. In the canonical sequenegey;:::; e, each peel
is top-down. Each peel conducted by the algorithm is also
top-down. Therefore, the sequendesg andf e,°g are com-
patible (Propositiorv). By Proposition2, T is isotopic to
Delg(P). The claim about Hausdorff distance follows from
standard calculations a6 consists of triangles with small
circumradii, seeAB99,Dey07. [

4. Surface with boundaries

We show that the algorithme®L computes a surface iso-
topic to S even if S has a non-empty boundary. A rst dif-
culty to overcome is that a surface with boundaries do not
necessarily admit a restricted Delaunay triangulationctvhi

is homeomorphic to the surface no matter how dense the

it is peeled at an edge subtending a large dihedral angle of sample is. We use a collar extension to counter this difgult

downif all tetrahedra are peeled top-down by the sequence.
Since any top-down edge sequence peels a 2-2- at tetrahe-

4.1. Collar extension

dron only at edges that subtend large dihedral angles, two Recall that we do not require the boundary curves of the sur-

such sequences must be compatible.
Proposition 7 For a complex containing only 2-2- at tetra-

hedra, any two top-down peeling sequences are compatible.

3.4. Algorithm

face themselves be well-sampled. Under this conditiorafor
good sample, DgJ(P) may not be an isotopic or homeomor-
phic reconstruction df (though it is homotopy equivalent to
it). See the picture on left in Figui& The restricted Delau-
nay triangulation there is not a proper manifold (there is a
pinching at the boundary). This can be repaired though by
considering the Delaunay triangulation restricted to tlre s

We already indicated that we cannot determine the canonical face with addectollar. Let x be any point in the boundary

sequence becauskis not known. But, thanks to Proposi-
tion 2, if we nd any edge sequence féf that is compatible

© 2009 The Author(s)
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1S. Consider the tangent beg atx that is perpendicular to
fSatx. A segment of this ber of lengtuis denotedy;. Let
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Figure 3: Left: The restricted Delaunay triangulation in the
“almost' planar con guration has a non-manifold feature in
its boundary. Right: The collar is obtained by extendingyfro
every boundary point x a “ ber” in the tangent plane at x.

Su= S[f g qs- See the picture on right in FiguBz It is
a standard result in differential topology that every srhoot

surface can be extended with a collar while maintaining an

isotopy if the extension lengthis suf ciently small.

We need to investigate how much the normal changes

within the collar compared to the normal at the original

boundary. Note that the normal can indeed change along an

extension ber. The following proposition is proved in the
appendix.

Proposition 8 Let x be a boundary point angd; its exten-
sion ber. ForxX’2 ¢t Sy with kx x% p we have
tan\ nxny = O(p=r).

Finally, we want to show that the Delaunay triangula-
tion restricted tdS,, is a good canonical reconstruction when
p= O(re) is chosen appropriately. For a suf ciently small
W, the bound on the normal in the collar implies that Voronoi
edges and facets inters&}t almost orthogonally in the col-
lar (which is already known fog). We also need a similar
fact for the boundar{iS,..

Proposition 9 Let p= ker. Let F be a Voronoi facet that
intersectsSy atx. If tx is the tangent t§Sy atx andng is
the normal toF, then\ tx;ne  O(ke)+ cos 1 X where
eis suf ciently small.

Standard argument®gy07] using the near orthogonality

between the surface and Voronoi faces provide the following

result (see appendix for a proof).

Theorem 2For 2er  p 2er + O(er), Delg,P is a mani-
fold triangulation isotopic t&y wheneis suf ciently small.

4.2. Boundary and peeling

We follow PEgL to remove tetrahedra fro@, (P). Assume
thatéer a 6er+ O(er) as before. One problem we now
face is that not all points iBa (P) project in the interior o5

by the closest point map. Observe that the proof of Proposi-
tion 4 still remains valid for surfaces with boundaries. There-

fore, at a poink 2 B 4:t(P) on a Voronoi facef, the segment

xX makes small angle with a normal §8a:t(P). But, unlike
the closed surface cas& may not be almost parallel tb
because ikTs on{S, the angld xX; nz could be large (recall
the de nition of surface normals at boundary points). We
cannot claim that a Voronoi face Ba:t(P) is never tangent
to Ba:t(P).

As a remedy we consider extendiBdgyy a small amount
so that all points irBa(P) project in the interior of the ex-
tendedS. This requires a slightly larger balls in the union
to contain the extended surface inside. This larger union
sweeps over all Voronoi faces it intersects, but we only $ocu
on the subset of the Voronoi faces which interdgg(P).

