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Abstract—Subsampling workloads compute statistics from a set
of observed samples using a random subset of sample data (i.e.,
a subsample). Data-parallel platforms group these samples into
tasks; each task subsamples its data in parallel. In this paper, we
study subsampling workloads that benefit from tiny tasks—i.e.,
tasks comprising few samples. Tiny tasks reduce processor cache
misses caused by random subsampling, which speeds up per-task
running time. However, they can also cause significant scheduling
overheads that negate the time reduction from reduced cache
misses. For example, vanilla Hadoop takes longer to start tiny
tasks than to run them. We compared the task scheduling
overheads of vanilla Hadoop, lightweight Hadoop setups, and
BashReduce. BashReduce, the best platform, outperformed the
worst by 3.6X but scheduling overhead was still 12% of a
task’s running time. We improved BashReduce’s scheduler by
allowing it to size tasks according to kneepoints on the miss rate
curve. We tested these changes on high-throughput genotype data
and on data obtained from Netflix. Our improved BashReduce
outperformed vanilla Hadoop by almost 3X and completed short,
interactive jobs almost as efficiently as long jobs. These results
held at scale and across diverse, heterogeneous hardware.

I. INTRODUCTION

Internet services and mobile devices have generated large
amounts of data. Indeed, 90% of all data has been produced
in the last two years [7]. Data will continue to grow as
other types of data collection become popular. For example,
genome sequencing has become 1,000X cheaper over the last
5 years [25]. As costs continue to decrease, genomic data
alone could produce an exabyte of data. Processing this data,
especially for interactive workloads, is challenging. Subsam-
pling is a statistical approach that computes means, modes, and
percentiles using only randomly selected portions of each data
sample. As an example, consider a family that participates in
an study on Bi-Polar Disorder. The family’s genetic data is a
sample that comprises many AT/CG base pairs. A subsam-
pling workload may examine randomly selected base pairs
to determine whether the family line shares a certain gene.
Subsampling trades accuracy for speed, enabling interactive,
big-data workloads while allowing for some statistical error.

Subsampling workloads can run on data-parallel platforms,
e.g., Hadoop, in map-reduce jobs. These platforms scale out
by partitioning sampled data across multiple nodes. Each
node subsamples within map tasks, producing intermediate
results from randomly selected data. Reduce tasks combine
these intermediate results. However, subsampling workloads
differ from traditional Hadoop workloads because the map
tasks access randomly selected portions of data. These random
accesses can cause L2 cache misses, forcing processors to

fetch data from main memory. For tasks that would otherwise
achieve low cache miss rates, random access patterns can
significantly increase cache miss rates, degrading processing
efficiency.

Our key insight is that subsampling workloads benefit from
tiny tasks, i.e., map tasks that randomly sample from only a
small portion of the sampled data stored on a node. Although
data-parallel platforms must process more tiny tasks for the
same result, random accesses within tiny tasks are less likely
to cause cache misses. Tiny tasks complete efficiently, wasting
few CPU cycles on retrieving data from main memory (or
disk). However, tiny tasks present scheduling challenges for
data-parallel platforms. First, platforms must start tiny tasks
efficiently or increased startup costs will negate efficiency
gains. Second, platforms must improve runtime efficiency to
avoid slowing down quickly completing tiny tasks.

For this paper, we set up a data-parallel platform that
supports tiny tasks and speeds up subsampling. We used a
two step approach. First, we benchmarked existing platforms
in terms of tiny-task scheduling overhead. We compared
three Hadoop configurations and BashReduce (a lightweight
implementation of the map-reduce paradigm [10]). Vanilla
Hadoop took approximately 4X longer to start tasks compared
to BashReduce. A second version of Hadoop, in which we
disabled task level recovery and speculative execution, had
reduced overheads, and a third version, in which no HDFS data
transfer occurred, achieved very low overheads. Second, we
implemented a new task sizing approach for the BashReduce
scheduler. Our approach sizes tasks to the first kneepoint on
an empirical task size to miss rate curve. By doing so, we
lower the scheduling overhead for tiny tasks.

