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Abstract. This paper presents a fast and simple method us-
ing a timed motion history image (tMHI) for representing
motion from the gradients in successively layered silhou-
ettes. This representation can be used to (a) determine the
current pose of the object and (b) segment and measure
the motions induced by the object in a video scene. These
segmented regions are not “motion blobs”, but instead are
motion regions that are naturally connected to parts of the
moving object. This method may be used as a very general
gesture recognition “toolbox”. We demonstrate the approach
with recognition of waving and overhead clapping motions
to control a music synthesis program.
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1 Introduction and related work

Three years ago, a PC cost about U.S. $2500 and a low-
end video camera and capture board cost about U.S. $300.
Today, the computer could be had for under U.S. $700 and
an adequate USB camera for under U.S. $701. It is not sur-
prising then that there is an increasing interest in real-time
vision on low-end computers. A heightened interest in under-
standing and recognizing human movements has appeared in
tracking and surveillance systems, human–computer inter-
faces and entertainment domains. For example, monitoring
applications may wish to signal only when a person is seen
moving in a particular area (perhaps within a dangerous or
secure area), interface systems may require the understand-
ing of gesture as a means of input or control, and entertain-
ment applications may want to analyze the actions of the
person to better aid in the immersion or reactivity of the
experience.

Recently, there have been several popular approaches to
the recognition of human motion [8–11, 13–16, 20, 22, 33],
with much emphasis on real-time computation. Several sur-
vey papers review vision-based motion recognition [36], hu-
man motion capture [31, 32] and human-motion analysis [1].

Correspondence to: G.R. Bradski
1 See [33, 43] for free optimized supporting software.

The most common frameworks to recognition of body mo-
tion and gesture include the analysis of temporal trajectories
of the motion parameters [6, 29, 35, 40], hidden Markov
models (HMMs) and state-space models [37, 39, 41], and
static-activity templates [12, 17, 19, 34].

One other possible motion representation to describe an
action sequence could be the collection of optical flow over
the image or region of interest throughout the sequence, but
this is computationally expensive and many times not robust.
Hierarchical [2] and/or robust estimation [5] is often needed,
and optical flow frequently signals unwanted motion in re-
gions such as those containing loose and textured clothing.
Moreover, in the absence of some type of grouping, optical
flow happens frame to frame whereas human gestures may
span several seconds. Despite these difficulties, optical flow
signals have been grouped into regional blobs and used for
gesture recognition [13]. An alternative approach was pro-
posed in [17] where successive layering of image silhouettes
of a person into a single template was used to represent and
recognize patterns of human motion. Every time a new video
frame arrives, the existing silhouettes are decreased in value
subject to some threshold and the new silhouette (if any) is
overlaid at maximal brightness. This layered motion image
is termed a motion history image (MHI). MHI representa-
tions have the advantage that a range of times from frame to
frame to several seconds may be encoded in a single image.
In this way, MHIs span the time scales of human gestures.
In [17], moment features of the entire MHI image were used
to recognize particular activities.

The outline of this paper is as follows. Section 2 re-
views previous MHI research. Sections 3–5 are summarized
in the processing flow chart in Fig. 1 where numbers indi-
cate which section that processing step is described. In this
paper, we factor pose from motion and segment the motion
regions. We take Hu moment shape descriptors [25] of the
current silhouette to recognize pose. We generalize the MHI
to directly encode actual time in a floating-point format that
we call the timed motion history image (tMHI). A gradient
of the tMHI is used to determine normal optical flow (e.g.
motion flow orthogonal to object boundaries). The motion is
then segmented relative to object boundaries and the motion
orientation of each region is obtained. The end result is rec-
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Fig. 1. Process flow chart with section numbers

ognized pose, and motion to that pose – a general “ tool” for
use in object motion analysis or gesture recognition. Section
6 compares the computational advantages of our approach
with other optical flow approaches such as used in [13]. In
Sect. 7 we use our approach to recognize walking, waving
and clapping motions to control musical synthesis. Section
8 concludes the paper.

