Computing Height Persistence and Homology Generators in \mathbb{R}^3 Efficiently

Tamal K. Dey

Department of Computer Science and Engineering The Ohio State University

Dey (2019)

Height Persisitence

SODA 2019 1 / 28

Persistence

• Simplicial filtration:

$$\emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = K$$

• Persistence module:

$$0 \to H_{\rho}(K_1) \to \cdots \to H_{\rho}(K_n) = H_{\rho}(K).$$

• Birth and Death of homology classes

A B A A B A

Bar Codes

• birth-death and bar codes

Dey (2019)

Height Persistence

- $\mathbb{T} \subseteq \mathbb{R}^3$; height $z : \mathbb{T} \to \mathbb{R}$
- $\mathbb{T}_a = z^{-1}(-\infty, a]$, the sublevel set
- $\mathbb{T}_a \subseteq \mathbb{T}_b$ for $a \leq b$ provides inclusion map $\iota : \mathbb{T}_a \to \mathbb{T}_b$
- Induced map $\iota_* : H_p(\mathbb{T}_a) \to H_p(\mathbb{T}_b)$ giving the sequence $0 \to H_p(\mathbb{T}_{a_1}) \to H_p(\mathbb{T}_{a_2}) \to \cdots \to H_p(\mathbb{T}_{a_n}) \to H_p(\mathbb{T})$
- Persistent homology classes: Image of f_p^{ij} : $H_p(\mathbb{T}_{a_i}) \to H_p(\mathbb{T}_{a_i})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Height Persistence

- $\mathbb{T} \subseteq \mathbb{R}^3$; height $z : \mathbb{T} \to \mathbb{R}$
- $\mathbb{T}_a = z^{-1}(-\infty, a]$, the sublevel set
- $\mathbb{T}_a \subseteq \mathbb{T}_b$ for $a \leq b$ provides inclusion map $\iota : \mathbb{T}_a \to \mathbb{T}_b$
- Induced map $\iota_* : H_p(\mathbb{T}_a) \to H_p(\mathbb{T}_b)$ giving the sequence $0 \to H_p(\mathbb{T}_{a_1}) \to H_p(\mathbb{T}_{a_2}) \to \cdots \to H_p(\mathbb{T}_{a_n}) \to H_p(\mathbb{T})$
- Persistent homology classes: Image of f_p^{ij} : $H_p(\mathbb{T}_{a_i}) \to H_p(\mathbb{T}_{a_i})$

Dey (2019)

Height Persistence

- $\mathbb{T} \subseteq \mathbb{R}^3$; height $z : \mathbb{T} \to \mathbb{R}$
- $\mathbb{T}_a = z^{-1}(-\infty, a]$, the sublevel set
- $\mathbb{T}_a \subseteq \mathbb{T}_b$ for $a \leq b$ provides inclusion map $\iota : \mathbb{T}_a \to \mathbb{T}_b$
- Induced map $\iota_* : H_p(\mathbb{T}_a) \to H_p(\mathbb{T}_b)$ giving the sequence $0 \to H_p(\mathbb{T}_{a_1}) \to H_p(\mathbb{T}_{a_2}) \to \cdots \to H_p(\mathbb{T}_{a_n}) \to H_p(\mathbb{T})$
- Persistent homology classes: Image of f_p^{ij} : $H_p(\mathbb{T}_{a_i}) \to H_p(\mathbb{T}_{a_i})$

Previous work

- Classical persistence algorithm [ELZ01] runs in matrix multiplication time $O(n^{\omega}) = O(n^{2.373})$ [SMJ11]
- Computing Betti numbers for 2-complexes in \mathbb{R}^4 is as hard as matrix rank computation [EP15]
- Special cases of graphs, surfaces, H_{p-1}-persistence for p-complex in ℝ^p in O(n log n) time; reduces to min. spanning tree

This work:

- $O(n \log n)$ algorithm for height persistence $z : \mathbb{T} \to \mathbb{R}$, $\mathbb{T} \subseteq \mathbb{R}^3$
- $O(n \log n + k)$ algorithm for computing H₁-generators for $\mathcal{K} \subseteq \mathbb{R}^3$

< □ > < □ > < □ > < □ > < □ > < □ >

Approach

- Use zigzag level set persistence for $z:\mathbb{T}\to\mathbb{R}$ for a subset of bars of height persisitence
 - Track level sets to construct a barcode graph B; $O(n \log n)$ time
 - Prove that reduced H0-persistence for height on B is equivalent to H1-persistence for height on $\mathbb T$
 - Extract bars for the height on *B* in *O*(*n* log *n*) time by modifying an algorithm of [AEHW05]
- Rest of the bars for $z : \mathbb{T} \to \mathbb{R}$ are computed from the Reeb graph $R_z(\mathbb{T})$; $O(n \log n)$ time [Parsa 12]

