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Abstract11

Automated annotation and analysis of protein molecules have long been a topic of interest due to12

immediate applications in medicine and drug design. In this work, we propose a topology based,13

fast, scalable, and parameter-free technique to generate protein signatures.14

We build an initial simplicial complex using information about the protein’s constituent atoms,15

including its radius and existing chemical bonds, to model the hierarchical structure of the mo-16

lecule. Simplicial collapse is used to construct a filtration which we use to compute persistent17

homology. This information constitutes our signature for the protein. In addition, we demon-18

strate that this technique scales well to large proteins. Our method shows sizable time and19

memory improvements compared to other topology based approaches. We use the signature to20

train a protein domain classifier. Finally, we compare this classifier against models built from21

state-of-the-art structure-based protein signatures on standard datasets to achieve a substantial22

improvement in accuracy.23
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1 Introduction31

Proteins are by far the most anatomically intricate and functionally sophisticated molecules32

known. The benchmarking and classification of unannotated proteins have been done by33

researchers for quite a long time. This effort has direct influence in understanding behavior of34

unknown proteins or in more advanced tasks as genome sequencing. Since the sheer volume35

of protein structures is huge, up till the last decade, it had been a cumbersome task for36

scientists to manually evaluate and classify them. For the last decade, several works aiming37

at automating the classification of proteins have been developed. The majority of annotation38

and classification techniques are based on sequence comparisons (for example in BLAST [19],39

HHblits [2] and [18]) that try to align protein sequences to find homologs or a common40

ancestor. However, since those methods focus on finding sequence similarity, they are more41
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6:2 Protein Classification with Improved Topological Data Analysis

efficient in finding close homologs. Some domains such as remote homologs are known to42

have less than 25% sequential similarity and yet have common ancestors and are functionally43

similar. So, we miss out important information on structural variability while classifying44

proteins solely based on sequences. Even though, sometimes, homology is established by45

comparing structural alignment [14], accurate and fast structural classification techniques for46

the rapidly expanding Protein Data Bank remains a challenge.

Figure 1 Workflow of our technique

47

Several works on the classification of protein structures exist in the literature. The main48

intuition behind these works draws upon a heuristic that generates a signature for each49

protein strand so that structurally close proteins have similar signatures. Essentially, the50

signature alignment quantifies the similarity between two protein structures. The problem,51

however, remains with the speed of computing these signatures and the degree of their52

representative power. We want a fingerprint for the protein that can be computed fast and53

can tell whether two proteins are dissimilar or even marginally similar.54

Some works use vector of frequencies to describe structural features while others take vari-55

ous physical properties into account such as energy, surface area, volume, flexibility/rigidity56

or use other features from geometric modeling. The "Bag-Of-Word" (BOW) representation57

to describe an object has been used in computer vision, natural language processing and58

various other fields. The work by Budowski-Tal [3] have described protein structure using a59

fragment library in a similar context. Since we use this work for comparison, we shall discuss60

its details later.61

Topological data analysis [10], a newly developed data analysis technique has been62

shown to give some encouraging results in protein structure analysis. Topological signatures,63

particularly based on Persistent Homology, enjoy some nice theoretical properties including64

their robustness and scale invariance. These features are global and more resilient to local65

perturbations. Moreover, they are invariant to scaling and any isometric transformation of66

the input. The authors in [23] extract topological fingerprints based on the alignment of67

atoms and molecules in three dimensional space. Their work shows the impact of persistent68

homology in the modeling of protein flexibility which is ultimately used in protein B-factor69

analysis. This work also characterizes the evolution of topology during protein folding and70

thereby predicts its stability. For this task, the authors have introduced a coarse grain (CG)71

representation of proteins by considering an amino acid molecule as an atom Cα. This helps72

them describe the higher level protein structures using the topological fingerprint perfectly.73

However, since the CG homology may be inconsistent due to ambiguity in choosing the CG74
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Figure 2 Persistence of a point cloud in R2 and its corres-
ponding barcode

Figure 3 Weighted Alpha complex
for protein structure

particle, we present a similar study on secondary structures using our signature and show that75

our method does not require such a representation as it is inherently scaling independent.76