2 Previous motion template research

In previous work, Davis and Bobick [17] presented a real-
time computer vision approach for representing and recog-
nizing simple human movements. The motivation for the
approach was based on how easily people can recognize
common human movements (like sitting or push-ups) from
low-resolution (blurred) imagery. In those examples there
was an almost total lack of recognizable image structure,
thus showing the role of motion for recognition. Accord-
ingly, their method relied on “patterns of motion” rather
than on structural features as the representation for human
motion. In that method, the space-time image volume con-
taining the motion is collapsed into a single 2D template
while still perceptually capturing the essence of the move-
ment and its temporal structure. The template is generated by
layering successive image differences of a moving person,
and is referred to as a MHI (similar to [26]). An example is
shown in Fig. 2 for the movement of a person stretching her
arm over her head.

For recognition of the templates, seven higher-order mo-
ments [25] were initially extracted from the MHI and also
from a binarized version of the MHI (MEI). These fourteen
moments were used as global shape descriptors and tempo-
ral recency localizers for the MHI. The moments were then
statistically matched to stored examples of different move-
ments. This method of recognition has shown promising re-
sults using a large database of movements.

Already, interactive systems have been successfully con-
structed using the underlying motion history approach as the

primary sensing mechanism. One example includes a virtual
aerobics trainer [15] that watches and responds to the user as
he or she performs the workout (see Fig. 3a). In this system,
MHIs are used to watch and recognize the various exer-
cise movements of the person, which affects the response of
the virtual instructor. Another application using the MHI ap-
proach is The KidsRoom [7]. At one point in this interactive,
narrative playspace for children, virtual monsters appear on
large video projection screens and teach the children how to
do a dance. The monsters then dance with the children, com-
plementing the kids whenever they perform the dance move-
ments (see Fig. 3b). The dancing movements of the children
are recognized using MHIs. Thirdly, a simple interactive art
demonstration can be constructed from the motion images,
reminiscent of Krueger-style interactive installations [27].
By mapping different colors to the various values within the
MHI and displaying the result on a large projection screen,
a person can have fun “body-painting” over the screen (see
Fig. 3c). Other applications in general that must be “aware”
of the movements of the person (or people) could also benefit
from using this approach. For example, gesture-based com-
puter video games [8, 20] or immersive experiences (e.g.
Hawaii flight simulator [9], as shown in Fig. 3d) designed
to respond to user gesture control could use the previous
template approach or employ our new method as an addi-
tional sensing measurement or qualification of the person’s
movements. Even simpler gesture-based systems that rely on
detecting characteristic motion (e.g. hand swipes to change
a channel or a slide in a presentation) could profit from the
fast and simple motion orientation features we will describe.

The main limitation of the previous motion history ap-
proach is that characterization of the template is token (la-
bel) based (e.g. “crouching” or “sitting” ), where it cannot
yield much information other than recognition matches (e.g.
it cannot determine that “up” motion is currently happening
in a particular image location). We therefore wish to de-
velop additional methods for analysis and recognition that
are more sensitive to the local motion information. In the
next section, we develop a method of analysis that extracts
both pose and directional motion information from the MHI.

3 Pose and motion representation

3.1 Silhouettes and pose recognition

The algorithm as shown in Fig. 1 depends on generating sil-
houettes of the object of interest. Almost any silhouette gen-
eration method can be used. Possible methods of silhouette
generation include stereo disparity or stereo depth subtrac-
tion [3], infra-red back-lighting [16], frame differencing [17],
color histogram back-projection [9], texture blob segmenta-
tion, range imagery foreground segmentation, etc. We chose
a simple background subtraction method for the purposes of
this paper.

3.1.1 Silhouette generation

Although there is recent work on more sophisticated meth-
ods of background subtraction [18, 24, 30], we use a fast,
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Frame-0 Frame-35 Frame-70 MHI

Fig. 2. Motion history image for arm-stretching movement generated from layered image differences

Fig. 3a–d. Interactive systems employing
MHIs. a Virtual aerobics trainer (photo used
with permission from Sam Ogden); b The
KidsRoom; c Interactive body painting; d
Hawaii flight simulator

Fig. 4. Test postures Y, T and �

simplistic method here. We label as foreground those pixels
that are a set number of standard deviations from the mean
RGB background. Then a pixel dilation and region growing

method is applied to remove noise and extract the silhouette.
A limitation of using silhouettes is that no motion inside the
body region can be seen. For example, a silhouette generated
from a camera facing a person would not show the hands
moving in front of the body. One possibility to help over-
come this problem is to simultaneously use multiple camera
views. Another approach would be to separately segment the
flesh-colored regions and overlay them when they cross the
foreground silhouette.