We set up two subsampling workloads. EAGLET finds
disease genes from subsamples of dense SNP linkage data
within the DNA of sampled families [34]. Our Netflix work-
loads describe customer rating patterns by subsampling user
ratings of sampled movies. With low overhead and tiny-task
sizing, our BashReduce platform sped up EAGLET and Netflix
workloads by 3X and 2.5X compared to vanilla Hadoop. We
achieved 25% speedup compared to a lightweight Hadoop
setup that had low overhead but no task sizing. Our platform
achieved 12X speedup on small input sizes where whole jobs
complete within minutes, making our platform attractive for
workloads governed by service level objectives [27], [32], [42].

On the EAGLET workload, our platform achieved 117 Mb/s
per 12-core node, comparing favorably against competing
map-reduce platforms for secondary genetic analysis [30],
[31]. Throughput scaled linearly as we allocated additional
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resources. Our platform also scaled linearly within virtualized
environments. In a heterogeneous environment, our platform
was limited by the last task to finish its work. For small
jobs, throughput degraded proportionately to the slowest task
to complete. For larger jobs, however, tiny tasks facilitated
workload stealing, erasing slowdowns [2], [39], [41].
Our Contributions: This paper focuses on interactive, data-
parallel workloads [16], [21], [26], [27], [30], [32]. Map and
reduce tasks within these workloads complete quickly, relying
on efficient processing and on low scheduling overhead [27].
Our contributions include:

1. We make the case for tiny tasks in subsampling workloads,
by quantifying cache miss rates as task size increases.

2. We measure scheduling overheads on tiny tasks, i.e., startup
and runtime costs, in existing data-parallel platforms.

3. We implemented a task sizing algorithm within the BashRe-
duce scheduler to reduce runtime overheads.

4. We experimentally validate our improved BashReduce plat-
form, comparing it to vanilla and lightweight Hadoop setups
across multiple workloads and diverse clusters.

In the remainder of this paper, Section II describes subsam-
pling, task size, and their effect on cache locality. Section III
benchmarks per-task overheads in widely used data-parallel
platforms. These overheads led us to integrate task sizing
within the BashReduce scheduler. Experiments in Sections IV
and V show that our improved BashReduce achieves high
throughput and responsiveness. Section VI discusses related
work and Section VII concludes.

II. SUBSAMPLING WORKLOADS

Figure 1 depicts and labels stages for data-parallel subsam-
pling. For these workloads, input data is grouped by some
feature (e.g., by family id). Each unit of grouped data is
called a sample. Normally, the space of potential samples is
much larger than the number of observed samples. Sample and
subsample sizes vary as depicted in Figure 1.

Data-parallel platforms place data samples across many
nodes; these nodes then process the data in parallel. When
nodes access data stored remotely, parallel processing slows
down. Data placement affects performance greatly. In the
best case, a copy of each sample is stored on each node,
eliminating remote accesses. However, such full replication
is only feasible for small datasets. In practice, each sample
is stored on only a few nodes and some nodes store more
samples than others. Such data skew will cause remote data
accesses when nodes with few samples try to steal work from
heavily loaded nodes [2]. Load balancing and handling data
skew were the focus of [2], [39]. Our research is orthogonal
to this research.

A task comprises the software components used to process
samples (p in Figure 1). A task’s size is the number of samples
processed by each component invocation. A task size of Sn

starts each component only once, using that invocation to
process all samples and piping all results between components.
Here, Sn is the number of samples on node n. If the task
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Fig. 1: Data flow for a data-parallel subsampling workload.

size is set close to Sn, we call the resulting task a large
task. Large tasks avoid scheduling delays caused by cloning
processes, managing temporary files, and context switching.
However, subsampling workloads present a challenge: Access
patterns within subsampling software are random. Large tasks
that process many subsamples can exhibit poor locality on
their input dataset.

On the other extreme, a task size of 1 starts and stops each
software component for each sample. We define tiny tasks as
tasks with size close to 1. Tiny tasks suffer from scheduling
delays but their region for random data access is much smaller.
After compulsory cache misses, tiny tasks often exhibit good
cache locality.

