
Balanced and Predictable Networked Storage
Jaimie Kelley and Christopher Stewart

The Ohio State University

Abstract—Networking bandwidth and latency have improved
in recent years, prompting a wide range of workloads to move
back to key value stores, databases, and other types of networked
storage. However, networked storage has a well known drawback:
Outlier access times create a heavy tailed distribution. Outlier
accesses can take much longer than normal access times. This
paper studies the effects of outliers on data processing workloads.
These workloads strive for balance, i.e., all nodes are kept busy
at all times. Outlier accesses can cause bubbles in the pipeline,
slowing down the whole workload. For this paper, we modeled the
effect of outliers in balanced map reduce systems. We found that
outliers can cause 70% slowdown. We also modeled a solution:
Use 5% of system resources on replication for predictability—
an old but seldom used approach to mask outliers. We found
that this approach could return more than 5% in speedup.

I. INTRODUCTION

Big data is often too complex for mere mortals. Graph
processing [5], [8], [13], NLP [12], and data mining tools
try to reduce big data to smaller but still useful nuggets.
These workloads pull in large amounts of data, process it,
and then return a smaller result. Pulling in the data is often
the slowest part [15]. Loading 1GB from today’s disks takes
almost as long as it did 4 years ago. 10Gb Ethernet exceeds
disk bandwidth by more than 10X, making it faster to access
data stored in a remote node’s main memory than to access
it from local disk. As a result, network storage is used more
often for big data workloads.

Big data workloads strive for balance, i.e., all nodes should
be busy at all times. Well-balanced workloads achieve high
throughput without wasting resources. For workloads that use
networked storage, balance means there should always be a
few backlogged accesses, but the backlog should not idle
nodes in the data processing layer. One approach to achieving
balance is to 1) measure typical storage access times, 2)
measure the average access rate of each node that does data
processing, and 3) size the data processing cluster according to
the quotient of these numbers. In practice, this approach falls
short, because access times in networked storage often have
heavy tails. A few outlier accesses take much longer (100X)
than typical accesses. These outliers cause delays in the data
processing layer, delays that can not be recovered easily.

For this paper, we studied slowdown caused by slow storage
accesses in balanced map reduce systems. First, we compared
access times from a real key value store against exponential
and Pareto Distributions. The Pareto was a better fit because
of its heavy tail. Then, we modeled an access’s slack, i.e., the
smallest response time that would cause a delay in data pro-
cessing. Finally, we used the Pareto to compute the expected
delay caused by accesses that exceed their slack time.

Our model showed that outliers can slow down balanced
map reduce by 70% when map tasks complete quickly (i.e.,
within 40ms). Slowdown decreases for workloads with longer
map times and lighter tails. Storage capacity per map node also
affects slowdown. Maps that need random access to big data
spread across many nodes are vulnerable to slowdown. We
concluded that these properties, short map times and random
access to big data, often describe workloads that reduce big
data, e.g., graph processing and stream sampling.

We extended our model to study replication for predictabil-
ity, an old but seldom used approach to reduce the effects
of outliers. We found that replication for predictability was
most effective for short map jobs with large working sets,
the conditions where outliers caused large slowdown. When
maps complete quickly, replication for predictability prevented
12.5% of lost throughput while using only 5% of storage
resources.

The remainder of this paper is as follows: Section II
discusses the trends and motivations in data processing that
underlie this work. Section III presents our problem statement.
Section IV walks through our model that captures slowdown
caused by outliers. Section V extends our model to consider
replication for predictability and studies its cost effectiveness.
Section VI discusses related work.

II. TRENDS

Hadoop [3], Ceil [11], and Dryad [6] share a common trait:
data pipelining. These data processing platforms try to keep
disks, CPUs, and network links busy at all times. For example,
Hadoop works best when data from a node’s local disks is
pulled in asynchronously while map and reduce tasks run
concurrently. However, a node’s local disks no longer offer the
best performance [15], [16]. Today’s disks support 800Mb/s
whereas today’s local area networks can support 10Gb/s.
Networks will become even faster in the future as 40Gb/s
Ethernet and hybrid electrical/optical switches are adopted.

