1. **Binary trees**. Each node has 2 children which can be empty. It has also a parent which also can be empty.

A node without any children (both empty) is leaf. Other nodes are internal. The node without any parent is root.

A Pascal type representation:

```pascal
type node = record
  k, l, r : node;
  key : integer;
end

tree = node
```

2. **More terminology.** If y is a descendant of u if it is a child of u or a descendant of a child of u.

If y is descendant of u, then u is an ancestor of y.

- Depth of u is number of edges from root to u.
- Height of u is max. number of edges from u to a leaf.
- Subtree of u consists of u and its descendants.
3. Traversals. Three traversals are inorder, preorder and postorder.

Procedure Inorder (M)
 if M \neq nil then
 Inorder (M.l);
 print (M.key);
 Inorder (M.r);
 endif

Procedure Preorder (M)
 if M \neq nil then
 print (M.key);
 preorder (M.l);
 preorder (M.r);
 endif

Postorder: first recurse left, then right, then print
property: \(m \) is ancestor of \(y \) iff
\[
\text{pre}(m) < \text{pre}(y) \quad \text{and} \quad \text{post}(m) > \text{post}(y)
\]

A binary tree is a binary search tree if the keys printed inorder is sorted.
4. Searching

```plaintext
function Search(x; μ)
    if μ = nil or x = μ.key then return μ
    else if x < μ.key then return Search(x, μ.l)
    else return Search(x, μ.r)
    endif
    endif
```

Write Successor and Min functions.
5. Insertion and Deletion

procedure Insert (P, Y)
 \(x := \text{nil} \); \(M := P \);
 while \(M \neq \text{nil} \) do
 \(x := Y \);
 if \(Y.\text{key} < M.\text{key} \) then
 \(M := M.\text{l} \);
 else
 \(M := M.\text{r} \);
 endif
 endwhile

 \(Y.\text{p} := x \);
 if \(x = \text{nil} \) then \(P := Y \)
 else if \(Y.\text{key} < x.\text{key} \) then
 \(x.\text{l} := Y \)
 \(x.\text{r} := X \);
 elif \(Y.\text{key} > x.\text{key} \) then
 \(x.\text{r} := Y \);
 \(x.\text{l} := X \);
 endif

endif

Deletion is slightly complicated:

Case 1: node has no children
Case 2: node has one child
Case 3: node has two children
 a. replace key by Successor key
 b. delete Successor