Lecture 4: Subdivision with de Casteljau method

We have already seen how de Casteljau algorithm can generate a point on a Bézier curve. The same algorithm can be used to subdivide the control polygon and generate a new polygon with closer approximation to the curve. Repeating this process create a subdivision curve.

Revisiting de Casteljau algorithm

Let’s assume that we have three control points \(p_0, p_1, p_2 \) to define a second degree Bézier curve. Suppose we compute the point \(p(u) \) for the parameter value \(u \).

For this we computed the point \(x \) on \(p_0p_1 \) given by \(x = p_0 + u(p_1 - p_0) \) and also the point \(y = p_1 + u(p_2 - p_1) \). The point \(z = x + u(y - x) \) lies on the curve. We claim that \(p_0, x, z \) constitute the control polygon for the curve between \([0, u]\) and \(z, y, p_2 \) constitute the control polygon for the curve between \([u, 1]\).

To see this consider the Bézier curve:

\[
p(t) = (1 - t)^2p_0 + 2t(1 - t)x + t^2z
\]

Simplifying we get:

\[
p(t) = (1 - ut)^2p_0 + 2ut(1 - ut)p_1 + u^2t^2p_2
\]

This is the Bézier curve with the control points \(p_0, p_1, p_2 \) and the parameter \(w = ut \). Thus, it is the same curve as the original in between \(w = 0 \) for \(t = 0 \) and \(w = u \) for \(t = 1 \). Similarly, one can show that \(z, y \) and \(p_2 \) generate the same curve between \([u, 1]\).

The new polygon \(p_0, x, z, y, p_2 \) thus approximate the same curve, but in a better manner. We can continue this process to subdivide the two polygons between \([0, u]\) and \([u, 1]\). After \(m \) such steps we generate \(2^m \) such polygons that are joined together at \(2^m - 1 \) points on the curve. This process converges to the curve very fast.

Algorithm

The procedure OneSubdivide subdivides the polygon once at the parameter value \(u \). We use the notation poly1,poly2 to denote the concatenation of the two lists poly1 and poly2 without repeating the common end-element between the two.

OneSubdivide(p_0, ..., p_n, poly1, poly2, u)

if \(n = 0 \)
output poly1, \{p_0\}, poly2
else
poly1:= poly1,p_0; poly2:=p_n,poly2;
compute \(p'_i = p_i + u(p_{i+1} - p_i) \), \(i = 0, ..., n - 1 \)
OneSubdivide(\(p'_0, ..., p'_{n-1}, \)poly1,poly2,u)
endif

end

1Note by Tamal K. Dey
\textbf{Subdivide (}p_0, ..., p_n, m, u\textbf{)}

\begin{verbatim}
 if m = 1 OneSubdivide(p_0, ..., p_n, \{\}, \{\}, u)
 else
 \{p_0', ..., p_n', ..., p_{2n}'\} := OneSubdivide(p_0, ..., p_n, \{\}, \{\}, u);
 Subdivide(p_0', ..., p_n', m - 1, u). Subdivide(p_n', ..., p_{2n}', m - 1, u);
 endif
\end{verbatim}

This algorithm Subdivide makes 2^m calls to itself. Each of these calls makes one call to One-
Subdivide which takes $O(n^2)$ time as the de Casteljau procedure. Thus the complexity of the
subdivision is $O(2^m n^2)$.