The authors in [4] have used persistent homology to generate feature vector in the context77

of machine learning algorithms applied to protein structure explorations. We explore further78

to improve upon the technique to eliminate its deficiencies. First, the approach in [4] does not79

differentiate between atoms belonging to different elements. Also, it does not account for the80

existing chemical bonds between the atoms while building the signature. Most importantly81

it uses Vietoris Rips(VR) complex to generate the topological features for protein complex82

which suffers from the well-known problem of scalability. As we will describe later, the VR83

complex developed in the early 20th century grows rapidly in size even for moderate size84

protein structures. Current state-of-the-art techniques, which have addressed the problem to85

some extent, are still very cumbersome and slow especially for structures having about 30,00086

atoms on an average. Among the several methods that generate persistence signature from a87

point cloud, the PHAT toolbox [1] based on several efficient matrix reduction strategies and88

GUDHI [22] library based on some compression techniques have been popular because of89

their space and time efficiencies. A recent software called SimBa [8] published last year, has90

been shown to work faster for large datasets. Yet, for our application, SimBa falls short as91

we shall see later.92

The algorithm that we present here is a fast technique to generate a topological signature93

for protein structures. We build our signature based on the coordinates of the atoms in R3
94

using their radius as weights. Since we also consider existing chemical bonds between the95

atoms while building the signature, we believe that the hierarchical convoluted structure of96

protein is captured in our features. Finally, we have developed a new technique to generate97

persistence that is much quicker and uses less space than even the current state-of-the-art98

such as SimBa. It helps us generate the signature even for reasonably large protein structures.99

In sum, in this paper, we focus on three problems: (1) effectively map a protein structure into100

a suitable complex; (2) develop a technique to generate fast persistent signature from this101

complex; (3) use this signature to train a machine learning model for classification and compare102

against other techniques. Our entire method is summarized in figure 1. We also illustrate103

this method using a supplementary video available at https://youtu.be/yfcf9UWgdTo.104

2 Methods105

We use the theory of topological persistence to generate features for protein structures. These106

topological features serve as a distinct signature for each protein strand. In this section, we107

give some background on persistent homology followed by how we construct our signature.108

WABI 2018

https://youtu.be/yfcf9UWgdTo


6:4 Protein Classification with Improved Topological Data Analysis

2.1 Persistence signature of point cloud data109

We start with a point cloud data in any n-dimensional Euclidean space. These will essentially110

be the centers of protein atoms in the three dimensional space. However, to illustrate the111

theory of persistent homology, we consider a toy example of taking a set of points in two112

dimensions sampled uniformly from a two-hole structure (Fig. 2). We start growing balls113

around each point, increasing their radius r continually and tracking the behavior of the114

union of these growing balls. If we start increasing r from zero, we notice that at r = r1115

(third from left in Fig 2) both holes are prominent in the union of ball structure. Further116

increasing r to r2, leads to filling of the smaller hole (fourth figure from left). This continues117

till the value of r is large enough for the union of balls to fill the entire structure. During the118

change in the structure of the union of balls due to increase in radius, the larger of the two119

holes ‘persists’ for a larger range of r compared to the smaller one. Hence features that are120

more prominent are expected to persist for longer periods of increasing r. This is the basic121

intuition for topological persistence. The holes in this example are captured by calculating a122

set of birth-death pairs of homology cycle classes that indicate at which value of r the class is123

born and where it dies. The persistence is visualized in R2 using horizontal line segments124

that connect two points whose x-coordinates coincide with the birth and death values of125

the homology classes. These collection of line segments, as shown in Figure 2, are called126

barcodes [5]. The length of each line segment corresponds to the persistence of a cycle in the127

structure. Hence, the short blue line segments correspond to the tiny holes that are formed128

intermittently as the radius increases. The two long red line segments correspond to the two129

holes in the structure, the largest being the bigger hole. For computational purposes, the130

growing sequence of the union of balls is converted to a growing sequence of triangulations,131

simplicial complexes in general, called a filtration. In some cases, some cycles called the132

‘essential cycles’ persists till the end of the filtration.133

The rank of the persistent homology group called the persistent Betti numbers capture134

the number of persistent features. For n-dimensional homology group, we denote this number135

as βn. This means β0 counts the number of connected components that arise in the filtration.136

Similarly, β1 counts the number of circular holes being born as we proceed through the137

filtration. It is due to this fact that all the folds in the tertiary structure, as well as the helix138

and strands in the secondary structure of proteins, are recorded in our signature.139