3.1.2 Mahalanobis match to Hu moments of silhouette pose

For recognition of silhouette pose, seven higher-order Hu
moments [25] provide shape descriptors that are invariant
to translation and scale. Since these moments are of dif-
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Fig. 5. Successive silhouettes of an upward arm movement en-
coded in floating-point timestamps yields the tMHI. Brighter
tMHI values depict more recent motion

Fig. 6. tMHI; gradients; mask; global orientation

Table 1. Discrimination results of posture recognition. Distance to correct
pose model (in bold) is much smaller than distances to incorrect poses and
therefore it is easy to set a recognition threshold

Pose Y Pose T Pose �
Test Y 14 204 2167
Test T 411 11 11085
Test � 2807 257 28

ferent orders, we use the Mahalanobis distance metric [38]
for matching based on a statistical measure of closeness to
training examples:

mahal(x) = (x − m)T K−1(x − m) (1)

where x is the moment feature vector, m is the mean of the
training moment vectors, and K−1 is the inverse covariance
matrix for the training vectors. The discriminatory power
of these moment features for the silhouette poses is indi-
cated by a short example. For this example, the training set
consisted of five people performing five repetitions of three
gesture poses (Y, T, and �) shown in Fig. 4. A sixth person
who had not practiced the gestures was brought in to per-
form the gestures for testing. Table 1 shows typical results
for pose discrimination. We can see that even the confus-
able poses Y and T are separated by more than an order
of magnitude making it easy to set thresholds to recognize
test poses against trained model poses. An alternative ap-
proach to pose recognition uses gradient histograms of the
segmented silhouette region [8].

3.2 Timed Motion History Images (tMHI)

In this paper, we use a floating-point MHI [14] where new
silhouette values are copied in with a floating-point times-
tamp in the format seconds.milliseconds. This MHI repre-
sentation is updated as follows:

tMHIδ(x, y) =

{
τ if current silhouette at (x, y)
0 else if tMHIδ(x, y) < (τ − δ) (2)

where τ is the current timestamp, and δ is the maximum
time duration constant (typically a few seconds) associated
with the template. This method makes our representation
independent of system speed or frame rate (within limits)
so that a given gesture will cover the same MHI area at
different capture rates. We call this representation the tMHI.
Figure 5 shows a schematic representation of a tMHI for a
person doing an upward arm movement.

3.3 Motion history gradients

Notice in the right image in Fig. 5 that if we took the gra-
dient of the tMHI, we would get direction vectors pointing
in the direction of the movement of the arm. Note that these
gradient vectors will point orthogonal to the moving object
boundaries at each “step” in the tMHI giving us a normal op-
tical flow representation (see center left image Fig. 6). Gradi-
ents of the tMHI can be calculated efficiently by convolution
with separable Sobel filters in the x and y directions yield-
ing the spatial derivatives Fx(x, y) and Fy(x, y). Gradient
orientation at each pixel is then
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Fig. 7. Global motion: kneeling, walking, arms up

Fig. 8. a tMHI from flapping one’s arms.
b Find current silhouette region; “walk” the
boundary until a lower region outside within
one dT of the current region is found to down-
fill; c Store the downfill area as a motion mask;
Continue walking the boundary looking for ar-
eas to downfill until d the current silhouette re-
gion has been circumnavigated. e Find the mo-
tion direction within each of the stored mask
regions

φ(x, y) = arctan
Fy(x, y)
Fx(x, y)

. (3)

We must be careful, though, when calculating the gradient
information because it is only valid at locations within the
tMHI. The surrounding boundary of the tMHI should not be
used because non-silhouette (zero value) pixels would be in-
cluded in the gradient calculation, thus corrupting the result.
Only tMHI interior silhouette pixels should be examined.
Additionally, we must not use gradients of tMHI pixels that
have a contrast which is too low (inside a silhouette) or too

high (large temporal disparity) in their local neighborhood.
Figure 6 center left shows raw tMHI gradients. Applying the
above criteria to the raw gradients yields a masked region
of valid gradients in Fig. 6 center right.

