String Matching

Assume a text in an array $T[1, \ldots, n]$ and a pattern $P[1, \ldots, m]$, $m \leq n$. The characters are drawn from alphabet set Σ.

Goal is to find occurrences of P in T.

Example. $T = \text{aabc baabaaa} \quad \Sigma = \{a, b, c\}$

$P = \text{aab}$

P occurs at two places.

P occurs with shift s in T if $0 \leq s \leq n-m$ and $T[s+1, \ldots, s+m] = P[1, \ldots, m]$.

Definitions for strings:

Σ^*: set of all strings possible with Σ

ϵ: empty string, length zero, belongs to Σ^*

$|x|$: length of string x.

xy: concatenation of strings x and y.
Prefix: $\omega \in x$ is a prefix of x if $x = \omega y$ for $y \in \Sigma^*$

Suffix: $\omega \in x$ is a suffix of x if $x = y\omega$ for $y \in \Sigma^*$

The empty string is both prefix and suffix of every string.

\[
\begin{array}{c}
\text{aabc} \\
\text{prefix}
\end{array} \quad \begin{array}{c}
\text{dbba} \\
\text{suffix}
\end{array}
\]

P_k: k-character prefix of $P[1...m]$, that is, $P_k = P[1...k]$.

T_k: k-character prefix of $T[1...n]$.

String matching: Find all shifts $s \in [0, n-m]$ so that $P \sqsupseteq T_{s+m}$

Checking equality $x = y$: takes $O(t)$ time if t is the length of the longest string that is prefix of both x and y.

"aaabcaab = aabaabcaab" takes $3t+1$ checks.
A straightforward algorithm

Check if \(P[1...m] = T[s+1...s+m] \) for each \(s \in [0, n-m] \).

Straight-Match (T, P)

1. \(n := \text{length}[T] \)
2. \(m := \text{length}[P] \)
3. for \(s := 0 \) to \(n-m \)
 4. do if \(P[1...m] = T[s+1...s+m] \)
 5. then print "match with shifts."

Each check takes \(O(m) \) time and there are \(O(n-m+1) \) checks. So, total time \(O((n-m)m) \)

\[T = \ldots ababaababa \quad P = abab \]

It should be obvious that starting from second position is redundant from looking at \(P \). This is utilized for efficiency later.
Rabin-Karp Algorithm

Here the strings are mapped to numbers which are matched instead. The algorithm has $\Theta(m)$ preprocessing time and $\Theta((n-m)m)$ running time. So, it is not better than the straightforward algorithm in the worst-case, but runs faster in practice.

Assume $\Sigma = \{0, 1, \ldots, d-1\}$. Each character is a digit in radix-d notation.

Example: String 13456 in radix-10 is the number 13,456.

Let p be value of P in radix-10

t_s be value of $T[s+1, \ldots, s+m]$ in radix-10

Then $p = t_s$ iff s is a valid shift, that is, P matches in T with shift s.
Compute \(P \) from \(P \) in \(O(m) \) time
Compute all \(t_s \) from \(T \) in \(O(n-m+1) = O(n-m) \) time.
Check if \(p = t_s \) for all \(s \in [0, n-m] \).

This takes \(O(m) + O(n-m) = O(n) \) time.

One can compute \(p \) by Horner's rule.
\[
p = P[m] + 10(P[m-1] + 10(P[m-2] + \cdots + \cdots))
\]
to can be computed similarly from \(T \).
\[
t_{s+1} = 10(t_s - 10^{m-1}T[s+1]) + T[s+m+1]
\]

Example. \(m = 5 \), \(t_5 = 31415 \), \(T[s+1] = 3 \), \(T[s+5+1] = 2 \):
\[
t_{s+1} = 10(31415 - 10000 \cdot 3) + 2
= 14152
\]

So, after computing to in \(O(m) \) time,
we can compute all \(t_1, \ldots, t_{n-m} \) in
\(O(n-m) \) time.
The difficulty with the previous scheme is that p and t_s can become too large to assume that each operation (arithmetic) in constant-time computation.