When raw processing speed is the metric of merit, a 1 TB
disk should be replaced with 16 64GB in-memory networked
stores. On 10Gb Ethernet, the latter can achieve more than
300X speedup. Even on 1Gb Ethernet, a well-managed in-
memory networked store can offer 20X speedup. The down-
sides for in-memory approaches are cost and power usage.
Both increase quickly as data sets scale. When cost is also a
concern, each node should support multiple disks with data
striped across them. 16 disks accessed in parallel fall just
below the throughput of 10Gb Ethernet [16]. However, 16
disks may not be enough in a few years. Further, the benefit

K/V Store K/V Store

Map
node

Map
node

Reduce

Bandwidth

 1-10Gbs

1-10Gbs
(per link)

1-10Gbs
(per link)

1/m * |DM| Gb

1/r * |DR| Gb

Fig. 1: Data processing backed by networked storage under the map
reduce model. Processing rate (bandwidth) at each stage is shown

on the left.

of fast, random data access will make networked storage
attractive.

Figure 1 depicts data flow and bandwidth when map reduce
uses networked storage instead of node-local disks. In this
paper, we will assume networked storage is in the form of in-
memory key value stores, e.g., MemCached [1], but our ideas
extend broadly to other types of stores. For a balanced system,
the networked store should fully use bandwidth offered by its
network card, either 1 or 10GbE. Maps may use data spread
across multiple stores for three reasons. First, other unrelated
jobs may lower the bandwidth available on a networked
store [17]. Second, maps that access many small keys can
encounter bottlenecks in TCP, operating system, and network
congestion. Finally, networked stores that access disk have
about 1/16th the bandwidth as 10GbE networks. Partitioning
allows map jobs to regain lost bandwidth.

As shown in Figure 1, the map phase is often the slowest.
Because of this, the map reduce model parallelizes this phase
as much as possible. Let m be the average map time and |DM|
be the average working set per map. If |DM| falls below 0.1Gb
on a 1Gb/E network, then m must fall below 0.1 seconds to
avoid slowing down the system. On the other hand, a map
task that completes in constant time would require parallel
data access as the data sizes grow. Reduce times are usually
smaller than map times. They do not bound map reduce overall
system times, and thus are not the focus of this paper.

A. Outliers in Networked Storage

Networked storage is a more complicated storage fabric than
local disks. Networked stores may include processors, DRAM,
SSDs, and rotating disks. Operating systems and middleware
connect these hardware devices. A mishap by any of these
components can slow down access times by a significant
amount. Networked stores are known to have outlier access
times that are much slower than normal access times.

The root causes of outliers vary. For a concrete example,
consider write buffering in a key value store. To keep fast

0 0.01 0.1

0.7

0.8

0.9

1

Response Time

%
 C

o
m

p
le

te
d

Fig. 2: A cumulative distribution function regarding the times to
access a Redis store under high and low utilization, shown with a
Pareto and an exponential distribution based on the low utilization
numbers. The 99.99th percentile of the exponential distribution’s

heavy tail is marked.

response times, most stores keep a relatively large in-memory
write buffer. The buffer is flushed to disk periodically (every
few seconds) to ensure a degree of fault tolerance to power
loss. Writes that hit in the buffer can proceed at the speed of
main memory, completing within a few hundred microseconds.
However, writes that are stuck behind a buffer flush may be
delayed by several hundred milliseconds.

Figure 2 shows the access times for a Redis [2] store
deployed on a 2GHz core with 2GB main memory. The
workload shown represents 100% reads, and is tested under
mean CPU utilization of 65.45% (high) and utilization of
10.75%(low). Under low utilization, we observe a heavy tail
beginning with the 99th percentile, but when the Redis store is
heavily utilized, we observe a heavy tail earlier, beginning with
the 95th percentile. Most importantly, we note the respective
lengths of these heavy tails. The exponential and Pareto
distributions plotted here use the low utilization access times
as a basis. The low utilization, high utilization, and Pareto
heavy tails are much longer than the exponential heavy tail.
The results are similar in production systems. Google BigTable
reports default access times where the 99.9th percentile is 31X
the mean [4]. Other works have noted similar results with
MemCached [7].

B. Workloads that Reduce Big Data

Workloads that reduce big data to smaller chunks can use
fast networked storage well. These workloads access a lot of
data per map and they complete map tasks quickly. Graph
analysis and data mining are well-known examples of such
data reduction–the above shows a read-only workload on Redis
primarily because graph processing works mostly with read-
only data [14]. Consider the problem of finding 2-hop friends
in a social network. One approach pulls in data from a large
subgraph of the network and then looks up all unique 2 hops
within the subgraph from the origin friend. The subgraph itself
can easily exceed 10MB, yet looking up 16K hops during each
map task can complete within milliseconds. Many data mining
problems have similar properties due to statistical sampling.

