All pairs shortest paths.

$O(n^2 \log n + mn)$ time by Dijkstra's algorithm (only with non-negative weights)

$O(mn)$ by Bellman-Ford (with negative edge weights, no negative cycle)

$O(n^3 \log n)$ by repeated matrix multiplication

$O(n^3)$ by Floyd-Warshall's algorithm

Input: Adjacency matrix W.

Output: Matrix D where

$d_{ij} =$ wt. of the shortest path from i to j.
Shortest path with repeated matrix multiplication:

Let $d_{ij}^{(m)}$ be the wt. of the s.p. from i to j that contains at most m edges.

$$d_{ij}^{(1)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

$$d_{ij}^{(m)} = \min \left\{ d_{ij}^{(m-1)}, \min_{1 \leq k \leq n} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\} \right\} \quad \text{for } m \geq 2$$

$$d_{ij}^{(n)} = d_{ij}^{(n-1)} = d_{ij}^{(n)} = \ldots$$

Extend shortest paths $(D^{(m)}, W)$

Let $D^{(m+1)} = (d_{ij}^{(m+1)})$ be the $n \times n$ matrix

for $i := 1$ to n
 for $j := 1$ to n
 $d_{ij}^{(m+1)} := \infty$
 endfor
endfor

for $k := 1$ to n
 $d_{ij}^{(m+1)} := \min \{ d_{ij}^{(m+1)}, d_{ik}^{(m)} + w_{kj} \}$
endfor
endfor

return D^{m+1}
For matrix multiplication

\[C = A \cdot B \text{ we compute} \]

\[C_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}. \]

Replace \(\min \rightarrow + \) in Extend-shortest-path

Then it is a matrix multiplication

\[D^{(m+1)} = D^m \cdot W \]

All-Shortest-Paths-By-Matrix-Multiplication

\[D^{(1)} = W \]

for \(m = 2 \) to \(n-1 \)

\[D^{(m)} := \text{Extend-shortest-path}(D^{m-1}, W) \]

endfor

Return \(D^{(m-1)} \)

\[D^{(1)} = W \]

\[D^{(2)} = W^2 \]

\[D^{(3)} = W^3 \]

\[\Rightarrow \]

\[D^{(n)} = \text{W}^{\lfloor \log(n-1) \rfloor} \cdot \text{W}^{(n-1) \cdot \log(n-1)} \cdot W^{2 \log(n-1)} \cdot W \]

Since \(2^{\lfloor \log(n-1) \rfloor} \geq n \),

\[D \approx D^{(n-1)} \]

\(O(n^3 \log n) \)
Floyd-Warshall's algorithm.

Transitive closures

Compute
\[d_{ij} = \begin{cases} 1 & \text{if there is a path from } i \text{ to } j \\ 0 & \text{if there is no such path} \end{cases} \]

Ex.

At the k-th iteration we get \(d_{ij} = 1 \) if there is a path from \(i \) to \(j \) that goes through vertices (excluding \(i \) and \(j \)) with indices \(\leq k \).

- Initialization
 - \(k=1 \): \((3,4), (3,2) \)
 - \(k=2 \): \((1,3) \)
 - \(k=3 \): \((2,4), (2,1), (5,1), (5,2) \)

- \(k=4 \) no change
- \(k=5 \) no change
for \(k = 1 \) to \(n \) do
 for \(i = 1 \) to \(n \) do
 for \(j = 1 \) to \(n \) do
 if \(d_{ik} = 1 \) and \(d_{kj} = 1 \) then
 \(d_{ij} = 1 \)
 endif
 endfor
 endfor
endfor

Floyd-Warshall

Rule: At the \(k \)th iteration, compute the length of the shortest path from \(i \) to \(j \) that contains only nodes \(\leq k \) (excluding \(i \) & \(j \)).

\[D = W; \]

for \(k = 1 \) to \(n \) do
 for \(i = 1 \) to \(n \) do
 for \(j = 1 \) to \(n \) do
 if \(d_{ik} + d_{kj} < d_{ij} \) then
 \(d_{ij} = d_{ik} + d_{kj} \)
 endif
 endfor
 endfor
endfor

\(O(n^3) \)