With the above technique, difficulties are faced as r increases. An average protein in140

a database such as CATH [20] has 20,0000~30,000 atoms, thus creating a point cloud of141

the same size in R3. Furthermore, the initial complex including 3-simplices (or tetrahedra)142

becomes quite large. On an average, this complex size grows to (50~100)x104 simplices of143

dimension upto 4 and becomes quite difficult to process. Building a filtration using this144

growing sequence of balls is thus not scalable. We attack the problem with two strategies: (1)145

we only consider simplices on the boundary of the entire simplicial complex in our algorithm146

and (2) compute a new filtration technique that is based on collapsing simplices rather than147

growing their numbers by addition.148

Topological persistence149

Traditionally, given a point cloud, its persistence signature is calculated by building150

a filtration over a simplicial complex called Vietoris-Rips(VR). This technique is also151

used in [4] which takes the 3D position of the centers of the atoms as points in the152

point cloud. Given a parameter α, we can define VR complex over a point cloud P as:153

VRα(P) = {σ | d(p,q) < α ∀ p,q ∈ σ}.154
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As the value of α increases, more edges and higher order simplices are introduced, and155

a filtration is obtained. Finally, the persistence of this filtration is computed. For a better156

representation of protein molecules, we take into account the radius of different atoms as157

weight of the points. So, we replace each point p ∈ P with a tuple p̂ = (p, rp) where rp is the158

radius of the atom represented by p. For the resulting weighted point cloud P̂ = {(p, rp)},159

we consider the weighted VR complex: VRα(P̂) = {σ | d(p,q) < α(rp + rq) ∀ p,q ∈ σ}.160

The VR complex is easy to implement, but its size can become a hindrance for an even a161

moderate size protein molecule. Thus, instead of a VR complex, we use the (weighted) alpha162

complex that is sparser and has been used to model molecules in earlier works [11].163

164

Alpha complex AC(α): For a given value of α, a simplex σ ∈ AC(α) if:165

The circumball of σ is empty and has radius < α, or166

σ is a face of some other higher dimensional simplex in AC(α).167

168

Weighted Alpha Complex WACP̂ (α): Let Bk(p̂) be a k-dimensional closed ball with169

center p, and weight rp. It is orthogonal or sub-orthogonal to a weighted point (p′,rp′) iff170

||p− p′||2 = r2
p + r2

p′ or ||p− p′||2 < r2
p + r2

p′ respectively.171

An orthoball of a k-simplex σ = {p̂0, . . . , p̂k} is a k-dimensional ball that is orthogonal to172

every vertex pi. A simplex is in the weighted alpha complex WACP̂ (α) iff its orthoball has173

radius less than α and is suborthogonal to all other weighted points in P̂ .174

2.2 Collapse-induced persistent homology from point clouds175

The following procedure computes a topological signature for a weighted point cloud176

P̂ = {p, rp} using subsamples and subsequent collapses:177

1. Compute a weighted alpha complex C0 on the point set P̂ = {p, rp} using the algorithm178

described in [22]. Let V 0 be the vertex set of C0.179

2. Compute a sequence of subsamples V 0 ⊃ V 1 ⊃ ... ⊃ V k of the initial vertex set V 0 based180

on the Morton Ordering as discussed later. (For every V i, we remove every nth point181

in the Morton Ordering from V i to form V i+1. We choose ‘n’ based on the number of182

initial points).183

3. This sequence of subsets of V i allows us to define a simplicial map between any two184

adjacent subsets V i and V i+1: f i(p) =

p if p ∈ V i+1

argmin
v∈V i+1

d(p, v) otherwise185

4. This vertex map f i : V i → V i+1 in turn generates a sequence of collapsed complexes:186

C0,C1, ...,Cn. Each vertex map induces a simplicial map f i : Ci−1 → Ci that associates187

simplices in Ci−1 to simplices in Ci(see Figure 4)188

5. Compute the persistence for the simplicial maps in the sequence C0 f1−→ C1 f2−→ ...
fk−→ Ck189

to generate the topological signature of the point set P̂ .190

In step 1 of the procedure, weighted points alone lead to disconnected weighted atoms in191