This paper focuses on task sizing for data-parallel workloads
that must complete within seconds or minutes. Platforms that
support these workloads increasingly store data within main
memory, ensuring data access delays are low. Examples of
such platforms include Pig [42], RDD [40], Data Cube [24],
Sparrow [27], and [16]. These workloads may support in-
teractive analysis of scientific data, personalized advertising,
sentiment analysis, or real-time trace studies [42]. Whether
tasks are large or small, each task produces intermediate results
that are forwarded to the shuffle and reduce stage. Interactive
workloads often have relatively short reduce phases. If the
reduce stage consumes a large fraction of a workload’s ex-
ecution time, task sizing for an efficient map stage has low
impact [41].

A. The Case for Tiny Tasks

In traditional data-parallel workloads, programmers know
which data locations will be accessed during a map task. Their
software components preload this data in fast processor caches,
speeding up data access by orders of magnitude. However,
in non-traditional data parallel workloads, which use subsam-
pling to access only a fraction of available data per task,
programmers do not know exactly which data samples will
be accessed. By definition, subsampling tasks must randomly
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Fig. 2: L2 misses per instruction and cycles per instruction across
task sizes in EAGLET.

choose which data subsamples to use during runtime. As task
size grows, these random accesses are likely to cause misses
in processor caches. A large task processes more samples than
a tiny task, incurring more cache misses.

Figure 2 makes the case for tiny tasks on the EAGLET sub-
sampling workload. EAGLET (Efficient Analysis of Genetic
Linkage: Testing and Estimation) finds genomic sequences
correlated with diseases [34]. Samples in EAGLET reflect
DNA from families (i.e., grandparents, parents, and children)
that volunteered to be sequenced. EAGLET accepts a list
of family IDs as input. It outputs intermediate, weighted
statistical data. Intermediate data can be combined to produce
statistics across the entire dataset. We started with 230 MB
of real data consisting of 400 samples from a linkage study
on bi-polar disorder and scaled it as needed. In practice,
scientists use EAGLET as the first step to detect disease
genes. Before requesting costly lab work to confirm their
hypothesis, scientists may use EAGLET to test up to 105

genomic sequences for statistical correlations. EAGLET jobs
should complete each test as quickly as possible to allow
scientists to interactively refine their hypotheses.

In Figure 2, the task size presented in MB reflects the
number of families included in EAGLET’s input list. At
runtime, EAGLET randomly selects subsets of each family’s
genome, looks for the genomic marker, and computes in-
termediate results. Intermediate results from different tasks
are combined during the reduce phase. These functions are
divided across multiple widely used, open-source software
components, including MERLIN, Perl, GenLib, and others.

We used OProfile [19] to sample cache misses while EA-
GLET ran. We set up Oprofile to distinguish EAGLET’s
subsampling program from other programs. We ran these
experiments on an Intel Sandy Bridge processor with 6 dual
cores with 1.5MB L2 cache and 15MB L3 cache. We observed
that large tasks incurred higher miss rates. A 25MB-sized task
saw 35X more L2 cache misses per instruction than a 2.5MB-
sized task. The EAGLET subsampling component is the source
of the increase missed rate. The miss rate was flat among other
components.

Random accesses increase the cache miss rate in two ways.
First, the data being accessed is unlikely to be in cache,
causing compulsory misses. Second, they represent unique
data accesses that evict other, potential useful data from LRU
caches [12]. Stack distance is the number of unique data

references between accesses to the same data. Stack distances
smaller than the cache size means data accesses will hit
in cache. Random accesses (due to subsampling) injected
between normal accesses make cache hits less likely. This
explains a key property of Figure 2: The miss rate changes at
certain key task-size thresholds. After those points, increasing
the task size results in random accesses evicting frequently
accessed data that normally, i.e., without subsampling, would
have hit in cache. We call points where the miss rate increased
sharply kneepoints. Kneepoints were at 2.5MB and 11MB.
Separately, we also captured cache misses in the L3 caches
and observed a kneepoint at 11MB.