Sub-level and Zigzag level set persistence

• $z: \mathbb{T} \to \mathbb{R}$ has homological critical values

$$-\infty = a_0 < a_1 < a_2 < \ldots < a_m < a_{m+1} = \infty$$

• $\{s_i\}$ of z interleaving with its critical values:

$$a_0 < s_0 < a_1 < s_1 < \ldots < a_m < s_m < a_{m+1}$$

sub-level sets T_[0,r] := z⁻¹(-∞, r]. Sub-level set persistence module:

$$\begin{aligned} \mathcal{SL}(f,\mathbb{T}) &: & \mathbb{T}_{[0,a_1]} \to \mathbb{T}_{[0,s_1]} \dots \to \mathbb{T}_{[0,s_m]} \to \mathbb{T}_{[0,a_{m+1}]} \\ \mathsf{H}_{\rho}(\mathcal{SL}(f,\mathbb{T})) &: & \mathsf{H}_{\rho}(\mathbb{T}_{[0,a_1]}) \to \mathsf{H}_{\rho}(\mathbb{T}_{[0,s_1]}) \dots \to \mathsf{H}_{\rho}(\mathbb{T}_{[0,a_{m+1}]}) \end{aligned}$$

A B A A B A

Sub-level and Zigzag level set persistence

• $z:\mathbb{T}\to\mathbb{R}$ has homological critical values

 $-\infty = a_0 < a_1 < a_2 < \ldots < a_m < a_{m+1} = \infty$

• $\{s_i\}$ of z interleaving with its critical values:

$$a_0 < s_0 < a_1 < s_1 < \ldots < a_m < s_m < a_{m+1}$$

Interval sets T^j_i := T_{[si,sj}]
 Zigzag level set persistence module:

Sub-level and Zigzag level set persistence

• $z:\mathbb{T} \to \mathbb{R}$ has homological critical values

 $-\infty = a_0 < a_1 < a_2 < \ldots < a_m < a_{m+1} = \infty$

• $\{s_i\}$ of z interleaving with its critical values:

$$a_0 < s_0 < a_1 < s_1 < \ldots < a_m < s_m < a_{m+1}$$

$$\mathcal{L}(f,\mathbb{T}):\mathbb{T}_0^0\to\mathbb{T}_0^1\leftarrow\mathbb{T}_1^1\to\mathbb{T}_1^2\cdots\to\mathbb{T}_{m-1}^m\leftarrow\mathbb{T}_m^m$$
$$\mathsf{H}_\rho(\mathcal{L}(f,\mathbb{T})):\mathsf{H}_\rho(\mathbb{T}_0^0)\to\mathsf{H}_\rho(\mathbb{T}_0^1)\leftarrow\mathsf{H}_\rho(\mathbb{T}_1^1)\to\cdots\leftarrow\mathsf{H}_\rho(\mathbb{T}_m^m)$$

イロト イポト イヨト イヨト

Bars

 By Quiver theory H_p(L(f, T)) and H_p(SL(f, T)) decomposes into intervals:

$$\mathcal{I}_{[b,d]}: I_1 \leftrightarrow I_2 \cdots \leftrightarrow I_m, \ b, d \in \{a_i, s_i\}$$

- Four types of bars:
- [a_i, a_j]: closed-closed
- $[a_i, s_j] \Leftrightarrow [a_i, a_{j+1})$: closed-open
- $[s_i, a_j] \Leftrightarrow (a_i, a_j]$: open-closed
- $[s_i, s_j] \Leftrightarrow (a_i, a_{j+1})$: open-open

Link between sublevel and level set persistence

Theorem (Burghlea, D.)

- **1** $[a_i, a_j)$ is a bar for $H_p(\mathcal{SL}(f, \mathbb{T}))$ iff it is so for $H_p(\mathcal{L}(f, \mathbb{T}))$,
- [a_i,∞) is a bar for H_p(SL(f, T)) iff either [a_i, a_j] is a closed-closed bar for H_p(L(f, T)) for some a_j > a_i, or (a_j, a_i) is an open-open bar for H_{p-1}(L(f, T)) for some a_j < a_i.
 - Compute bars for H₁($\mathcal{L}(z, \mathbb{T})$) to obtain the closed-open and closed-closed bars.
 - Compute bars for H₀(L(z, T)) to obtain the open-open bars: equivalent to computing H₀-persistence on the Reeb graph Rb_z(T)