Redis
Partition 0

Map
Node

Timeline

Delay

Get
DM=0,P=0

Get
DM=0,P=1

Redis
Partition 1

Get
DM=1,P=0

Get
DM=1,P=1

Get
DM=2,P=0

Get
DM=2,P=1

Get
DM=2,P=1

Map 0 Map 1 Map 2

Fig. 3: Slowdown caused by an outlier access to networked storage.
Dotted lines are messages over the network. Solid lines reflect

processing. For simplicity, we show all accesses for a single map
stemming from a single network message.

Controlled Model Inputs
C Storage capacity per map node
m Average map time
α Pareto coefficient of the networked store
f Reserved (unused) capacity on the networked

store
Derived Model Parameters

µ Mean service time for the networked store
x̃ Median service time for the networked store
a Average accesses per map
sn Slack time produced by n accesses

φ(t) Probability of an access longer than t

TABLE I: Model Inputs.

Widely used tools for data processing, like Hadoop, target
data transforms—not data reduction. Map tasks for transform-
ing data take longer since every bit is touched. The Hadoop
manual [3] calls for map jobs that take hours (meaning |DM|
would need to exceed 36TB/s to balance network speeds).
Workloads like Terasort provide such semantics. Emerging
platforms for graph processing are more inline with big-data
reduction [5], [8], [13].

III. PROBLEM STATEMENT

Figure 3 depicts a delay caused by an outlier access to net-
worked storage in a data processing workload. Data accesses
to Redis are pipelined, keeping all nodes busy in the ideal
case. In the common case, the map node receives data just
before it is needed. However, the last access on partition 0
is orders of magnitude slower than usual, preventing the next
map from beginning. Such delays reflect lost throughput. Even
if subsequent data accesses complete more quickly than usual,
the pipelined nature of map tasks would not speed up.

This paper explores two questions:
1. How much do outliers slow down data processing?

2. Can we effectively mitigate outliers with redundancy?

IV. MODELLING OUTLIERS

We used Operational Laws to model resource needs for
networked stores and map nodes in a balanced system. We
converted resource needs into expected delay. Finally, we used
stochastic analysis to capture delays caused by outliers. This

section describes our efforts. Table I describes the model
parameters used in this section. We set controlled parameters
directly. We restricted storage capacity per map node (C) to
positive integers, meaning each map node pulled data from
1 or more dedicated storage partitions. A map node would
pull from more than 1 storage partition in parallel if it needed
access to a large working set. We varied map times (m) from
20ms (small) to 5s (large). We set the Pareto coefficient to
control the heaviness of access time tails from the networked
store: lightly heavy tail (1.76), normal heavy tail (1.44), and
heavy heavy tail (1.13). In a nod to real system managers, we
allow for some reserved, unused capacity, f , which represents
both time that could have been used to access data from
networked storage but is not, and also a percentage of the
networked storage data nodes that is unused. We set this
parameter to 5% universally for networked stores.

We also made the following assumptions about our target
systems:

• The networked store supports gets and puts on keys and
values.

• The size of keys and values are fixed. In our tests, we
use 1KB blocks.

• Maps know which data to request in advance before they
execute.

We believe these assumptions can be relaxed in future work
without changing our conclusions.

We used the control parameters and our assumptions to
derive other parameters. First, we computed the average and
median access times in a Pareto distribution given the Pareto
coefficient (α).

x̃ = Xmin ∗α
0.5

µ =
α ∗Xmin

α−1

Here, Xmin is the smallest observed access time. We set this
to 600µs based on data from Figure 2.