C0 rather than capturing the actual protein structure. To sidestep this difficulty, we increase192

the weights of these points based on the existence of covalent or ionic bonds in the structure.193

That is, if there exists a chemical bond between two atoms (which we get from the input194

.pdb file), we scale-up the weight of each point so that they are connected in the weighted195

alpha complex WACP̂ (α) (see Fig. 3). We determine a global multiplying factor ρ ≥ 1 for196

this purpose. As mentioned earlier, we take the boundary of this weighted complex which197

forms our initial simplicial complex C0.198

WABI 2018
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Figure 4 (a) Collapse of weighted alpha complex generated from protein structure via simplicial
map. (b) Same algorithm applied to a kitten model in R3

In step 2, in order to generate the sequence of subsamples, we pick vertices uniformly
from the simplicial complex to be collapsed to their respective nearest neighbors. To choose
a subsample that respects local density, we use a space curve generation technique called
Morton Ordering [15]. The Morton curve generates a total ordering on the point set V 0.
This ordering is explicitly defined by the Morton Ordering map M : ZN 7→ Z given by:

M(p) =
∨B

b=0
∨N

i=0 xi,b
2 � N(b + 1)− (i + 1),

where xi,b2 : bth bit value of the binary representation of the ith component of x.
This map merely interleave bits of the different components of p. Application of M to V 0

yields a total ordering on our initial point set. To generate a new subset V 1 ⊂ V 0, we simply
choose a value n such that 1 < n ≤ ‖V 0‖. Then, V i+1 is taken as:

Vi+1 = {xj | xj ∈ Vi, j 6≡ 0 mod n},

where xj is the jth vertex in the Morton Ordering of V i. We choose n = 12 as it has199

procured good results for the datasets we experimented on (having 20,000~30,000 atoms on200

an average). Following this approach, the process can be repeated to create a sequence of201

subsets V 0 ⊃ V 1 ⊃ ... ⊃ V n, ‖V n‖≤ k as done in step 2 of our procedure above.202

Finally, as described in step 3, instead of constructing the filtration by increasing the203

value of α, we perform a series of successive collapses starting with the initial simplicial204

complex. This leads to a sequence of complexes that decreases in size instead of growing as205

we proceed forward. Effectively, it generates a sequence called tower of simplicial complexes206

where successive complexes are connected by simplicial maps. These maps which are the207

counterpart of continuous maps for the combinatorial setting extend maps on vertices (vertex208

maps) to simplices (see [16] for details). In our case, collapses of vertices generate these209

simplicial maps between a simplicial complex in the tower to the one it is collapsed to.210

Persistence for towers under simplicial maps can be computed by the algorithm introduced211

in [7]. We use the package called Simpers that the authors have reported for the same.212

To summarize, the algorithm generates an initial weighted alpha complex. It then213

proceeds by recursively choosing vertices based on Morton Ordering to be collapsed to their214

nearest neighbors resulting in vertex maps. These vertex maps are then extended to higher215

order simplices (such as triangles and tetrahedra) using the simplicial map. Finally given216

the simplicial map, we generate the persistence and get the barcodes for the zero and one217

dimensional homology groups.218

2.3 Feature vector generation219

We discuss how we generate a feature vector given a protein structure. We take protein data220

bank (*.pdb) files as input to extract protein structures. It contains the coordinates of every221

atom, their name, chemical bond with neighboring atoms and other meta-data such as helix,222

sheet and peptide residue information. We introduce a weighted point for each atom in the223

protein where the point is the center of the atom and its weight is the specified radius. For224
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instance, for a Nitrogen atom in the amino acid, we assign a weight equal to its covalent225

radius of 71(pm). On this weighted point cloud p̂ = (p, rp), if two atoms p̂ and q̂ are involved226

in a chemical bond, we increase their weights so that p and q get connected in the alpha227

complex. We compute the persistence by generating the initial alpha complex and undergoing228

a series of collapses as described in the previous section. For computational efficiency, we229

only consider the barcodes in zero and one dimensional homology groups. Note that some of230

the barcodes can have death time equal to infinity indicating an essential feature. For finite231

barcodes, shorter lengths (death− birth) indicate noise. Elimination of these intermittent232

features serves some interesting purpose as we will see in section 3. To find relatively long233

barcodes, we sort them in descending order of their lengths. Let {l1, l2, ..., lk} be this sorted234

sequence. Consider the sequence {l′1, l′2, ..., l′k−1} where l′i = li+1 − li and let l′m be a235

maximal element for 1 ≤ m ≤ k − 1. All barcodes with the lengths [l1..lm] form part of the236

feature vector. Essentially we remove all barcodes whose lengths are shorter than the largest237

gap between two consecutive barcodes when sorted according to their lengths. A similar238

technique used in [13] has shown improved results in image segmentation over other heuristics239

and parameterizations. Since the feature vector needs to be of a fixed length for feeding into240

a classifier, we compute the index m of lm over all protein structures and take an average.241