Cache misses force tasks to retrieve data from memory.
On the Intel Sandy Bridge, data access from memory is
63X slower than L2 cache hits. Average memory access time
(AMAT) per instruction, the time for a lookup in the fastest
cache plus the product of the miss rate and the miss penalty, is
a well-known model to study the effect of cache misses [28].
The secondary axis on Figure 2 plots the normalized AMAT
where the fastest cache looks up results in 1 cycle. We
observed over a 1,000X increase in AMAT between the tiniest
task and the largest task.

III. MANAGING TINY TASKS

Tiny tasks have fewer cache misses per instruction than
large tasks. However, data-parallel platforms configured to use
tiny tasks will start and stop software components more often
than platforms configured to use large tasks. The time taken
to schedule software components, called scheduling overhead,
may exceed the time saved by improved cache locality.

Hadoop monitors each task’s execution for potential node
or disk failures. On failure, tasks are restarted with different
resources. The monitoring and data replication required for
such task-level recovery are major sources of scheduling over-
head. Job-level recovery, in which a node or disk failure would
restart the whole job, can lower scheduling overhead [30]. In
this section, we first make a case for job-level recovery in
interactive data-parallel workloads. Then, we quantify schedul-
ing overhead in data parallel platforms, comparing a vanilla
Hadoop setup, lightweight Hadoop setups, and a clean-slate
platform. We reduce scheduling overhead by moving toward
job-level recovery.

A. Job- vs Task-level Recovery

Hadoop was designed to process multiple petabytes spread
over 104−105 nodes [38], taking hours or days to complete a
map-reduce job. During the course of a job execution, multiple
disks and nodes were likely to fail. If each failure restarted
the entire workload, the job would never complete on Hadoop,
making the decision for task-level recovery on Hadoop simple.

We revisit task-level recovery here in the context of in-
teractive, subsampling workloads that run for minutes. The
shorter time frame makes it 103 − 104 times less likely that a
failure will occur in the midst of a job execution. Further, these
workloads use fewer nodes because 1) data stored in main
memory is costly [16], [27], [40] and 2) their goal is often
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Codename Core Task-level Full Dist. Java
Failures File Sys.

Vanilla Hadoop Hadoop Yes Yes Yes
Job-level Hadoop Hadoop No Yes Yes
Lite Hadoop Hadoop No No Yes
BashReduce [10] Unix No No No

Utilities

TABLE I: Platforms benchmarked for this paper

to compute results from iterative or incremental changes [21],
[22].

Mechanisms for task-level recovery, e.g., monitoring and
data replication, increase a workload’s running time. Let costtl
be the slowdown factor. On failures, only tasks are restarted,
rather than entire jobs. On each failure, task-level recovery
saves the difference between the expected job and task running
times. Our key insight is that task-level fault tolerance only
makes sense if 1) hardware failures occur faster than jobs
complete, meaning every job is likely to see a failure or 2)
rerunning entire jobs would slow down running time by more
than costtl. For short, interactive workloads, the latter concern
is most important.

Let mttf represent the mean time to a node or disk failure.
Also, let P̄ (w) reflect of service level objective (SLO) for the
workload [42]—i.e., the worst case running time. We expect
at most (fw = N · P̄ (w)

mttf ·α) failures during an execution. Here,
α captures correlated, heavy-tail failures that occur within the
SLO window. We now compute fw for typical subsampling
workloads. We set P̄ (w) = 10 minutes and α = 1.5. Taking
guidance from recent work [16], [27], [41], we set N = 100.
We set mttf = 4.3 months from [13], [30]. Under these
settings, fw = 0.0078, meaning that monitoring overhead
would have to fall below 1% to justify task-level recovery.
Next, we quantify actual overheads observed in Hadoop.

B. Platform Selection

We measured scheduling overhead for the platforms shown
in Table I. Here, we describe the salient features of each
platform. More details are can be found in Section IV.