We used the Utilization Law to get the average accesses
to storage per map. In a balanced system, the quotient of
map time divided by average access time is multiplied by the
capacity that is actually used; some storage capacity is kept in
reserve. Accesses per storage partition per map simply divides
this number by the storage capacity.

a =
m
µ
∗ (1− f)

ai =
a
C

Next, we computed slack time, the minimum delay for 1
outlier that could delay a map task. Slack time depends on the
number of storage accesses that follow an outlier. An outlier
followed by many accesses can be masked if subsequent
accesses complete quickly. An outlier followed by only a few
accesses is more likely to cause a delay. In our approach,

slack time is comprised of two components. First, we turned
the unused, reserved capacity (f) into idle time by multiplying
this by the average map time. Then, we added the difference
of the mean and the median, multiplied by n. This means that
an outlier that occurs when there are n outstanding accesses to
the networked store can be masked if the remaining accesses
complete according the median. For simplicity, our model
makes the quantity of final storage accesses proportional to
the over-provisioning range.

n = a∗ f

sn = m∗ f +
n
C
∗µ− n

C
∗ x̃

Given n, we can compute the probability and expected
delay of an outlier that exceeds slack time. If networked
stores had exponentially distributed access times, the expected
delay would be fixed. However, heavy tail Pareto distributions
are more complex. The first equation below computes the
cumulative distribution function given α , Xmin, and sn. The
equation after that computes the probability that 1 of n
accesses is greater than sn, i.e., the probability of a delayed
map.

φ(sn) = 1− Xmin

sn

α

Pr(x > sn) = 1−φ(sn)
n

E(x|x > sn) =
2

1
α Xmin

[1−φ(sn)]
1
α

The final equation shows the typical (median) access time
for such an outlier. The median delay of an outlier is the
middle percentile starting from φ(sn). A quick check reveals
that when φ(sn) = 0, the result is the equation for the global
median in a Pareto distribution.
Model Results: For Figure 4, we fixed storage capacity per
node (C = 4), the Pareto coefficient, and unused capacity (f =
5%). We controlled average map time and studied its effect on
the slowdown caused by outliers. We show the equation for
slowdown below:

slowdown =
m+Pr(x > sn)E(x|x > sn)

m

We found that large map times (>5s) have first-order effects
on slowdown. Large map times hide outliers in two ways. First,
m is the only parameter in the denominator in our slowdown
formula above. An outlier that causes the same absolute delay
leads to less slowdown under large map times. Also, large map
times can afford more slack time. Hadoop workloads often
have large map times. In fact, the Hadoop manual calls for
workloads with large (many minutes) map times [3]. Such
workloads might disregard the impact of outliers when they
move to networked storage.

0.01 0.1 1 10 100

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
Heavy

Medium

Light

Average Map Time

S
lo

w
 D

o
w

n

Fig. 4: Slowdown caused by outliers as average map time varies.

0 1 2 3 4 5 6 7 8 9

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Heavy

Medium

Light

Capacity
S
lo
w
d
o
w
n

Fig. 5: Slowdown caused by outliers as storage capacity per map
node varies.

On the other hand, data reduction workloads, e.g., graph
processing, often have small map times. For example, a map
may de-reference a few links in a large graph. Workloads with
small map times suffer under heavy tail outliers. Our model
expects that maps that take less than 100ms will be delayed
(on average) by 5-15%. The heaviness of the tail also matters.
Our heavy heavy tail setting caused up to 12X and 30X more
slowdown than the normal heavy tail and light heavy tail.

Our model showed that slowdown is proportional to storage
capacity per map node. Heavy tails cause outliers at a higher
rate, but the effect remains linear. Even though the effects
are only linear, reasonable ranges for I/O capacity lead to
the largest slowdown. When each map node must contact 8
partitions in parallel, our model expects minimum slowdown
around 40%. Even with just 4 nodes per partition, the worst
case slowdown can exceed 63%.

V. REPLICATION FOR PREDICTABILITY

The model used in the previous section quantified the delay
caused by outliers across map times and storage capacity.
Outliers cause large delays for balanced systems with fast map
times. Also, outliers cause large delays when the working set
for maps is large. This section studies the potential for using
replication for predictability as a solution.

Replication for predictability is an old but seldom used
technique to mask outliers that manifest independently. The
basic idea is simple. Instead of sending storage accesses to

only one node, send parallel requests to multiple nodes and
use the result from the first node to respond. Intuitively, it is
unlikely that all duplicates will return a slow result.

Replication for predictability has been rarely used in prac-
tice. Even though it reduces the effect of outliers, it does not
improve throughput. Replication for predictability also does
not reduce the effects of correlated outliers. For example,
accesses to rarely viewed content will be slowed by cache
misses in both redundant nodes. Thus, the key question for
replication for predictability is, can it be cost effective?

