- Ford-Fulkerson's algorithm takes $O(\text{If} \times \text{IE})$ time which could be costly.

- The choice of paths in the residual network makes a difference.

- Edmond-Karp algorithm chooses the augmenting path by a breadth-first search. This means the augmenting path $p: s \rightarrow t$ is the shortest path in G_f w.r.t. # of edges (property of BFS).
We analyze that E-K algorithm takes $O(VE^2)$ time.

Lemma 1 For all vertices $v \in V - \{s, t\}$, the shortest distance $d_f(s, v)$ in G_f increases monotonically with flow augmentation.

Proof. Suppose $d_f(s, v)$ decreases, i.e., $d_{f'}(s, v) < d_f(s, v)$ where f' is the flow just after f.

* Assume u be the vertex with min. $d_{f'}(s, u)$ for which the decrease occurs.

* Let $P = s \rightarrow u \rightarrow v$ be the S.P. in $G_{f'}$.

1. $d_{f'}(s, u) = d_f(s, u) - 1$ and $(u, v) \in E_{f'}$.

* Because of our choice of u,

2. $d_{f'}(s, u) > d_f(s, u)$.

Claim: $(u, u) \notin E_{f'}$.

If (u, u) were in E_f, we would have

$$d_f(s, u) \leq d_f(s, u) + 1 \leq d_{f'}(s, u) + 1 = d_{f'}(s, u),$$

contradicting.*
• We have $(u, v) \notin E_f$ and $(u, v) \in E_f'$
 \[\Rightarrow \text{augmentation increased flow along from} \]
 \[\text{u to v. E-K algorithm augments only along shortest path} \]
 \[\Rightarrow \text{s.p. in } G_f \text{ from } s \text{ to } v \text{ has } (u, v) \text{ as} \]
 \[\text{the last edge} \]

• \[\delta_f(s, u) = \delta_f(s, u) - 1 \]
 \[\leq \delta_{f'}(s, u) - 1 \quad \color{red}{(\text{2})} \]
 \[= \delta_{f'}(s, u) - 2 \quad \color{red}{(\text{1})} \]
 \[\text{Contradicts again } \ast. \]

• Conclusion: vertex such as \(u \)
 \[\text{does not exist.} \]

Theorem: Total # of flow augmentations in E-K algorithm is \(O(VE) \).

Proof. \((u, v) \text{ is } \underline{\text{critical}} \text{ in } G_f \text{ if } (u, v) \in \mathcal{P} \)

s.t. \[\mathcal{C}_f(P) = \mathcal{C}_f(u, v). \]
- prove that each edge can become critical only at most \(\lfloor \sqrt{1/2-n} \rfloor \) times, which also bounds \# augmentations.

- consider \((u, v)\) being critical.

 \[\delta_f(s, u) = \delta_f(s, v) + 1 \]

- Edge \((u, v)\) disappears from \(G_f \).

- \((u, u)\) can reappear only if \((v, u)\) appears on augmenting path later for a flow \(f' \).

- \[\delta_{f'}(s, u) = \delta_{f'}(s, v) + 1 \]
 \[\geq \delta_f(s, u) + 1 \]
 \[\text{(Lemma)} \]
 \[= \delta_f(s, u) + 2 \]

- distance of \(u \) from \(s \) increases by at least 2 for two consecutive times when \((u, u)\) becomes critical.

- Since distance cannot be more than \(O(\sqrt{n}) \), \((u, u)\) can be critical only \(O(\sqrt{n}) \) times.

- So, \(|E| \) edges can become \(O(\sqrt{|V|}) \) times critical bounding \# augmentations.