After calculating the motion gradients, we can then ex-
tract motion features to varying scales. For instance, we can
generate a radial histogram of the motion orientations which
then can be used directly for recognition as done in [14].
But, an even simpler measure is to find the global motion
orientation.
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4 Global gradient orientation

Calculation of the global orientation should be weighted by
normalized tMHI values to give more influence to the most
current motions within the template. A simple calculation
for the global weighted orientation is as follows:

φ = φref (4)

+

∑
x,y

angDiff(φ(x, y), φref) × norm(τ, δ, t, MHIδ(x, y))

∑
x,y

norm(τ, δ, MHIδ(x, y))

where φ is the global motion orientation, φref is the base ref-
erence angle (peaked value in the histogram of orientations),
φ(x, y) is the motion orientation map found from gradient
convolutions, norm(τ, δ, MHIδ(x, y)) is a normalized tMHI
value (linearly normalizing the tMHI from 0–1 using the cur-
rent timestamp τ and duration δ), and angDiff(φ(x, y), φref)
is the minimum, signed angular difference of an orientation
from the reference angle. A histogram-based reference angle
(φref) is required due to problems associated with averaging
circular distance measurements. Figure 6 shows from left to
right a tMHI, the raw gradients, the masked region of valid
gradients, and finally the orientation histogram with global
direction vector calculated. Figure 7 shows global motion di-
rections for the movements of kneeling, walking and lifting
the arms.

5 Motion segmentation

Any segmentation scheme begs the question as to what is be-
ing segmented. Segmentation by collecting “blobs” of sim-
ilar direction motion collected frame to frame from optical
flow as done in [13] does not guarantee that the motion
corresponds to the actual movement of objects in a scene.
We want to group motion regions that are produced by the
movement of parts or the whole of the object of interest. A
novel modification to the tMHI gradient algorithm has an
advantage in this regard: by labeling motion regions con-
nected to the current silhouette using a downward stepping
floodfill, we can identify areas of motion directly attached
to parts of the object of interest.

5.1 Motion attached to object

By construction, the most recent silhouette has the maximal
values (i.e. most recent timestamp) in the tMHI. We scan the
image until we find this value, then “walk” along the most
recent silhouette’s contour to find attached areas of motion.
The algorithm for creating masks to segment motion regions
is as follows (with reference to Fig. 8):

1. Scan the tMHI until we find a pixel with the current
timestamp. This is a boundary pixel of the most recent
silhouette (Fig. 8b).

2. “Walk” around the boundary of the current silhouette
region looking outside for recent (within dT, e.g. the
time difference between each video frame), unmarked
motion history “steps” . When a suitable step is found,
mark it with a downward floodfill (downfill) (Fig. 8b,c).
If the size of the fill is not big enough, zero out the area.

3. Store the segmented motion mask that was found
(Fig. 8c,d).

4. If the boundary “walk” has not yet circumnavigated the
current silhouette, go to 2.

5. Calculate the motion orientation within each mask found
in 3 above (Fig. 8e).

In the algorithm above, downfill refers to floodfills that
will fill (replace with a labeled value) pixels with the same
value or pixels of a value one step (within dT) lower than
the current pixel being filled. The segmentation algorithm
then relies on two parameters: (1) the maximum allowable
downward step distance dT (e.g. how far back in time a
past motion can be considered to be connected to the cur-
rent silhouette); and (2) the minimum acceptable size of the
downward floodfill (else zero it out because the region is too
small – a motion “noise” region).

The algorithm above produces segmentation masks that
are used to select portions of the valid motion history gradi-
ent described in Sect. 3.3. These segmented regions may then
be labeled with their weighted regional orientation. Since
these segmentation masks are derived directly from past mo-
tion that “spilled” from the current silhouette boundary of
the object, the motion regions are directly connected to the
object itself. We give segmentation examples in the section
below.

5.2 Motion segmentation examples

Figure 9 shows a hand opening and closing in front of a
camera. The small windows capture the two motion regions
and the large window is the overall motion orientation. Note
that the small arrows correctly catch the finger motion while
the global motion is ambiguous. Figure 10 shows a kick-
ing motion from left to right. In the leftmost image, the
hands have just been brought down as indicated by the large
global motion arrow. The small segmentation arrow is al-
ready catching the leftward lean of the body at right. In
the center left image the left leg lean and right leg motion
are detected. At center right, the left hand motion and right
leg are indicated. At right, the downward leg motion and
rightward lean of the body are found.