Proposition 10 Any point in Ba(P) projects to an interior
point in Sz,.

Proof Let x be any point irBa(P). If x projects normally to
the interior ofS, it does so for anyy, if pis small. Consider
X projecting to a poink in {S. The closest point of on the
surfaceSy, 1> 2a, cannot be further away thamZrom X.
It follows thatx projects to the interior oy forp  3a. [

ConsiderB44 (P). Observe that any point i3, is within
adistance oér+ 3a 4a from a sample point. It means that
B4a (P) containsSz,. We consider the retraction &g, (P)
to Sza. This retraction de nes a canonical sequence of sim-
plex deletions reducin@u, (P) to Dels,, (P). We are inter-
ested in the restriction of this sequence to the simplices of
Ca(P). Because of Propositioh0, we can argue similarly
as in the closed surface case that a Voronoi fad&ifP) is
never tangent tfiBaa 1 (P) if6er a  6er+ O(er). There-
fore the canonical sequence of deleted simplice&i(P)
indeedinducesan edge sequence at which all tetrahedra in
Ca(P) are peeled top-down. This is the canonical sequence
of peeling we consider fota (P).

There is one more difference from the closed surface case
that we need to address. In the closed surface €aée)
retracts to Deg(P). Here, since we are considering the re-
traction ofB44 (P), we cannot claim that the induced peeling
of Ga(P) will provide Delg(P).

Let K be the complex produced by the canonical peel-
ing of Ga(P) induced by the canonical sequence of simplex
deletions inC45 (P). First notice that sinc€y, (P) retracts
to Dels,, andK is obtained by restricting this retraction to
Ca(P), we havekK Dels,, (P). Also, since De,,, (P)

Dels,, (P) and Ga(P) contains De,, (P) for a > 3er,
we have Deg,, (P) K .Inessence, Dgl, (P) K

Dels,,, thatis K is sandwiched between two triangulations
both of which are isotopic t8. This leads to the main result
of this paper.

Theorem 3Let P be ane-sample of a smooth compact sur-
face with boundary. For suf ciently smadl> 0 and &r <

a 6er+ O(er), PEEL(P,a) produces a 2-complek iso-
topic toS.

Proof The algorithm BEL computes (P) in step 2. Con-
sider the compleX produced by the canonical peeling in

© 2009 The Author(s)
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Figure 4: From top to bottom, left to right: Reconstruction of Dingchlio, Venus, Botijo, Volcano, Pegasus, Tree, and Mdbius

band from uniform samples.

Ca(P) induced by the canonical peeling @f; (P). First we
argue that ifK is isotopic toS, our algorithm produces a
complex that is isotopic t8& as well.

Let e;ep;::1; 6 be the canonical sequence of edges where

G(P) ¥=% | Since all Voronoi vertices dual to the
tetrahedra irCa (P) project normally to the interior 0834,

the canonical peeling is top-down. We can apply the same
argument as in Theoretto claim that the algorithm nds

a peeling sequence which reducegP) to a 2-complexT
whereK andT are isotopic. Henc& is isotopic toS if K

is isotopic toS.

We argue thakK is indeed isotopic t&. For convenience
we write Ry = Dels,,, (P) andR, = Dels,,. We haveRy

K R,. By theoren®, R; andR, are isotopic t& and thus

are isotopic to each other. AlsK, is homotopy equivalent

to Ga(P) since each peel maintains a homotopy equivalence
between the complexes before and after the peelGafg)

is homotopy equivalent t6 to begin with CCSLO0S.

First we observe a property of the complex that represents
the difference betwedR; andR,. Formally, letW = cl(R,

R;). The spacgWj cannot contain any handle or Mdbius
band since thermR; will have different topology tharR,.
Next we prove thakK is a manifold.

We introduce the following de nition for convenience. For a
vertexvin a complexK, let Ty denote its star. If the underly-
ing spacgTyj is a topological disk, andis in the interior of
jTvj, we sayv is completein K. If jTyj is a topological disk
butv lies on the boundary, we sayhas a half-disk neighbor-
hood inK. Observe that each complete verteXRpfremains
complete inK andR,. Also, the vertex set oR;, R, and

K is same. These two facts imply that each bounda¥ in

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Associatiash Biackwell Publishing Ltd.

andR; is generated from the boundariesRf by possibly
attaching triangles among boundary vertices. Since cannec
ing vertices across different boundaries would requiantri
gles with edges larger tham4boundaries oK andR; are
generated by attaching triangles that connect boundary ver
tices in the same boundary Bf.