The feature vector also includes the number of essential zero and one dimensional cycles.242

Therefore, we have a feature vector of length 2 ×m + 2 : {l01, l02, ...l0m, l11, l12, ...l1m, cβ0 , cβ1}.243

Here l0i and l1i are the lengths of zero and one dimensional homology cycles respectively244

whereas cβi are the total number of essential cycles in i-dimensional homology.245

3 Experiments and results246

We perform several experiments to establish the utility of the generated topological signature.247

First, we show how our feature vector captures various connections in the single strands248

of secondary structures and compare them against the signatures obtained in [23]. Then249

we investigate if there is a correlation between the count of such secondary structures and250

our feature vector. Next, we describe the topological feature vector obtained from two251

macromolecular proteins structures. We also compare the size and time needed by our252

algorithm (software) over the other commonly used persistence software (as in [4]). Lastly,253

we show the effectiveness of our approach in classifying protein structures using machine254

learning models.255

Topological description of alpha helix and beta sheet256

It is known that barcodes can explain the structure of an alpha helix and a beta sheet [23].257

The authors in [23] use a coarse-grain(CG) representation of the protein by replacing each258

amino acid molecule with a single atom. This representation removes the short barcodes259

Figure 5 (a) Left: Alpha helix from PCB 1C26 , Middle: Barcode of [23], Right: Our Barcode,
(b) Left: Beta sheet from PCB 2JOX, Middle: Barcode of [23], Right: Our Barcode. Each segment
of the barcodes shows β0(top) and β1(bottom)

WABI 2018
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Figure 6 Barcode and Ribbon diagram of (Left): PDB: 1c26. (Right): PDB: 1o9a. Diagram
courtesy NCBI [17]

corresponding to the edges and cycles of the chemical bonds inside the amino acid molecule.260

We do not need this CG representation as our procedure can implicitly determine a threshold261

lm and therefore delete all barcodes of length shorter than the largest gap between two262

consecutive barcodes (as described in section 2.3). So, we get a barcode that describes the263

essential features of the secondary structures without including noise or short lived cycles264

from the amino acids. For a fair comparison, we compute our barcodes on the same alpha265

helix residue as in [23] with 19 residues extracted from the protein strand having PDB ID266

1C26 (see figure 5). Analogous to the barcode of [23] (as shown in the middle diagram of267

figure 5a), we have 19 bars in the zero-dimensional homology for the alpha helix representing268

the nineteen initial residues. These components die as edges are introduced in the weighted269

alpha complex which gets them connected. For one-dimensional homology, an initial ring270

with 4 residues is formed followed by additional rings resulting from the growing connections271

in each amino acid. These cycles eventually die by the collapse operations in our algorithm.272

The same process is followed for beta sheets after we extract two parallel beta sheet273

strands from the protein structure with PDB ID 2JOX. The zero-dimensional homology274

cycles are killed when individual disconnected amino acid residues belonging to the same275

beta sheet strand are connected by edges, as represented in the top 17 barcodes (leftmost276

figure of 5b). However, other than these barcodes and the longest bar corresponding to the277

essential cycle, there is one bar in the zero-dimensional homology which is longer than the278

top 17 bars. This bar represents the component which is killed by joining the closest adjacent279

amino acid molecules from the two parallel beta strands. The one dimensional homology280

bars are formed as more adjacent amino acid molecules are connected and killed once the281

collapse operation starts. Note that the two barcodes shown in figure 5 comparing our work282

with [23] are not to scale. This is because, in contrast to [23], the barcodes in our figure are283

not plotted against Euclidean distance rather the step at which each insertion and collapse284

operation occurs.285

A caveat286

Our aim is to compute signatures that capture discriminating structural information287

useful for classifying proteins. Even though we can use our signature to describe secondary288

structures, we do not want our signature to be directly correlated to the number of alpha289

helix or beta sheet as it would mean they are redundant. We generate a 2× 12 matrix where290

each cell contains the correlation value between beta-sheet(top row) and alpha-helix(bottom291

row) with each individual component in the feature vector: {l01, l02, ...l0m, l11, l12, ...l1m, cβ0, cβ1}.292

