Heap property: for every node i, the value in i is less or equal the value in $p(i)$.

The embedding is defined by:

- $\text{root} := 1$
- $l(i) := 2i$
- $r(i) := 2i + 1$
- $p(i) := \left\lfloor \frac{i}{2} \right\rfloor$

Heap property is: $A[i] \leq A[p(i)]$ for all i.

The height of a node is the number of edges on the longest downward path starting at the node.

The height of a heap is the height of its root.

Claim. \(\log(n+1) - 1 \leq h \leq \log n \)

Proof. \[
\sum_{i=0}^{h-1} 2^i + 1 \leq n \leq \sum_{i=0}^{h} 2^i
\]
\[
2^h \leq n \leq 2^{h+1} - 1
\]
\[
\log(n+1) - 1 \leq h \leq \log n
\]

Maintaining Heap Property:

Down-heap extends the heap-property by one more node.

Procedure `Down-heap(i)`:

\[
\text{max} := i; \quad \text{if } l(i) \leq \text{heap-size}[A] \text{ and } A[\text{max}] < A[l(i)]
\]
\[
\quad \text{then } \max := l(i)
\]

\[
\text{endif}
\]
\[
\text{if } r(i) \leq \text{heap-size}[A] \text{ and } A[\text{max}] < A[r(i)]
\]
\[
\quad \text{then } \max := r(i)
\]

\[
\text{endif}
\]
\[
\text{if } \max \neq i \text{ then } A[i] \leftrightarrow A[\max]
\]
\[
\text{Down-heap} (\max)
\]
\[
\text{endif}
\]

Cost is \(O(h) \)
An iterative version is:

Procedure Downheap(i);
repeat max := i;
 if L(i) ≤ heap-size(A) and A[max] < A[L(i)]
 then max := L(i)
 endif
 if r(i) ≤ heap-size(A) and A[max] < A[r(i)]
 then max := r(i)
 endif
 A[i] ← A[max]; i ← max
until i := max

Building a heap

The idea is to construct it from bottom up.

Procedure Build-heap (n);
 for i := n downto 1 do Downheap(i) endfor
(Assumption: A is global; n = heap-size[A])

It is easy to show that this takes $O(n \log n)$ time. But, a tighter analysis is possible.
The amount of time to build the heap is at most
\[\sum_{i=0}^{h} 2^i \cdot \log(h-i) = O(\frac{h \sum 2^i}{i=0} - \sum_{i=0}^{h} 2^i) \]
\[= O(h \cdot 2^{h+1} - h - (h+1) \cdot 2^{h+1} + 2^{h+2}) \]
\[= O(n) \]
[used the fact: \(\sum_{i=0}^{h} i \cdot 2^i = (h+1)2^{h+1} - 2^{h+2} + 2 \)]

HeapSort algorithm

The input is an unsorted array \(A[1...n] \), \(n = \text{length}(A) \). After the construction of heap, the maximum is repeatedly moved while shrinking it.

Procedure HeapSort(n);
Buildheap(n); heap-size\([A]\) := n;
for i := n downto 2 do
 heap-size\([A]\) := i-1
 Downheap(1)
endfor

Complexity is \(O(n \log n) \)
Heap as Priority Queue

A priority queue stores a multiset S of keys and supports operations:

- **Insert (x):** $S := S \cup \{x\}$
- **Delete (i):** remove element at location i
- **Max:** return the largest key
- **Extract Max:** return the largest key and remove it.

Procedure Insert (x):
- heap-size(A) := heap-size(A) + 1
- $i :=$ heap-size(A)
- $A[i] := x$
- **upheap** (i)

Procedure Upheap (i):
- while $i > 1$ and $A[i] > A[p(i)]$ do
 - $A[i] \leftarrow A[p(i)]$
 - $i := p(i)$
- endwhile

Procedure Delete (i):
- $A[i] := A[\text{heap-size}(A)]$
- heap-size(A) := heap-size(A) - 1
- if $A[i] < A[p(i)]$ then **Downheap** (i)
 - else **upheap** (i)
- endif

function ExtractMax:
- ExtractMax := $A[1]$; Delete (i)

All take $O(\log n)$ time.