Now consider an incomplete vertexof K . Sincev is a
boundary vertex iRy, we can assume thatis in a bound-
ary b in Ry. If v does not have a half-disk neighborhood in
K , itis incident to at least two boundariesknh which is
generated fronb. But thenK would contain more bound-
aries tharR; or R, since each boundary &, also provides

at least one boundary i . This is because an incomplete
vertex inRy also remains incomplete id . Since the dif-
ference K R;) W has no handles and Mébius bands,
K has same number of handles and M&bius bands@sg.in
Then,K cannot have different number of boundaries from
R; sinceK andR; are homotopy equivalent. It follows that
K is a manifold since it has vertices which are either com-
plete or have a half-disk neighborhood.

Now we examine the space of Kl  R;) more closely. A
boundary, sajooin K is generated from a boundanyn Ry

by possibly attaching triangles between verticed.oFur-
thermore, a single boundatyin R; generates exactly one
boundary inK . The space bounded lhyandboin K does
not have any handle, boundary, or Mébius strip. This means
bandb’bounds a cylinder which is possibly pinched at com-
mon vertices ofb and b°. There is a natural deformation
retraction ofK to R; de ned by the obvious deformation
retraction ofoios tob;s along these cylinders. This deforma-
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tion retraction is a witness to an isotopy betwé&enandR;. of simplices whose dual Voronoi elements intersect the co-
SinceR; is isotopic toS, we have the claimed result.[] cones ACDL02,DGO1] is considered. The rationale is that
this subcomplex contains the restricted Delaunay trisagul
tion of the surface and at the same time inherits a canoni-
5. Extensions and experiments cal edge sequence from the retraction of P@). Figure5

We implemented BEL and some results are shown in Fig-  SNOWs the results of this extension.

ure4. When the sample is uniformly densez B produces
correct results as these examples show. The output is a 2-6. Concluding remarks
manifold without any artifact. We can even reconstruct non-
orientable surfaces such as the Mdbius band example in Fig-
ure4. We chose tha to be a factor (six times) of the largest
nearest neighbor distance among the given points. Since all
these examples have almost uniform sampling, this choice
worked nicely con rming our theory.

Our results on sliver peeling may be of independent inter-
est. By getting rid of the prune-and-walk step, sliver peel-
ing makes the reconstruction process more parallelizable.
For the same reason, it also allows reconstruction of non-
orientable surfaces which is not possible with any of the ex-
isting algorithms.

In practice, however, the data are often non-uniform. We
made adjustments to our algorithm to handle non-uniform
data. We emphasize that if the data is a non-uniform sample
of a surface with a boundary, there is a theoretical hurdle to
reconstruct it provably. It stems from the fact that the same

sample can be dense for two topologically different sugace required to estimate the ball sizes. Ideas fréfR0J may
if boundaries are allowed. Therefore, there is no unique cor be used to convert a non-uniform sample to a locally uni-
rect reconstruction. We employ a heuristic to handle non- ¢, sample and then apply the method in secorOur

uniform samples of surfaces with boundaries. approcah does not handle noisy samples, an important case
If the input is non-uniform, there may be no glokzafor which remains open.

which ana-complex may contain an isotopic triangulationto  Acknowledgments We acknowledge AIM@SHAPE

the sampled surface. Since nearest neighbor distances maygatabase for models and the NSF grant CCF-0635008 for
vary widely if non-uniform density is allowed, & tting nancial support.

local density cannot be estimated from them. Instead we pro-
pose to estimate the local density at each input point and the
take a ball around the point whose size respects the estimate
density. As before, we consider the union of balland peel [AB99] AMENTA N., BERN M.: Surface reconstruction by
tetrahedra from the restricted Delaunay complex Xé). voronoi ltering. Discr. Comput. Geom. 2999), 481-504.
Notice that if the balls are not too large or too small with [ACDLO2] AMENTAN., CHOI' S., DEY T. K., LEEKHAN.: A
respect to local feature sizes, the Voronoi elements iet#rs tsé?:gf il%oonr:]hpﬂg(g:gmeg? ngfiz:ﬁzﬂga&ég??sgﬂgﬁ
ing U will do so transversally and therefore a deformation

. . . . [ACSTDO07] ALLIEZ P., COHEN-STEINERD., TONG Y., DES-
retraction ofU would induce a canonical edge sequence in BRUN M.: Voronoi-based variational reconstruction of unori-

the restricted complex. ented point sets. IfProc. Sympos. Geom. Processi(2p07),
pp. 39-48.

