Red-Black Tree

- This is a binary tree where height is balanced and thus it provides efficient search.
- We need to maintain the balance during insertions and deletions.

Properties of RB tree.

A binary tree where each edge is colored either red or black. One may store a bit in one of the nodes (lower one) to indicate the color.

Red-black property.

1. Every edge to a leaf is black

2. No (downward) path has 2 consecutive red edges.

3. Every path from a node \(m \) to a leaf has the same # of black edges, the black-height \(bh(m) \).
Example.

\[bh(P) = 3 \]
\[h(P) = 6 \]

Longest path is at most twice as long as the shortest path from the root to a leaf.

Claim. A red-black tree with \(n \) internal nodes has height at most \(2 \log(n+1) \).
Proof. The tree has \(n+1 \) leaves. Now contract red edges, that is, identify their respective 2 nodes. The example red-black tree becomes

```
Every leaf has depth \( bh(p) \).
Every remaining interior node has at least 2 children.
Thus, \( 2^{bh(p)} \leq n+1 \)
\( \lor \ bh(p) \leq \log(n+1) \)
\( \lor \ h(p) \leq 2bh(p) \leq 2\log(n+1) \).
```

The main tool used to balance the tree is rotation.
Rotations

A rotation is a local restructuring operation designed to improve the balance.

Important: A rotation does not change the inorder sequence.

Procedure

Left-Rotate (p, x: Node) [p: root assume x.r ≠ nil]

\[\begin{align*}
 y &:= x.r; \\
 x.r &:= y.l; \\
 \text{if } y.l \neq \text{nil} \text{ then } y.l.p &:= x \text{ endif;} \\
 y.p &:= x.p; \\
 \text{if } x.p \neq \text{nil} \text{ then } p &:= y \text{ else if } x = x.p.l \text{ then } \text{else if } x.p.r = \text{nil} \text{ then } x.p.l &:= y \text{ endif} \\
 \text{else } x.p.r &:= y \text{ endif} \\
 \text{endif} \\
 y.l &:= x; \\
 x.p &:= y.
\end{align*} \]
There is also a composite type of rotation:

1. Single left rotate X
2. Single right rotate Z

An example. We look at the operations for an example first to get an idea.

Sequence: 10, 7, 13, 4, 2, 5, 6.

Add 10, 7, 13, 4
Insertion.

First we add the new key \(x \) by replacing a proper leaf as for binary search tree. Color the incoming edge (from parent) red. Then, adjust color and structure at \(y := x.p \)

Invariant.

1. If \(y \) has a red incoming edge and a red outgoing edge then this is the only violation of the red-black tree property.

2. If \(y \) has a red incoming edge then it has exactly one red outgoing edge; otherwise there are one or two outgoing edges.

Case 1. Incoming edge of \(y \) is black: Done

Case 2. Incoming edge of \(y \) is red. Set \(M := y.p \)

Case 2.1 Both outgoing edges of \(M \) are red; promote \(M \);

if \(M.p = \text{nil} \) then \(y := M.p \)
endif and recurse for \(y \).
Case 2.2 \(\gamma \) is left child of \(\mu \), and left outgoing edge of \(\gamma \) is red.

- Single rotate \(\mu \) to right.
- Done.

(There is a symmetric right-right case)

Case 2.3 \(\gamma \) is left child of \(\mu \); and right outgoing edge of \(\gamma \) is red.

- Double rotate \(\mu \) to right
- Done.

(There is a symmetric right-left case)

Observe that invariants are maintained and then at most 2 rotations needed.
Deletions. First find the node \(x \) that stores the item that needs to be deleted.

By substituting with successor or predecessor we can assume that \(x \) has 2 leaves as children.

Caveat: you may need to perform several successor or predecessor operation. For example, if \(x \) has a right child, do successor and repeat if that successor(\(x \)) has a right child.... and so on. Successor(\(x \)) cannot have left child. If \(x \) had a left child but no right child, do a predecessor.....

Since \(x \) has 2 leaves, we can replace \(x \) by a leaf \(\lambda \). If the incoming edge of \(x \) is red than that of \(\lambda \) should be black. If the incoming edge of \(x \) is black then we have a problem and need to restructure. Make the incoming edge as "double black". Start restructuring with \(\gamma := \lambda \).
Invariant. If the incoming edge of \(r \) is black then we have a valid red-black tree; otherwise, the incoming double-black edge is the only violation of the red-black property.

Case 1. Incoming edge of \(r \) is black. Done.

Case 2. Incoming edge of \(r \) is double-black. \(\mu := r \cdot b; \ r \) is sibling of \(r \).

Case 2.1 Edge from \(\mu \) to \(r \) is black.

(In this case \(r \) is not a leaf): otherwise, \(\mu \) will not have same black-height on both sides.

Case 2.1.1 Both outgoing edges of \(r \) are black

Demote \(\mu \); recurse for \(r := \mu \).
Case 2.1.2 \(\gamma \) is left child of \(m \) and right outgoing edge of \(\gamma \) is red.
Single rotate \(m \) to left. Done.

\[
\begin{align*}
\text{Case 2.1.3} & \quad \gamma \text{ is left child of } m \text{ and left outgoing edge of } \gamma \text{ is red, the other one is black. Double rotate } m \text{ to left. Done.} \\
\end{align*}
\]

Case 2.2 Edge from \(m \) to \(\gamma \) is red, assume \(\gamma \) is left child of \(m \). Single rotate \(m \) to left, recurse for \(\gamma \). (Next step case 2.1, terminates)
Summary:

A red-black tree supports operations search, minimum, maximum, successor, predecessor, insertion, deletion in time $O(\log n)$ each. A single insertion or deletion requires at most 3 rotations (only during promote or demote recursions happen that do not involve any rotations).