To assess whether an idea is cost effective, we must model
the cost and the return. We call the ratio of these terms the
yield. In this paper, we study a simple way to use replication
for predictability sparingly. We use idle (unused) capacity
on the networked store, i.e., f in Table I. To be concrete,
the cost is 5% of networked storage resources. For that
investment, we hope to make the system more predictable and
to recover throughput lost to outlier effects. We measured yield
as the return in slowdown divided by the investment. The full
equation for yield is shown below.

yield =
slowdownde f ault − slowdownrp

f

Our model of replication for predictability assumed that
storage accesses would be sent to only two duplicates. In
ongoing work, we have extended the model to scale [18]. To
capture the effects of replication for predictability, we have
changed two aspects of the model presented in Section IV.
First, accesses per storage node (a) ran at full capacity.
Note, operating at full capacity increases the waiting time
for accesses to networked storage. For interactive services,
slow response times are costly. For the high throughput data
processing workloads that we target, slow response times are
only costly if they lead to delayed map jobs. In other words,
our concern is the effect of queuing on slack time (sn), where
full capacity removes the buffer idle time. Updated equations
are shown below.

a =
m
µ

sn =
n
C
∗µ− n

C
∗ x̃

On the positive side, replication for predictability reduces
the chance of an outlier. If we assume that outliers arise
independently, then the benefit of replication for predictability
is shown below.

Pr(x > sn) = 1−φ(sn)
2n

Model Results For Figure 6, we again computed our model
with all control parameters fixed except for the average map
time. This plot shows the effect of map time on yield. We
observed an effect that is comparable to the slowdown curve,
but less dramatic. Map times below 100ms only reach yields
ranging from 0.9–1.3. This result indicates that small map time
alone do not warrant replication for predictability as this paper
proposes. For small map times, outliers beyond the last n may

0.01 0.1 1 10 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Heavy

Medium

Light

Average Map Time

Y
ie

ld

Fig. 6: Yield caused by replication for predictability increases as
average map time decreases.

0 1 2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

3
Heavy

Medium

Light

Capacity

Y
ie
ld

Fig. 7: Yield caused by replication for predictability increases as
storage capacity per map node increases.

cause delays. Our sparing use of replication for predictability
does not mask such outliers.

Looking deeper into Figure 6, the effect of outliers outside
of the last n are most evident in the heavy heavy tail setting.
At first, we expected this setting to provide the highest yield.
However, looking further into the results showed that most of
the delay under a very heavy tailed access time distribution
was caused by accesses outside of the last n.

Figure 7 shows that high storage capacity per map node is
sufficient reason to warrant replication for predictability. After
capacity per node exceeds 5, we observed only high yields
(>1).
Discussion: Our results show that the workloads that can best
take advantage of replication for predictability are those with
short map times and a large working set of data which is
distributed in networked storage over multiple nodes. Graph
processing and stream sampling workloads, which have these
properties, would be ideal settings for replication for pre-
dictability to make a real difference.

Our simulations here provide a proof of construct, but in
future work we intend to analyze the results of replication for
predictability used on real data reduction systems.

We have focused on the cost of replication for predictability
in terms of storage access rate. The approach assumes that all
possible network bandwidth is used within the constraints of
the data that is needed by map jobs. But since our model

studied a limited use of replication for predictability, we did
not consider the cost of this network bandwidth, or whether
spare capacity would need to be available. We have also not
looked into variances in hardware configurations here. If repli-
cation for predictability is expanded to use more resources, a
topology aware approach may be needed [9].

Our model predicts yield but does not judge its value. Our
intuition suggests that yield above 1 is a good investment, but
ultimately, any novel scale out technique must be compared
to other alternatives. If 5% spare capacity can be used in
another way that provides higher yield, then replication for
predictability should not be used.

Finally, we assume that the data processing platform com-
prises mostly reads. If writes were more frequent, we would
need to consider consistency challenges posed by replication
for predictability.