We use proteins in the PCB00020 record of the PCBC database to compute this matrix and293

depict it by a heatmap (Fig 7). Essentially, we first generate two vectors vα and vβ of the294

number of alpha helices and beta sheets respectively in each protein over all entries in the295

database. Similarly, we produce a vector for each value in the feature vector: {vl01 , ..., vcβ1}.296

Now we populate the matrix by calculating the correlation between each of these individual297
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Size Time (in sec)
Data Dim VR SimBa Our VR SimBa Our
CATH 3 – 1422 443 – 1.75 0.35
Soneko 3 324802 10188 576 32 6.77 2.05
Surv-l 150 – 3.1 × 106 1.09 × 106 – 5.08 × 103 884
PrCl-I 25 – 10.2 × 106 0.22 × 106 – 585 141.3

Table 1 Time comparison of our algorithm
against SimBa [8] and VR complex.

SVM KNN
FB Cang Our FB Cang Our

Class 91.08 89.07 92.36 86.01 86.40 86.39
Architecture 90.26 91.11 92.20 88.17 87.47 89.11
Topology 92.19 94.87 96.71 91.54 94.02 96.20
Homology 93.33 94.06 94.17 90.28 91.11 93.30

Table 2 Accuracy comparison with Frag-
Bag and Cang

vectors with vα and vβ . For example, row 1 and column 1 of the matrix contain the cor-298

relation value between the vectors vl01 and vβ . The heat map color ranges from blue for299

zero correlation to dark-red for complete correlation. As we can see from the figure, almost300

all matrix entries have a blue tinge indicating low correlation. This shows that our feature301

vector is non-redundant over the frequency of secondary structures.302

303

Topological Description of macromolecular structures304

In the previous section, we use our signature to describe the secondary structures and305

compare it with the work in [23]. In this section, we further show how our signature works306

by describing two macromolecular protein structures that are built on multiple secondary307

structures. We start by describing the tetrametric protein: 1C26. The ribbon diagram308

and associated barcode after noise removal is given in figure 6 . It essentially contains four309

monomers, associated pairwise to form two dimers. These two dimers, in turn, join across a310

distinct parallel helix-helix interface to form the tetramer. When we build the filtration on311

this protein structure, two monomers on opposite sides are killed first by connecting to their312

adjacent monomers to form two distinct dimers. This is evident as there are two short bars313

in the zero dimensional barcode (Fig. 6 right: shown in red). We now have two dimers, one314

of which is killed when it joins with the other to form a third slightly longer non-essential315

barcode (shown in purple). The second dimer lives on as the tetramer and forms an essential316

barcode (shown in black). Next, if we look into the one dimensional homology (shown as blue317

lines), we notice that the most notable feature for the protein is the tetramer structure which318

contains a large loop when the two dimers are connected. This is evident in our 1D-barcode319

as there is a distinct long bar representing the large one dimensional cycle. Note that the320

birth time of this cycle in 1D corresponds with the death time of the non-essential dimer in321

0D.322

Next, we consider the protein structure 1O9A. The structure contains several antiparallel323

beta-strands and is an example of a tandem beta-zipper. As we can see from the ribbon324

diagram in Fig. 6, there are six beta sheets on one side and five on another, connected325

together to form a fibronectin. This is evident as there are ten non essential and one essential326

bar in the zero dimensional homology owing to the six beta sheets on one side and five on327

the other. Each component is killed as the beta sheets join with another as the filtration328

proceeds. Note that the last connected component after joining all beta sheets forms an329

essential bar. Moreover, since there is no distinct cycle in the structure, we do not get any330

distinct long bar in the one dimensional homology. The presence of multiple one dimensional331

bars of similar size are probably due to the antiparallel beta-strands on either side which332

form a ring once joined. Thus, we can see that using the same signature generation method,333

we can describe secondary structures (as in the previous section) as well as macromolecular334

proteins without any change in the parameter. It is therefore evident that our signature is335

WABI 2018
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Figure 7 Heatmap correlating secondary
structure against our feature vector. Each
column in the heatmap is the feature vector.

