Given a set of points A in a plane, find out a pair whose distance is the smallest among all pairs of points.

- An obvious solution: compare each pair and determine the closest pair. This takes $O(n^2)$ time for n points.

- We develop an $O(n \log n)$ time algorithm. It builds on divide-and-conquer approach.

A generic strategy: The algorithm works recursively. At each recursive step, we take a subset $P \subseteq Q$ and two arrays X and Y.

X: stores points of P sorted in x-coordinate
Y: stores points of P sorted in y-coordinate
Divide:
- Find a vertical line l that bisects P into P_L and P_R with $|P_L| = \lceil P/2 \rceil$, $|P_R| = \lfloor P/2 \rfloor$.
- Points in P_L are on or to the left of l, all points in P_R are on or to the right of l.
- Split X into X_L and X_R that contain points in P_L and P_R respectively sorted by x-coordinates.
- Similarly split Y into Y_L and Y_R.

Conquer:
- Recursively compute closest pairs in P_L and in P_R. Suppose the closest pair distances be δ_L and δ_R. Set $\delta = \min \{\delta_L, \delta_R\}$.

Combine:
The closest pair in P is either the pair found in P_L or P_R, or there is a pair $r \in P_R, s \in P_L$ so that $d(s, r) < \delta$.
Combine contd...: The pair \((s, r)\) must lie within the vertical strip.

Algorithm for computing \((s, r)\):

1. Create array \(Y'\) from \(Y\) by removing all points that are not in \(2\delta\) strip. \(Y'\) is sorted in \(y\)-coordinates as \(Y\) is.

2. For each \(p\) in array \(Y'\), we find points within \(\delta\) distance that are in \(Y'\). This can be achieved by considering only 7 points following \(p\) in array \(Y'\).
3. Suppose δ' is the distance of closest pair computed in step 2. If $\delta' \leq \delta$, this pair and δ' are returned. Otherwise δ and the corresponding pair is returned.

The complexity: All steps in recursion are linear-time implementable. Specifically, Combine can work in linear time because of the 7 checks. One can create a sorted subset of X or a sorted array in linear time ($(P_L, P_R$ from P which are all x-sorted), similarly X_L, X_R, Y_L, Y_R can from X and Y).

Split (Y)

$\text{length}(Y_L) := \text{length}(Y_R) := 0$;

for $i := 1$ to $\text{length}(Y)$ do

 if $Y[i] \in P_L$

 then $\text{length}(Y_L) := \text{length}(Y_L) + 1$

 $Y_L[\text{length}(Y_L)] := Y[i]$

 else $\text{length}(Y_R) := \text{length}(Y_R) + 1$

 $Y_R[\text{length}(Y_R)] := Y[i]$

 endfor
Time complexity: \[T(n) = \begin{cases} 2T(n/2) + O(n) & \text{if } n > 3 \\ O(1) & \text{if } n \leq 3 \end{cases} \]

\[T(n) = O(n \log n) \] assuming we stop recursion when \(n \leq 3 \) and apply brute-force method. Also, we pre-sort the arrays for \(Q, X, Y \) at the beginning of sorting.

Space complexity: One needs to be careful that new arrays are not created at each recursive step. Then, space complexity will be \(\Theta(n \log n) \). We need to reuse the old arrays.
Why 7 points?

Observe that \(s \) and \(r \) must be within a 5x25 rectangle as shown in figure. This is because \(s \) and \(r \) are within the strip (25), and they cannot be more than 5 apart vertically to have \(d(s,r) < 5 \).

All points in \(P_L \) are at least 5 apart from each other. How many points can the 5x5 square may have with this constraint. At most 4 (at the four corners).

Similarly, 5x5 square on right for \(P_R \) can have at most 4 points. \(\Rightarrow \) for \(s \), we need to check at most 7 points. These 7 points are consecutive in \(Y \)' around \(s \). But, only down word checking is sufficient... why?