[BCOO] BOISSONNATJ. D., CazALS F.: Smooth surface recon-
struction via natural neighbor interpolation of distangadtions.

The question of handling non-uniform samples with the-
oretical guarantees remains open. Our approach in segtion
may very well have provable guarantees for locally uniform
samples. However, without any local uniformity, it is dif-
cult to estimate the local density of the sample which is
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Appendix A: Proof of PropositiorL

Proof The proof for the closed surface case @OR0Y
takes the segmeny, considers the closest point projectign

of xy onto S and then (a) puts an upper bound on the length
of g by a multiple of the length oky, and (b) bounds the
normal variation org. In the argument for (a), the crucial
point is that forp 2 xy, the segmenpp0 from p to its pro-
jection p°in Sis normal toS at po and so there is an empty
tangent medial balB at pO whose center is in the ray from
pYin the direction ofp and its radius is Ifg%. The differ-
ence here is thabo may lie onfS and sopp0 does not need

to be normal to the surface, but to its bounding curve; still
the same conclusion about the tangent ball holds. Using this
and arguing as in the Figuleads to the conclusion that
lengtlg) 2kx yk. The argument for (b) is the same as
for closed surfaces. [
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Figure 6: The closest pointto qinSis in B°= B(q;kq
p%) but outside B. From this follows thaty g% 2kp
p% for suf ciently smalle.

Appendix B: Proof of propositior8

Proof For the proof by induction ok we add to the con-
clusion that< ;1 andK , contain the same set of tetrahedra, if
any at all, and that the isotopy can be chosen to kegiK »
xed. Whenk = 1, eande; peels the same tetrahedron, say
In this cas&K %= K. If e= ey, we havek ; = K %and there is
nothing to prove. I£6 ey, letK; have the triangle ;t, of

t andk ®have the triangle;t4 of t. Sinceeande; are com-
patible and hence vertex disjoint, the two sets of triangtes
disjoint. Hence; [ t» can be deformed @[ t4 with an iso-
topy that can keep all other pointsif xed. In essence we
have an isotopy betwedf; and KO= Ko. Clearly,K1 and

K%= K, contain same set of tetrahedra since both of them

are obtained fronk g by peelingt.

peels a tetrahedron that is not peeledspyThen it is peeled

by an edge in the sequeneg ::;;& 1. We can apply the in-
ductive hypothesis by which there is a sequegte::; €0 ,

.....

is isotopic toK J with the same set of tetrahedra. Since the

isotopy keepK?\K 9 xed, the tetrahedron peeled b
in K¢ is also peelable a in K9. Peelinge from K¢ pro-
ducesK 1. Peeling the same fromg produceK,. We have

K1 andK, isotopic with the same set of tetrahedra and the

isotopy keeps»\K 1 xed. So, the sequence’::e) L&
satisfy the inductive hypothesis.

Next consider the case wherpeels the tetrahedron which
is peeled bye. We claim thate;;::;ex 1 peel the same se-
quence of tetrahedra i%as inK . If not, letej be the rst

in the sequence which cannot satisfy this claim. &epeel

t in Ko. The only reason whg; cannot peet in KCis that

it is still incident to more than two triangles. But, that ims-i
possible sincee;;::;;e; 1 peeled same set of tetrahedra in
both andK ° has a subset of triangles that areKip. Let K,

be such thal(oél"_!.'.’?‘ K .

Obviously,Ko “ "% K ,. Also notice thatk g ™1
tweenK 1 andK » are made by, anderespectively. We have
argued for similar situation in the case when 1. This ar-
gument implies thaK, andK 1 have same set of tetrahedra
and are isotopic where the isotopy keéps\K , xed. We

haveed;:::;e) ; =
pothesis. [

Appendix C: Proof of Propositiort
We rst prove the following proposition.

Proposition 11Leta = ker andke 1=2. Letxbe a smooth
point in Ba(P). The angle between the normal f8a (P)
atx and the normal o8 atXis at most 2 sin %(2=k).

