Knuth-Morris-Pratt algorithm

It turns out that preprocessing of P can be done in $O(m)$ time, and matching still taking $O(n)$ time. KMP algorithm thus matches strings in $\Theta(m+n)$ time.

Prefix function π

Given $P[1...q]$ matches text $T[s+1...s+q]$ what is the least $s'>s$ s.t. $P[1...k] = T[s'+1...s'+k]$ for $s'+k = s+q$?
Equivalently, we ask:

What is the largest $K < q$ s.t. $P_K \supseteq P_q$?

Then, $S' = S + (q-k)$ is next potentially valid shift.

Prefix function $\pi: \{1, 2, \ldots, m\} \rightarrow \{0, 1, \ldots, m-1\}$

$$\pi[q] = \max \{k : k < q \mid P_k \supseteq P_q\}.$$

$\pi[q]$ is the length of the longest prefix of P that is a proper suffix of P_q.

$$
\begin{array}{cccccccccccc}
 i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 P[i] & a & b & a & b & a & b & a & b & a & c & a \\
 \pi[i] & 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 0 & 1 \\
\end{array}
$$
KMP-Match(T, P)

\[n := \text{length}(T) \]
\[m := \text{length}(P) \]
\[\Pi := \text{Prefix}(P) \]
\[q := 0 \]

for \(i := 1 \) to \(n \)

while \(q > 0 \) and \(P[q+i] \neq T[i] \)

1. \[q := \Pi[q] ; \]
 if \(P[q+i] = T[i] \)
 then \(q := q + 1 ; \)
 if \(q = m \)
 then print "match with shift i-m".

2. \[q := \Pi[q] ; \]

3. \[q := \Pi[q] ; \]

Time analysis:
- \(q \) is always non-negative.
- It decreases in 1 and 3.
- While loop cannot have complexity more than the decrease in \(q \).
- Total increase in \(q \) is \(O(n) \) in the for loop which are decreased in 1 and 3.
- So, total complexity is \(O(n) \).
Prefix (P)

\[m := \text{length}[P] \]
\[\pi[1] := 0 \]
\[K := 0 \]

for \(q := 2 \) to \(m \)

while \(K > 0 \) and \(P[K+1] \neq P[q] \)

\[K := \pi[K] ; \]

if \(P[K+1] = P[q] \) then

\[K := K + 1 ; \]

\[\pi[q] := K ; \]

return \(\pi \)

Time analysis: Similar as before.

It is \(\mathcal{O}(m) \).

P:

\[\text{a b a b a b a b a b c a a} \]

\(q = 2 \) \(\rightarrow \) \(\pi[2] = 0 \)

\(q = 3 \) \(\rightarrow \) \(K = 1 \), \(\pi[3] = 1 \)

\(q = 4 \) \(\rightarrow \) \(P[3] = P[4] \) \(\rightarrow \) \(K = 2 \) \(\rightarrow \) \(\pi[4] = 2 \)

\(q = 5 \) \(\rightarrow \) \(P[3] = P[5] \) \(\rightarrow \) \(K = 3 \) \(\rightarrow \) \(\pi[5] = 3 \)

\(q = 6 \) \(\rightarrow \) \(P[4] = P[6] \) \(\rightarrow \) \(K = 4 \) \(\rightarrow \) \(\pi[6] = 4 \)
Correctness of the KMP algorithm needs a proof. See the book.