Lecture 17: Subdividing Biquadratic B-spline Surfaces

Matrix equation

We will generalize the matrix subdivision technique for B-spline curves to surfaces. Let us consider the biquadratic B-spline surface. The P matrix in this case is a 3×3 array.

\[
p(u, w) = \begin{bmatrix} u^2 & u \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix} P M^T W^T
\]

where

\[
M = \frac{1}{2} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix}
\]

Subdividing a surface patch

A surface patch is generated with a control polyhedron of four rectangles spanning the 3×3 array of control points. With a subdivision scheme of splitting at $u = 1/2, v = 1/2$ we create four patches out of a single patch that will be defined by 4×4 array of new control points. We express the new control points in terms of the old ones using the matrix subdivision technique. We consider the subpatch $p(u, w)$ for $u \in [0, 1/2]$ and $w \in [0, 1/2]$. Define this surface patch as

\[
p'(u, w) = p\left(\frac{u}{2}, \frac{w}{2}\right)
\]

We have

\[
p'(u, w) = p\left(\frac{u}{2}, \frac{w}{2}\right)
\]

\[
= \begin{bmatrix} \frac{u^2}{4} & \frac{u}{2} \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix} P M^T W^T
\]

\[
= U \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} W^T
\]

\[
= U M M^{-1} X M P M^T X^T (M^{-1})^T M^T W^T
\]

where

\[
P' = S P S^T
\]

and

\[
S = M^{-1} X M
\]

\[1\text{Note by Tamal K. Dey, Ohio State U.}\]
From the above we can conclude that \(p'(u, w) \) is generated with the new control points \(P' \). If we calculate the splitting matrix we obtain
\[
S = \frac{1}{4} \begin{bmatrix}
 3 & 1 & 0 \\
 1 & 3 & 0 \\
 0 & 3 & 1 \\
\end{bmatrix}
\]

Using \(P' = S P S^T \) we get the new control points as:
\[

p_{00}' = \frac{1}{16} (9p_{00} + 3p_{10} + 3p_{01} + p_{11}) \\
p_{01}' = \frac{1}{16} (3p_{00} + p_{10} + 9p_{01} + 3p_{11}) \\
p_{02}' = \frac{1}{16} (9p_{01} + 3p_{11} + 3p_{02} + p_{12}) \\
p_{10}' = \frac{1}{16} (3p_{00} + 9p_{10} + p_{01} + 3p_{11}) \\
p_{11}' = \frac{1}{16} (p_{00} + 3p_{10} + 3p_{01} + 9p_{11}) \\
p_{12}' = \frac{1}{16} (3p_{01} + 9p_{11} + p_{02} + 3p_{12}) \\
p_{20}' = \frac{1}{16} (9p_{10} + 3p_{20} + 3p_{11} + p_{21}) \\
p_{21}' = \frac{1}{16} (3p_{10} + p_{20} + 9p_{11} + 3p_{21}) \\
p_{22}' = \frac{1}{16} (9p_{11} + 3p_{21} + 3p_{12} + p_{22})
\]

Observations

If we observe the above equations for new control points, we see that four points of a rectangle in the original mesh generate a new point with the weights of \(9 - 3 - 3 - 1 \). Let us call the new point \(v_F \) to denote that it is the new point corresponding to the vertex \(v \) in the rectangle \(F \) with weight \(9 \). Then the weights of the two vertices adjacent to it will have weights \(3 \). The opposite vertex to \(v \) in \(F \) has weight \(1 \). Thus, each of the four vertices in \(F \) generates a new vertex \(v_F \).
Also, one can observe that a new point can be thought of as weighing an edge in the $3 - 1$ ratio and then weighing these new points again with $3 - 1$ ratio. This is just the generalization of Chaikin’s algorithm for quadratic B-spline curves.