< □ > < □ > < □ > < □ > < □ > < □ >

- Level set $G_r = z^{-1}(r)$ is a planar graph
- Combinatorially G_r changes passing through a vertex
- Primary and secondary cycles

- Level set $G_r = z^{-1}(r)$ is a planar graph
- Combinatorially G_r changes passing through a vertex
- Primary and secondary cycles

• = • •

- Level set $G_r = z^{-1}(r)$ is a planar graph
- Combinatorially G_r changes passing through a vertex
- Primary and secondary cycles

• = • •

- Level set $G_r = z^{-1}(r)$ is a planar graph
- Combinatorially G_r changes passing through a vertex
- Primary and secondary cycles

★ ∃ ►

Proposition

The classes of unoriented cycles $\{[C_F] | C_{\overrightarrow{F}} \text{ is primary}\}$ form a basis of $H_1(G_r)$.

• Track primary and secondary cycles

A B A A B A

Proposition

The classes of unoriented cycles $\{[C_F] | C_{\overrightarrow{F}} \text{ is primary}\}$ form a basis of $H_1(G_r)$.

• Track primary and secondary cycles

< □ > < □ > < □ > < □ > < □ > < □ >

Proposition

The classes of unoriented cycles $\{[C_F] | C_{\overrightarrow{F}} \text{ is primary}\}$ form a basis of $H_1(G_r)$.

• Track primary and secondary cycles

< □ > < □ > < □ > < □ > < □ > < □ >

Proposition

The classes of unoriented cycles $\{[C_F] | C_{\overrightarrow{F}} \text{ is primary}\}$ form a basis of $H_1(G_r)$.

• Track primary and secondary cycles

< ∃ >

Tracking through vertex

- $a_i = z(v_i);$
- Track primary/secondary cycles going from $G_{s_{i-1}}$ to G_{a_i} and then to G_{s_i} .
- Directed edges *d* constitute cycles
- Cycles are maintained by cycle trees (AVL or 2-3 trees)

(日) (四) (日) (日) (日)

Tracking through vertex

- $a_i = z(v_i);$
- Track primary/secondary cycles going from $G_{s_{i-1}}$ to G_{a_i} and then to G_{s_i} .
- Directed edges *d* constitute cycles
- Cycles are maintained by cycle trees (AVL or 2-3 trees)

Tracking through vertex

- $a_i = z(v_i);$
- Track primary/secondary cycles going from $G_{s_{i-1}}$ to G_{a_i} and then to G_{s_i} .
- Directed edges *d* constitute cycles
- Cycles are maintained by cycle trees (AVL or 2-3 trees)

Cycle tree operations

• Operations Split, Merge, Find in $O(\log n)$ time

- FIND(d) returns T
- SPLIT(T, d) splits T into T_1 and T_2 at d
- $JOIN(T_1, T_2)$ merges T_1 and T_2 into a single tree
- INSERT(T, d), DELETE(T, d)...
- Sweeping through v_1, v_2, \ldots, v_n of \mathcal{K} takes $O(n \log n)$ time

< □ > < 同 > < 回 > < 回 > < 回 >

Updating $G_{s_{i-1}}$ to G_{a_i}

- Edges of $G_{s_{i-1}}$ get contracted to vertex v_i .
- Primary/secondary cycle c may split reaching a_i

< □ > < □ > < □ > < □ > < □ > < □ >

Updating $G_{s_{i-1}}$ to G_{a_i}

- Edges of $G_{s_{i-1}}$ get contracted to vertex v_i .
- Primary/secondary cycle c may split reaching a_i
 - Depending on cases, we can decide types of new cycles

★ ∃ ► ★

Updating $G_{s_{i-1}}$ to G_{a_i}

- Edges of $G_{s_{i-1}}$ get contracted to vertex v_i .
- Primary/secondary cycle c may split reaching a_i
 - Depending on cases, we can decide types of new cycles

Dey (2019)

SODA 2019 16 / 2

• • = • • = •

Updating $G_{s_{i-1}}$ to G_{a_i}

- Edges of $G_{s_{i-1}}$ get contracted to vertex v_i .
- Primary/secondary cycle c may split reaching a_i
 - Depending on cases, we can decide types of new cycles
- c ceases to exist

.