Hadoop was an obvious choice to benchmark, as it is
widely used in practice for map reduce workloads. Vanilla
Hadoop used default monitoring and HDFS policies. Each
task reports its progress to a central service that exposes an
HTTP front end. Also, tasks use HDFS instead of the local
Linux file system. In the job-level Hadoop setup, we disabled
the central monitoring service. In the lite Hadoop setup, we
modified EAGLET so that map tasks created no intermediate
HDFS files, avoiding replication costs. This new version of
EAGLET performed calculations based on a static, globally
distributed file rather a dynamic file. We also disabled the
central monitoring service in lite Hadoop. Note, lite Hadoop
is shown for benchmarking only—its results are incorrect.

The BashReduce platform takes a clean-slate approach [10].
It is a very lightweight implementation of the map reduce
paradigm based on running tasks within the Bash shell. These
tasks are connected through simple TCP pipes using the nc6
tool. Task-level fault tolerance has never been supported in

0

1

2

3

4

5

Vanilla Hadoop Job-Level Hadoop
Lite Hadoop BashReduce

Data-Parallel Platform

R
el

at
iv

e 
Ta

sk
S

ta
rt

up
 T

im
e

Fig. 3: Relative time to start 1 task on each core by platform

BashReduce. BashReduce also elides a global distributed file
system (HDFS). Managers partition data and tasks access only
the local file system. In future work, we include comparisons
for Sparrow [27] and Piccolo [29].

We quantified two types of scheduling overhead. Startup
time captures delays that happen only once for each work-
load. These delays include TCP handshakes for longstanding
connections and data staging. Runtime overhead captures
delays incurred as a task runs. Specifically, runtime overhead
is the difference in running time between running software
components directly on Linux and running them on one of the
platforms in Table I. We ran these experiments on a 72-core
cluster consisting of 6 dual-core Intel Sandy Bridge processors.
Each core served as a map slot. Task size was fixed at 1
sample.

We measured startup time by running a hello-world job
where tasks equaled map slots. Each task was identical and
completed within milliseconds (less than 0.01% of the job’s
running time on Hadoop). Figure 3 shows the time taken to
complete this job. Times are normalized to the overhead of
BashReduce. Task monitoring overhead increased Hadoop’s
startup costs by 21%, about 52 seconds. Task-level failures
would have to recover hundreds of sub-second subsampling
tasks to justify this large overhead. Using formulas from the
previous section, clusters smaller than 30K nodes do not justify
21% overhead. BashReduce could start jobs almost 4X faster
than vanilla Hadoop.

Figure 4 compares the relative per-task runtime overhead of
each platform. For this test, we ran an EAGLET subsampling
workload comprised of 4K tasks and measured the total
running time. Then we subtracted the startup time and divided
by 4K. The result is shown relative to the running time on
Linux without a platform. Failure monitoring caused a 20%
degradation per task. However, the largest runtime gain came
from bypassing HDFS on short-lived temporary files. Indeed,
the experiment on Linux without a platform achieved runtime
overhead almost equal to BashReduce’s overhead. BashReduce
still incurred 12% overhead due to scheduling the subsampling
map tasks on the cluster. In practice, this overhead would
accumulate for tiny tasks. In the next section, we address this
overhead by looking for relatively large tiny tasks.

C. Task Sizing

Per-task scheduling overhead penalizes many tiny tasks
more than few large tasks. Large tasks amortize per-task
delays, e.g., creating Linux processes, across many samples.
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However, very large tasks face large cache miss rates. In this
subsection, we present a task-sizing approach. We size tasks
at the smallest kneepoint on the task size to miss rate curve
(i.e., Figure 2). The smallest kneepoint is the largest task size
before the first increase in the cache-miss growth rate. Our
approach achieves low cache miss rates while amortizing per-
task overhead across samples. We implemented task sizing
within the BashReduce scheduler. In an offline step, we created
the task size to miss rate curve and found kneepoints. In an
online step, we packed subsamples into tasks.