Figure 8 Plot showing accuracy against vary-
ing training data size. 100(%) indicates the
entire training and test data.

intrinsic and scale independent.336

337

338

Time and space comparison with VR-complex and SimBa339

The method in [4] uses persistent homology as feature vectors for machine learning.340

However, as mentioned earlier, the use of Veitoris-Rips (VR) complex leads to a size blow up341

that not only increases runtime but also in most cases, causes the operating system to abort342

the process due to space requirements. Results in [4] procure good results as the datasets343

are of moderate size, but the same could not be reported for larger and real life protein344

structures. In table 1, we show a size and time comparison of our approach with the original345

feature generation technique used in [4]. We also tabulate the size and time to generate the346

same feature vector in [4] using a state-of-the-art persistence algorithm called SimBa [8].347

Table 2 contains a mix of protein databases and other higher dimensional datasets. As we348

see in the table, our algorithm is faster even when the features in [4] are generated with SimBa.349

350

3.1 Supervised learning based classification models351

Classification model. For the purpose of protein classification, we train two352

classifiers: an SVM model and a k-nn model on some protein databases. Once the model is353

trained, we test it to find accuracy, precision, and recall. The reason behind choosing Sup-354

port Vector Machine and k-nn based supervised learning technique over other sophisticated355

and state-of-the-art classifiers is their basic nature. Results obtained from basic learning356

techniques prove the effectiveness of the feature vectors rather than that of the classifier. We357

can further improve the classification accuracy for proteins using some advanced supervised358

learning or Neural Network based classifiers using our proposed features.359

360

Benchmark techniques. In order to test the effectiveness of our protein signature,361

we need to compare it against some of the state-of-the-art protein structure classification362

techniques. We generate feature vectors through these techniques and train and test the363

same classification models as before. The first technique, known as PRIDE [9], classifies364

proteins at the Homology level in the CATH database. It represents protein structures by365

distance distributions and compares two sets of distributions via contingency table analysis.366

The more recent work by Budowski-Tal et al. [3], which has achieved significant improvement367

in protein classification is used as our second benchmark technique. Their work, known368

as FragBag mimics the bag of word representation used in natural language processing369

and computer vision. They maintain protein fragments as a benchmark. Given a large370

protein strand, they generate a vector which is essentially a count of the number of times371
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Figure 9 Left:a) Difference in precision and recall from FragBag. Middle: b) Difference in
precision and recall from [4]. Right: c) ROC curve for SVM classification of our algorithm

each fragment approximates a segment in this strand. This vector now acts as a signature372

for the protein structure and that is what forms the basis for their feature vector which373

we use to train and test our classifier. The protein fragment benchmark is available from374

the library [12]. We choose 250 protein fragments of length 7. The third work that we375

test against is the topological approach to generate a protein fingerprint [4]. However, as376

we saw earlier, it is not possible to generate all the protein signatures using the original377

algorithm used by the authors. Therefore, we replace the Vietoris-Rips filtration by the378

state-of-the-art SimBa and generate feature vectors the same way as mentioned in their paper.379

380

Database. The database that we use is called Protein Classification Benchmark381

Collection (PCBC) [21]. It has 20 classification tasks, each derived from either the SCOP382

or CATH databases, each containing about 12000 protien structures. The classification383

experiment involves the group of the domain as positive set, and the positive test set is the384

sub-domain group. The negative set includes the rest of the database outside the superfamily385

divided into a negative test or negative training set. The result for some of the classification386

tasks for the database is given in Table 3. As evident from the table, the accuracy obtained387

by using our signature has a considerable improvement over the state of the art techniques.388

The only classification task in which our algorithm under-performs is with the protein domain389

CATH95_Class_5fold_Filtered (fourth row of table 3). The class domain is randomly390

sub-divided into 5 subclasses in this task. Since the class is divided randomly into subclasses,391

we believe some proteins belonging to different sub-classes have generated a similar initial392

complex resulting in a similar filtration and ultimately a decrease in performance.393