- Vertex v_i expands into edges of G_{s_i}
- Primary/secondary cycle c may merge after a_i

• • • • • • • • • • • • •

- Vertex v_i expands into edges of G_{s_i}
- Primary/secondary cycle c may merge after a_i
 - Depending on cases, we can decide types of new cycles

→ ∃ →

- Vertex v_i expands into edges of G_{s_i}
- Primary/secondary cycle c may merge after a_i
 - Depending on cases, we can decide types of new cycles

(4) (5) (4) (5)

- Vertex v_i expands into edges of G_{s_i}
- Primary/secondary cycle *c* may merge after *a_i*
 - Depending on cases, we can decide types of new cycles
- New cycle *c* is born

★ ∃ ► ★

Updates of Barcode Graph

Dey (2019)

SODA 2019 18 / 28

э

• = • •

- (日)

Barcode graph and zigzag persistence

critical values of z : R → ℝ are {s₁, s₂, ..., s_{m-1}}; same for K are {a₁,..., a_m}.
R^j_i = R_[a_i,a_j] and K^j_i = |K|_[s_i,s_j]

 $\begin{aligned} \mathsf{H}_0(\mathcal{L}(z,R)) &: \mathsf{H}_0(R_1^1) \to \mathsf{H}_0(R_1^2) \leftarrow \mathsf{H}_0(R_2^2) \to \dots \leftarrow \mathsf{H}_0(R_m^m) \\ \mathsf{H}_1(\mathcal{L}(z,|\mathcal{K}|)) &: \mathsf{H}_1(\mathcal{K}_0^0) \to \mathsf{H}_1(\mathcal{K}_0^1) \leftarrow \mathsf{H}_1(\mathcal{K}_1^1) \to \dots \leftarrow \mathsf{H}_1(\mathcal{K}_m^m) \end{aligned}$

Dey (2019)

SODA 2019 19 / 28

Barcode graph and zigzag persistence

Proposition $H_1(|\mathcal{K}|_{a_i}) \cong H_0(R_{a_i})$ and $H_1(|\mathcal{K}|_{s_i}) \cong H_0(R_{s_i})$ for i = 1, ..., m.

Dey (2019)

SODA 2019 20 / 2

< 31

Threading of Barcode Graph

- $H_1(\mathcal{K}_i^{i+1}) = H_1(z^{-1}(a_{i+1}))$; same fails for *R*
- Remedy: use \tilde{H}_0 , reduced H_0
- A thread connects all open ends; $\tilde{H}_0(R_i^{i+1}) = \tilde{H}_0(z^{-1}(s_i))$

Equivalence of zigzag modules

Proposition

$$H_1(\mathcal{L}(z,\mathcal{K}))\cong \widetilde{H}_0(\mathcal{L}(z,R)).$$

With $\widetilde{H}_0(z^{-1}(v)) = \mathbb{U}_v$ and $H_1(z^{-1}(v)) = \mathbb{V}_v$,

Equivalence of zigzag modules

Proposition

 $H_1(\mathcal{L}(z,\mathcal{K}))\cong \widetilde{H}_0(\mathcal{L}(z,R)).$

With $\widetilde{H}_0(z^{-1}(v)) = \mathbb{U}_v$ and $H_1(z^{-1}(v)) = \mathbb{V}_v$,

- Output bars extracted from modified barcode graph R
- Use algorithm of [AEHW06] with the mergable tree data structure of [GTW06] to extract bars; $O(n \log n)$ time

Dey (2019)

Height Persisitence

SODA 2019 23 / 28

$O(n \log n)$ Algorithm

- Compute barcode graph R; $O(n \log n)$
- Thread R; O(n)
- Extract bars; $O(n \log n)$
- Flip the bar ends; O(n)
- Compute open-open bars from Reeb graph; $O(n \log n)$

SODA 2019 24 / 28

Open-open bars

Proposition

 $H_0(\mathcal{L}(z,\mathcal{K})) \cong H_0(\mathcal{L}(z, \mathrm{R}b_z(\mathcal{K}))).$

Open-open bars

Proposition

 $H_0(\mathcal{L}(z,\mathcal{K})) \cong H_0(\mathcal{L}(z, \mathrm{R}b_z(\mathcal{K}))).$

Compute the open-open bars of H₀(L(z, K)) from the Reeb graph; compute Rb_z(K) in O(n log n) time and then extract bars from it in another O(n log n) time

Dey (2019)

Height Persisitence

SODA 2019 26 / 28

Generators

- $H_1(|\mathcal{K}|) \cong \check{B}_0(z, |\mathcal{K}|) \oplus \bar{B}_1(z, |\mathcal{K}|)$
- generators for open-open bars are given by cycles in Reeb graph;
 O(n log n + k) time
- generators for closed-closed bars can be computed from tracking the level sets; $O(n \log n + k)$ time

Thank You

Dey (2019)

Height Persisitence

SODA 2019 28 / 28

æ

▲御 ▶ ▲ 臣 ▶