Proof Consider a poink in the interior facet offBa(P),
lying on the boundary oBa(p) for p2 P, and its closest
pointXonS. For convenience writb = er. Soa = kb. Be-
causeke 1=2 thena r=2. We want to rst bound the
angle\ pxX. The sampley closest taxTies in B, (X) but out-
side of the medial ball8 = B(c;R) andB®= B(c® R) tan-
gent toS at X, whereR r. See the gure. S@ must lie
incl(B(x;kq xk) B BO). Under this situationy pxX is
maximized by the anglg = \ vxX as shown in the gure.
Considering the medial bai®, we obtain

\ v&’= cos 1(b=2R)

Applying law of sines to triangld uxX we have
s
. ._ b b
= _ +
sin\ uxx a 1 >R

and a second application to the same triangle gives

ov } 1
@Pu b 2 b a2 b b
= e = A -
h=a 1 a 1 2R :

a 2R

Usinga R=2, this implies the following bounds fdr=a
1 a h
el xr a

Then, applying the law of cosines # cvx noting that
\ vxc= p gandusing si?‘nq=2: (1 cosy)=2, we have
s

. 1 h
sin(g=2) = > 1 2

a+h
+
2(R h)
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Using the bounds fdn=a above anda  R=2, we obtain
r r

S h 1 a 2
sin(g=2) 1 a K l+§q K
and so
.12
g 2sin K

Now, note thal pxXis equal to\ px;ng, so we have found
that

2sin lg:

\ pxng K

O

Proof[Proof of Propositiom.] Let x = x(t) andq(x(t)) de-
note this angle. First assume thdt) is a smooth point in
fBa:t(P). We already observed thaft) remains smooth
in 1Ba:t(P) for all t 2 [0;1]. Let W(t)  TBax(P) be a
suf ciently small smooth neighborhood of(t). Consider
the mapf : W(0) ! W(t) given by f(w) = n(w)+(1
t)(i(w) n(w)) wheren:W(0)! Sis the restriction of the
closest point map t@V/(0) andi : Ba(P) ! 1Ba(P) is the
identity. The derivativeD f maps the tangent spac&sV(0)

of W(0) to the tangent spac&3dN(t) of W(t) and is given by
Df =Dn+(1 t)(Di Dn).Specically, for atangent vec-
tort(0) 2 TW(0) atx(0) we havet (t) atx(t) wheret(t) =
Dfygy(t(0)= tx+(1 1)(t(0) tx) andtz= Dnyq(t(0)

is a tangent t& atX. We see that tangent spaces are linearly
interpolated byt betweenT W(0) atx(0) andTS atX Hence
the normals td[Ba:t(P) at smooth points are also interpo-
lated linearly byt. It follows thatq(x(t)) is also interpolated
by t betweenq(x(0)) andq(x(1)). Propositionll provides
q(x(0)) 2sin 1(2=k).CIearIyq(x(1))= 0. Thus, we have
ax(®)  a(x() 2sin *(2=k).

If x(t) is not a smooth point, a normal ino@v N can-
not make more than 25ir+(2=k) angle with any normal on
the boundary of Gnv Ny since all these normals make at

most 2sin 1(2:k) angle with the same surface nornmal It
follows that any normal at(t) makes at most 4sir11(2=k)
angle withng. [

Appendix D: Proof of Propositior8

Proof Let b be the boundary curve @& containingx. The
tangent plane at’ contains the berg« and sony lies in
a plane orthogonal tgc. Thus, to determin@y one needs
to investigate what the slope of the surface is when mov-
ing in the direction orthogonal tgx when seen as a func-
tion de ned on the tangent plan& (the tangent plane at
X). To be precise, sax = (0;0;0) and X0 = (K, 0;0), and
consider anothey? = (;D;dD) in the collar close tox’
whose closest point i§ is y, that is,y° 2 gy Thus, we have
that tan nxnw = d whenD! 0. We assumal 0. Let
B = B(c;R) be the tangent ball tb at x with center ingk
and radiusRk = Ifs(x). Sincex 2 S theny lies in the cup
C=cl(B° B) whereB= (y%r) wherer = ky® xk =

© 2009 The Author(s)
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p .

P2+ D2+ n2D? (y cannot be further away frop? thanx).
See top gure. Letz2 C be the furthest point i€ from x.
From the geometry we nd that

%= kz xk = 2Rsin(\ xcz=2)

Dp 1+ d2

2Rsinarctarp
D2(1+ d®)+(R )2

| —
_ 2D 1+ ]
= 1 =R + o(D):

within B°% B(x;r9, all the medial balls arourtdlatx (all of

radius If§x)) constraint the location ofto a cone-like shape
Cas illustrated in the middle gure. Let be the top most
point ofc? (with highestz coordinate). A simple calculation
shows that the height ofis (see bottom gureh= %: Note
thath is second order iD while dD (the height oly&) is rst
order inD. By Propositionl, for xandy onb S we have
the bound

kx yk.