Use modulo q numbers: p, t_s are all computed & modulo q, for some suitable q.

$$t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q$$

where $h = d^{m-1} \mod q$ \ldots \ [radix-d].

This solution keeps all numbers within a limited size $\leq q-1$, but $p = t_s$ check is no more perfect, since $t_s \equiv p \mod q$ does not imply $t_s = p$. However, if $t_s \not\equiv p \mod q$, then $t_s \not\equiv p$ for sure.

So, we can eliminate some invalid shifts quickly. But, if $t_s \equiv p \mod q$, then we have to check further.
\textbf{Rabin-Karp} (T, P, d, q)
\begin{align*}
n &:= \text{length} [T] \\
m &:= \text{length} [P] \\
h &:= d^{m-1} \pmod{q} \\
p &:= 0 \\
t_0 &:= 0 \\
\text{for } i &:= 1 \text{ to } m \\
&\quad \text{do } b := (dp + P[i]) \mod q \\
&\quad \quad \quad t_0 := (dt_0 + T[i]) \mod q \\
\text{for } s &:= 0 \text{ to } n - m \\
&\quad \text{do if } b = ts \\
&\quad \quad \text{then if } P[1 \ldots m] = T[s+1 \ldots s+m] \\
&\quad \quad \quad \text{then print "match with shifts"} \\
\text{update } ts &\quad \text{if } s < n - m \\
&\quad \quad \text{then } ts+1 := (d(ts - T[s+1])h) \\
&\quad \quad \quad \quad + T[s+m+1]) \mod q \\
\end{align*}

Because of the check at \ast, the worst-case time is $O((n-m)m)$.
String Matching with FA

This method preprocesses the pattern P and builds a finite automaton. Then, matching needs $O(1)$ time per character in T. Thus, matching takes $O(n)$ time. But, preprocessing could be a little costly.

FA: $M = (Q, q_0, A, Z, S)$

- Q: finite states
- $q_0 \in Q$: start state
- $A \subseteq Q$: accepting states
- Z: input alphabet
- $S: Q \times Z \rightarrow Q$: a transition function.

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

If M consumes a string and ends up in a final state, M accepts the string. It rejects the string otherwise.
M induces a function $\phi : \Sigma^* \rightarrow Q$.

$\phi(\epsilon) = q_0$
$\phi(wo) = \delta(\phi(w), a)$ for $w \in \Sigma^*$, $a \in \Sigma$.

Automaton for P.

Define a suffix function σ on P as follows:

$\sigma(x) = \max \{k : P_k \triangleright x\}$ for $x \in \Sigma^*$.

$\sigma(x)$ is the length of the longest prefix of P that is a suffix of x.

Ex. $P = abab$

- $\sigma(ab) = 2$
- $\sigma(abaia) = 1$
- $\sigma(abbb) = 0$

$\sigma(x) = m$ iff $P \triangleright x$
For a pattern P[1...m] we define the automaton as:

- \(Q = \{0, 1, \ldots, m\} \), \(q_0 = \{0\} \), \(A = \{m\} \).
- \(\delta(q, a) = \sigma(P_q) \).

Ex. \(P = \text{ababaca} \)

\[
\begin{array}{cccc}
\text{State} & 0 & 1 & 2 & 3 \\
\hline
a & 1 & 0 & 0 & 0 \\
b & 1 & 1 & 2 & 0 \\
c & 2 & 3 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{State} & 4 & 5 & 6 & 7 \\
\hline
a & 1 & 4 & 6 & 0 \\
b & 5 & 0 & 0 & 0 \\
c & 7 & 0 & 0 & 0 \\
\end{array}
\]

\(i: 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \)

\(T[i]: \text{ababaca} \)

\(\phi(T[i]): 1 \ 2 \ 3 \ 4 \ 5 \ 4 \ 5 \ 6 \ 7 \ 2 \)

\(M \) is designed to maintain the following invariant: \(\phi(T[i]) = \sigma(T[i]) \).
Now, assuming that M has been built for a P, we can write the algorithm for matching P in T.