The PCBC dataset, even though suitable for learning algorithms, suffers from being394

skewed as the number of negative instances in any classification is much larger than the395

number of positive instances, leading to probable incorrect classifications. Therefore, we test396

on one of the most popular protein databases known as CATH [6]. The CATH database397

contains proteins divided into different domains (C: class; A: architecture; T: topology; H:398

homologous superfamily). For each domain, we get protein structures and their labels in399

accordance with the sub-domain they belong to. For any classification task, we randomly400

choose positive instances from one sub-domain and the same number of negative instances401

sampled equally from the other sub-domains. Each such task, on average has 400 protein402

structures containing approximately 30,000 atoms each. We then divide this into 80%-training403

and 20%-test set. The result of classification on the CATH database averaged over several404

such randomly chosen sub-domains as positive classes, are illustrated in table 2. We see405

yet again that for each case, there is an improvement of about 3-4% over the benchmark406

techniques.407

408
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SVM k-NN
Pride Fragbag Cang Our Pride Fragbag Cang Our

SC_Sf_Fm_F 90.09 93.01 93.39 95.24 89.58 87.31 89.83 91.66
CA_T_5f 94.23 92.97 94.87 99.53 90.96 91.16 94.57 97.87
CA_T_H_F 90.15 89.89 95.06 98.80 84.98 81.11 86.65 95.51
CA_C_5f_F 85.09 84.76 80.98 82.36 80.18 84.74 83.83 78.81
CA_H_Si_F 98.60 95.89 98.24 99.05 95.45 91.11 79.469 97.56
CA_A_T_F 87.56 91.58 74.58 90.95 67.47 89.00 68.90 87.00
Table 3 Classification accuracy for different techniques on Protein dataset. SC: SCOP95, CA:

CATH95, Sf: Superfamily, Fm: Family, F: Filtered, T: Topology, H: Homology, C: Class, 5f: 5fold,
A: Architecture, Si: Similarity

3.1.1 Classification result409

We have listed our main results in tables 2 and 3 showing the improvement in accuracy410

using our method over the state-of-the-art techniques of FragBag, PRIDE and the preceding411

work on topology by Cang et al. [4]. We provide further evidence of the efficiency of our412

algorithm by comparing the precision and recall in figures 9a and b. In these plots, we show413

the difference between the precision and recall obtained using our algorithm against that of414

FragBag(9a) and Cang(9b). A green bar indicates that our algorithm performed better and415

the difference is positive while a red bar suggests the opposite. This experiment is done on416

the CATH database and the figure shows the precision and recall for each domain: class(C),417

architecture(A), topology(T) and homology(H). Notice that, since the classification is binary,418

we get two precision and two recall for every class in each domain. Thus, there are four419

bars for each of C,A,T,H. Yet again, other than a few marginal cases, our algorithm largely420

performs better. Finally, we calculate the ROC curve using SVM on a subset of the CATH421

dataset, the result of which is shown in figure 9c. The ROC curve is a plot of the true422

positive rate against false positive rate obtained by changing the input size and parameter.423

This means that the further the lines are away from the diagonal, the better is the classifier.424

For the positive test cases, we investigate further the trend of the output. We try to see425

the correlation of accuracy with the change in training set size. We therefore change the426

training and test set sizes by taking a fraction of the entire dataset and trace the accuracy in427

each case. This is done over all the test cases shown in Table 3 and the average is shown in428

Fig 8. We have plotted the output of our algorithm in blue with two instances of FragBag429

with (fragment, library) sizes (5,225) and (7,250) in red and green respectively. In addition,430

we have plotted the output of PRIDE as well. Ideally, the accuracy should decrease uniformly431

with a decrease in training set size and we should get a straight line across the diagonal.432

In this case, all the trendlines are almost close to the diagonal and hence we can say that433

they are correlated. Moreover, we observe that even as the training data size decreases,434

the accuracy of our algorithm remains better or comparable to the other algorithms. This435

indicates that topological features work better with a lower number of samples as well.436

4 Conclusion437

We present a practical topological technique to generate signatures for protein molecules438

that can be used as feature vectors for its classification. Since we investigated the descriptive439

power of our signature, we believe it can be used for other purposes such as protein energy440

computation, or finding protein B-factor. We believe that this signature can be extended to441

other biomolecular data such as DNA or enzymes.442
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