\'nxny c© R
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wherecis a constant. Now, writing = ( y1;Y2;Yy3), we know
yo  r%andjyijijysj k Yk?=2R (as in the expression fdr

B
above). Sincé nxny = \ 5P, then WK
p
2+ 2
tank neny = (y2 D<+(dD y3)
H W
and so putting this together with the upper bound we obtain
q__— . .
LYY T (p DPR(dD yg?
R Moy Figure 7: Proposition9
>From here
Vit Y3+ V3 maxjy, Dj;jdD s .
et 2 8 ot ] Y2 ] yalg. We obtain
R H Y M k
cosq = = ——:
First, taking this inequality with the terjy,  Dj in the max, * p+er 1+k
asD! 0, we obtain (note thats;y3 are second order iD Therefore, \ tx:ng \txne + O(ke) = O(ke) +
and so they can be neglected) cos 1(1‘|+(R) as claimed. [J
D y D .
Ty,
1+ cpR 1 cER Appendix F: Proof of Theoren®
So ( ) Proof First we verify that it is a manifold triangulation
2p 1+ &2 1 homeomorphic toS,. We need to show that each of the
y2  min 1 =R ; 1 oeR D: restricted Voronoi face satis es th®pological ball prop-
erty [ES94: for t 2 VorP, i\ Sy andV;\ S, are topo-
Next, taking that inequality with the terfdD  ysj in the logical balls of the appropriate dimension. The proof fa th
max, asD! 0, we obtain closed surfaces applies here when there is no intersection
(p ) with the boundary. All that is essential is that Voronoi faice
q cp i 2 1+d? 1 = O(1=R): that intersect, do so almost orthogonallyDey07, which
R 1 pER’'1 c¢ER ’ is also the case here inside the collar according to Proposi-

tion 8. So it is only necessary to verify the ball property on
0 the boundanfS,.. By Propositiord, 1S, intersects a Voronoi
facet at an angl®(ke) + cos 12=3 fork 2. This angle is
no more than 50 for suf ciently small e. This xed bound
is enough to carry out the standard proofs from the litera-
Proof Let F be formed by samples; g. Consider the empty ~ ture [Dey07 to establish thaflS, intersects Voronoi facets
ball B(x;kp xk). The closest poink df x in S is on 1S and cells with topological ball property. Therefore, B€P)
by our collar extension andli$ in B. Sincex’has a sample  is homeomorphic t& and hence t& asSy, andS are iso-
within er, the radius oB, kp Xk, is at mostu+ er. topic by our construction.
SinceB intersectsS and the radius oB is O(er), it inter- We argue that De{,(P) is indeed isotopic td&5. Consider
sectsS in a topological ball (apply the argument of Lemma  Sau. We project Deg, (P) by the closest point map 8.
1.1 [Dey07). The pointsp;q 2 S forming the Voronoi facet Since the circumradii of the triangles in Rg(P) are at most

Appendix E: Proof of Propositiord

F lie on its opposite sides. It means that the plan€ df- 2y, itcan be shown that the closest point nmajels, (P) !
tersectsS and since it intersects it almost orthogonally, it S S injective [ACDLOZ]. The map also induces an isotopy
intersectq|S as well. between Ded, (P) and its imagel’ = n(Dels,(P)) Sy If

The tangents of/S and S, at pointsx'and x respectively ~ We show thafl andS are isotopic, we are done.

are parallel by construction. Furthermore, the tangenatiat ~ Let us examine the difference betwe&nand S both of
points of 1S within B vary by O(ke) angle since any two  Which are contained i84,. Formally we de neW = (S

such points are withiD(ker) distance. So, we measure the T). The spacgWj cannot have any handle, boundary, or

angle between the normat and the tangeritx at X where Mobius bands sinc& does not have them and according to
the plane ofF intersects]S. This angle is withinO(ke) of surface classi cation theorer® and Sy, should have same
the anglé\ tx; e which we want to bound. number of them. Therefore,(®V) is a set of cylinders pos-
Consider the disk at which the plane containiogandtx sibly pinched at the points wheS and T intersect. A
intersectsB. See Figurd. Clearly,\ tx;ng is no larger than natural deformation retraction froffir over these cylinders
the angleq as shown in the gure. to JSis a witness to an isotopy betweg&randS. [
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