Figure 11 shows segmented motion and recognized pose
for lifting the arms into a T position and then dropping the
arms back down. The large arrow indicates global motion
over a few seconds, the smaller arrows show segmented
motion as long as the corresponding silhouette region moved
less than 0.2 s ago.

6 Comparison to optical flow methods

In the sections above, we presented a method of comput-
ing normal optical flow that measures motion orthogonal
to object boundaries. This method was implemented using
OpenCV, an optimized open-source computer vision library
maintained by Intel Corporation [33]. In OpenCV, the code
optimization results are recorded in CPU cycles per element
(pixel) so that performance numbers are independent of CPU
speed. The normal optical flow calculations take 106 cycles
per element. There are three other widely used methods of
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Fig. 9. Segmented and global finger motion for hand open and close

Fig. 10. Kicking motion

optical flow: Lukas–Kanade [28], Horn–Schunck [23] and
block matching [4]. These methods of optical flow all rely on
a brightness constancy assumption that feature location pixel
values between two successive frames do not vary with time
or motion displacement. This constraint may be expressed
as two equations:

I(x + dx, y + dy, t + dt) = I(x, y, t), (5)

and
∂I

∂x
dx +

∂I
∂y

dy +
∂I
∂t

dt = 0. (6)

Using a Taylor series expansion of I(x + dx, y + dy, t + dt),
we get

I(x + dx, y + dy, t + dt) = I(x, y, t) +
∂I

∂x
dx +

∂I
∂y

dy

+
∂I

∂t
dt . . . . (7)

Letting dx
dt = u and dy

dt = v and combining Eq. (7) with Eqs.
(5) and (6) we get the optical flow constraint equation:

∂I

∂t
=

∂I

∂t
u +

∂I

∂t
v. (8)

The optical flow constraint equation has more than one so-
lution, so the different techniques diverge here.

Lukas–Kanade equations are derived assuming that pix-
els in a neighborhood of each tracked feature move with
the same velocity as the feature. In OpenCV, to catch large
motions with a small window size (to keep the “same local

velocity” assumption), Lukas–Kanade is done in an image
pyramid. The total operation consumes 487 cycles per ele-
ment for a 7 × 7 window which is 4.6 times slower than the
tMHI method for normal optical flow. Horn–Schunck equa-
tions are derived assuming a smoothness of flow constraint
together with a Lagrangian minimization of deviations from
the optical flow constraint equation. In OpenCV, this is a
relatively fast procedure consuming 299 cycles per element,
or 2.8 times slower than the tMHI method for normal optical
flow. Finally, the block matching method uses the idea of
brightness constancy to assume small blocks around image
features look the same frame to frame. Brute force matching
is the slowest method consuming 1003 cycles per element
for an 8 × 8 window with a search range 8. Block matching
is 9.5 times slower than the tMHI method for normal optical
flow.

The motion segmentation method in Cutler and Turk [13]
employed a block matching method of optical flow; we will
use this approach for another comparison. As stated above,
block matching optical flow in OpenCV runs at 1003 cycles
per element for an 8×8 window with a search range 8 which
can catch motion disparities � 16 pixels. Cutler and Turk
have similar motion disparities and report optimized block
matching results that are about 2.7 times faster due to their
use of a sparse correspondence search pattern and only cal-
culating motion in areas indicated by frame differencing. As
a result of these approximations, they are able to speed up
their algorithm to about 369 cycles per element. These are
good results, yet our tMHI method is over 3 times faster at
106 cycles per element. For segmentation, they use a region
growing method that takes about 76 cycles per element. We
use a floodfill that takes 34 cycles per element. In total then,
Cutler and Turk’s method consumes 445 cycles per element,
while our tMHI method uses 140 cycles per element giving
us a factor of 3.2 speed up. Thus, using 160 × 120 video
images at 30 Hz on a 500 MHz Pentium III, the optical flow
based method would use about half the CPU and our algo-
rithm would use about one sixth of the CPU leaving more
time to do things with the recognized gestures.

7 Example: conducting music

To demonstrate the utility of the tMHI segmentation as a
motion gesture recognition tool, we decided to control a
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Fig. 11. Arms up, T pose, arms down

vocal music synthesizer with 3D spatial sound using the
following gesture movement controls:

– Detect walk-on/walk-off to set and reset the music.
– Waving gestures to control the music tempo.
– Waving either the left or right arm to move the music

left or right respectively. Waving both arms centers the
music.