\textbf{Finite-Atomaton-match (T, δ, m)}
\begin{align*}
n & := \text{length} (T) \\
q & := 0 \\
\text{for } i := 1 \text{ to } n \\
& \quad \text{do } q := \delta(q, T[i]) \\
& \quad \text{if } q = m \\
& \quad \text{then print "match with shift } i-m"
\end{align*}

\textbf{Lemma 1.} For any x and $a \in \Sigma$, we have $\delta(xa) \leq \delta(x) + 1$.

\textbf{Proof.} Let $r = \delta(xa)$. If $r = 0$, then $r \leq \delta(x) + 1$ trivially true. So, assume $r \neq 0$.
\begin{align*}
P_r & \upharpoonright xa \text{ by def. of } \delta \\
P_{r-1} & \upharpoonright x \\
r-1 & \leq \delta(x).
\end{align*}
Lemma 2. If \(q = \sigma(x) \), then \(\sigma(xa) = \sigma(P_qa) \).

Proof.

1. \(P_q \uparrow x \) by def. of \(\sigma \)
2. \(P_qa \uparrow xa \) straightforward
3. \(r = \sigma(xa) \leq q + 1 \) by Lemma 1
4. \(P_r \uparrow xa \) by def. \(r = \sigma(xa) \).
5. \(|P_r| \leq |P_qa| \) by 2

1, 3, 4 \(\Rightarrow \) \(P_r \uparrow P_qa \Rightarrow r \leq \sigma(P_qa) \)
\(\Rightarrow \sigma(xa) \leq \sigma(P_qa) \)

We also have \(\sigma(P_qa) \leq \sigma(xa) \) by 1

Therefore, \(\sigma(xa) = \sigma(P_qa) \).

Theorem. If \(\phi \) is the final-state function, then \(\phi(T_i) = \sigma(T_i) \) \(\forall i \in [0, n] \).

Proof. By induction on \(i \).

For \(i = 0 \), trivially true since \(T_0 = \epsilon \Rightarrow \phi(T_0) = 0 = \sigma(T_0) \).
Assume \(\Phi(T_i) = \sigma(T_i) \) and prove \(\Phi(T_{i+1}) = \sigma(T_{i+1}) \).

Let \(q = \Phi(T_i) \) and \(a = T[i+1] \).

\[
\Phi(T_{i+1}) = \Phi(T_i a) \\
= \delta(\Phi(T_i), a) \\
= \delta(q, a) \\
= \sigma(P_{qa}) \quad \text{(Def. of } \delta \text{)} \\
= \sigma(T_i a) \quad \text{(Lemma 2)} \\
= \sigma(T_{i+1})
\]

By the Theorem, if \(M \) enters \(q \), then \(q \) is the largest value s.t. \(P_q \not\subseteq T_i \). Thus, \(q = m \) if and only if \(P \) has occurred just currently. So, the finite-automaton algorithm is correct.
Transition function

Transo Function \((P, \Sigma)\)

\[m := \text{length}(P) \]

\[\text{for } q := 0 \text{ to } m \]

\[O(m|\Sigma|) \]

\[\text{for each } a \in \Sigma \]

\[k := \min(m+1, q+2) \]

\[O(m) \]

\[\text{repeat } k := k-1 \]

\[O(m) \]

\[\text{until } P_k \in P_a \]

\[j(q, a) := k \]

\[\text{return } \delta \]

Total complexity: \(O(m^3|\Sigma|)\).

It can be improved to \(O(m|\Sigma|)\).

Then FA approach takes \(O(n)\) matching time with \(O(m|\Sigma|)\) preprocessing time.