VI. RELATED WORK

Networked storage is a (re)emerging trend in high-
throughput systems. However, networked storage is inherently
more complicated than other storage mediums, e.g., disk.
This paper studies one product of such complexity: Heavy
tailed access times. We make the case for a research agenda
that studies this phenomena. Prior research has 1) sped up
networked stores or 2) improved overall throughput for data
processing.
Speeding Up Networked Stores: MemCached and Redis are
widely used open source networked stores [1], [2]. They both
achieve high throughput (80K–100K requests per core). Other
stores proposed by researchers have achieved high throughput
also [7], [10], [17]. A common approach across these stores
is to avoid touching disk, keeping operations within main
memory. While key value stores are most widely used, in-
memory database systems have also gained traction. These
databases relax their support for distributed transactions and
also stay within main memory. When data sizes approach the
capacity of main memory, it is better to compress data than
to go to a single local disk [10]. Along with high throughput,
stores can lower their latency by streamlining their execution
path. [7] used soft direct memory access to remove the
operating system for the data path for MemCached. These
approaches make networked storage faster in the common
case, however outliers (due to garbage collection, snapshots,
etc.) still persist.
Balanced Data Processing: Disk is the primary component
that has fallen behind. Recent work improves disk bandwidth
by using multiple disks at each machine and modifying the
data processing platform to access disk as little as possi-
ble [15], [16]. While these works have targeted data processing
with node-local storage, they apply to networked storage
with high bi-sectional bandwidth as well. Further, making the
system more complex by adding multiple disks behind the
networked store exacerbates outliers.

VII. CONCLUSION

Bandwidth and latency for datacenter networks has grown
much faster than for disks. Emerging 40Gb/E and hybrid

electrical and optical switches suggest that this trend will
continue. Because it is and for the foreseeable future will
be a faster solution than local disk, networked in-memory
storage is likely to underlie many data processing platforms in
the future. However, networked storage suffers from the well-
known, widespread problem of access times with heavy tail
distributions. This paper quantifies the effect of outliers on
processes that rely on the map reduce model. These heavy
tail outliers slow down the data processing pipeline at the
mapping stage, and when they happen close enough to the
beginning of a map, they cannot be easily masked. We saw
that workloads with short map times and large data sets were
most affected, with delays up to 70%. We created a model
predicting the affect of these outliers in order to assess one
possible solution to heavy tails: replication for predictability.
This approach masks outliers by redundantly sending accesses
to multiple nodes containing the same data and taking the
response from the first. Our model used only 5% of storage
capacity for replication for predictability, yet we often reduced
slowdown by more than 7% using this approach.

REFERENCES

[1] Memcached: A distributed memory object caching system. www.
memcached.org.

[2] Redis.
[3] Welcome to apache hadoop. hadoop.apache.org.
[4] J. Dean. Achieving rapid response times in large online services, 2012.
[5] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph:

Distributed graph-parallel computation on natural graphs. In USENIX
Symp. on Operating Systems Design and Implementation, 2012.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In European
Conference on Computer Systems, 2007.

[7] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat. Chronos:
Predictable low latency for data center applications. 2012.

[8] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph
computation on just a pc. In USENIX Symp. on Operating Systems
Design and Implementation, 2012.

[9] G. Lee, N. Tolia, P. Ranganathan, and R. Katz. Topology-aware resource
allocation for data-intensive workloads. In APSys, 2010.

[10] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: A memory-
efficient, high-performance key-value store. In USENIX File and Storage
Technologies, Cascais, Portugal, Oct. 2011.

[11] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand. Ciel: a universal execution engine for
distributed data-flow computing. In USENIX Symp. on Networked
Systems Design and Implementation, 2011.

[12] Openephyra: Question answering system. https://mu.lti.cs.cmu.edu/trac/
Ephyra/wiki/OpenEphyra.

[13] R. Power and J. Li. Piccolo: Building fast, distributed programs with
partitioned tables. In USENIX Symp. on Operating Systems Design and
Implementation, 2010.

[14] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M. Hari-
dasan. Managing large graphs on multi-cores with graph awareness.
2012.

[15] A. Rasmussen, M. Conley, R. Kapoor, V. Lam, G. Porter, and A. Vah-
dat. Themis: An i/o-efficient mapreduce. In ACM Symp. on Cloud
Computing, 2012.

[16] A. Rasmussen, G. Porter, M. Conley, G. Madhyastha, R. Mysore,
A. Pucher, and A. Vahdat. Tritonsort: A balanced large-scale sorting
system. In USENIX Symp. on Networked Systems Design and Imple-
mentation, 2012.

[17] D. Shue, M. Freedman, and A. Shaikh. Performance isolation and
fairness for multi-tenant cloud storage. In USENIX Symp. on Operating
Systems Design and Implementation, 2012.

[18] D. Yang and C. Stewart. Zoolander: Modelling and managing replication
for predictability. 2011.