– A full “ jumping jack” over the head clap to send the
music outward.

– Clapping with hands held over the head to pull the music
back in.

Figure 12 shows the recognition of the above gestures. In
the figure the large circle shows direction and amount (the
pointer length) of the global motion, and the small circles
show segmented motion occurring in quadrants around the
user. From this we see that walking on or off can easily be
detected by a large sideward motion with two segmented
sideward motions on the same side. In the rest of the ges-
tures, waving and clapping can be detected by the sinusoidal
motion patterns that they make.

In Figure 13 at top, the angle of motion of the left hand
clapping over the user’s head shows a sinusoidal pattern.
In Fig. 13 at bottom, the angle of motion of the left hand
downbeats shows a sinusoidal pattern. Many techniques can
be used to recognize such distinctive patterns, for exam-
ple using an HMM to learn the sinusoidal parameters. For
our application, the sinusoidal movement patterns were cir-
cularly rotated prior to recognition (and display) so that the
maximal extent of the gesture would be at the bottom. Using
this representation, we found recognition to be quite reliable
just by detecting a large negative derivative followed by an
upward derivative. By doing this we catch the movement
right at the lowest point of the downbeat or at the point
where the hands meet in clapping, which is what the user
would expect for conducting music. These events were au-
tomatically detected and are displayed in Fig. 12 using L or
R for waving motions and an X for clapping. To test recog-
nition, The sinusoidal rotation parameters for detecting ges-
tures were set using a training tape of walking on and off,
10 repetitions of the two types of claps, 10 repetitions of the
two-handed beats, and 20 repetitions of the single-handed
beats, and then was tested on another tape taken later of
the same protocols. 100% of the beats and claps as well as
waking on and off were correctly detected.

Fig. 12.Across from top left to bottom right: walk-on; down beat; full clap;
overhead clap detected

For a more challenging recognition task, we used the
pose recognition tape made for Sect. 3.1.2. Here we focused
not on the static Y, T and � poses, but on the gesture of mov-
ing into these poses (see Fig. 4). Figure 11 shows movement
into and out of a T pose. Note that the Y and T gestures are
highly confusable and were made more confusable by the
fact that the subjects were not instructed to make gestures,
just to assume these poses five times in repetition. For recog-
nition features, we used only the segmented normal optical
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Fig. 13. Angle of motion over time shows a
sinusoidal pattern for the left hand clapping
at top, and the left hand waving downbeats at
bottom

flow directions (rotated to span −180 to +180 degrees) and
the position of the centroid of the flow regions relative to the
center of mass of the silhouette normalized by the size of the
bounding box of the foreground silhouette. Twenty subjects
did gestures each. The training and testing sets consisted of
15 and 5 subjects, respectively. We used a 3-state HMM to
model each gesture. A recognition rate of 96% overall was
obtained.

No useful result could be obtained from the three other
optical flow methods because the inexpensive low-resolution
camera used could not resolve enough texture in the dark
scene to enable tracking (see Figs. 4 and 11). This leads us
to a discussion of the utility of the various optical flow algo-
rithms. The tHMI normal flow approach excels in environ-
ments where one can create a robust foreground–background
segmentation necessary to build the MHI. There are many
techniques for doing this segmentation such as discussed in
the beginning of Sect. 3. Arcade games are one good ex-
ample of an environment where one can contrive to extract
reliable foreground silhouettes. The other three optical flow

methods are more problematic in an environment such as an
arcade because users might wear clothing with little texture.
In environments where one cannot guarantee good segmen-
tation (e.g. parking lots), or if the goal is to extract structure
from motion, then optical flow methods are preferred. All
the flow methods depend critically on running at frame rates
fast enough to capture the motions of interest; recognition
and geometric reconstruction improve in general at higher
frame rates. If CPU resources are at a premium, the tHMI
approach imposes the lowest computational load.

8 Summary

In this paper we extended earlier motion template research
[17] by offering a method of calculating normal optical flow
motion orientations directly from the MHI. We also pre-
sented a novel method of motion segmentation based on seg-
menting layered motion regions that are meaningfully con-
nected to movements of the object of interest. This motion
segmentation, together with silhouette pose recognition, pro-
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vides a very general and useful tool for gesture and motion
recognition. In addition, this new algorithm is computation-
ally faster than other motion segmentation algorithms based
on optical flow.
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