Specifically, Figure 5 outlines our approach. First, during
an offline phase, we collect data on the relationship between
task size and cache misses. On a benchmarking node, we run
Oprofile. We run map tasks in isolation, varying the number
of samples in the task’s working set. As seen in Figure 2, we
plot the aggregate input data size against cache misses per
instruction. We modified our BashReduce platform to group
samples into tasks of equal (kneepoint) size before starting
map tasks. We place the same number of samples in each
task, assuming samples are roughly the same size; in practice,
data parallel jobs have large outliers [3], [16]. Our genetic
analysis dataset also has outliers, with one sample 15X larger
than the mean and a second sample 7X larger than the mean.
The time taken by the offline phase is about 3% of the time
taken by the online phase. However, the offline phase is a
one time overhead paid for each new data set. In future work,
we are developing a dynamic task sizing approach that can
adapt to outliers rigorously and reduce the overhead of offline
computation.

We compared the impact of task sizing on BashReduce’s
performance. We ran EAGLET on the 72-core Sandy Bridge
cluster. EAGLET subsampled data and computed genetic
statistics 30 times for each family. Each of these subsamples
(i.e., 30 x 400 families) could run in its own map slot. Figure 6
shows throughput relative to 24MB large tasks, i.e., the amount
of data partitioned to each map slot in the cluster (Sn). Our
results include the delay for determining the kneepoint offline.

First, we removed outlier samples from our dataset (shown
as no outliers in Figure 6). Outlier samples run 50X longer
compared to the mean run time, or longer. We observed that
our kneepoint approach achieved 15% speedup compared to
the baseline created by the 24MB large task approach. Further,
the tiniest task approach caused 8% slowdown. When we
included the outlier samples, we observed that our approach
increased throughput by 23%. This is because the outlier
tasks increased the cache miss rate within their task groups

public static int kneepoint(int maxSampleNum) {                         
  float[2] taskSizes = new float[];
  float[2] missRates = new float[];

  //Pick random samples for study
  float[] samples = RandomArray(1, maxSampleNum);
  List workingSet = new List();
  workingSet.add(samples[0]);
  
  // Run the tiniest task and collect misses
  results = ExecTask(workingSet);
  misses[0] = results.cacheMisses();
  taskSizes[0] = results.inputSize();
  
  int growthRate = 0, i = 0;
  float MAX_RATE = -1;
  // Run tests at each size, compare miss rates
  while ((growthRate <= MAX_RATE) || 
         (MAX_RATE == -1)) {
     workingSet.add(samples[i]);
     results = ExecTask(workingSet);
     missRates[1] = results.cacheMisses();
     taskSizes[1] = results.inputSize();
     growthRate = ((missRates[1] – missRates[0]))

   /((taskSizes[1] – taskSizes[0]));     
     //bookeeping
     if (MAX_RATE == -1) MAX_RATE = growthRate;
     missRates[0] = missRates[1];
     taskSizes[0] = taskSizes[1];
     i++;
  }
  return (taskSize(i-1));
}

Offline: Determine Kneepoint

Runtime Scheduler: Task Sizing
public void sizing(int kneepoint, 
                   InputStream dataset) {
  // determine size in terms of # samples
  float AVG_SAMPLE_SIZE = K;

  int size = kneepoint / AVG_SAMPLE_SIZE;     

  //Split dataset into tasks 
  InputStream[] tasks;
  tasks = splitInputStream(dataset, size);
  for(InputStream task: tasks){
     addToMapJobList(task);       
  }
  // start Bash Reduce
  StartBashReduce();
}

Fig. 5: Java code for offline kneepoint detection and task sizing
implemented within BashReduce.

by pushing valuable data out of the cache. Tiny tasks were
more helpful under the heterogeneous workload. The absolute
running time with hetergeneous tasks under the tiniest task
approach was 791 seconds with outliers, and 322 seconds
without the outliers. Outliers themselves caused a 2.4X slow
down [3], [32]. Our task sizing approach had a larger impact
with outliers but did not overcome the slow down caused by
outliers.
Discussion: The kneepoints identified by our offline analysis
are contingent on hardware and workload. The task size to
miss rate curve should be recomputed if processor cache sizes
or data access patterns change. Our ongoing work attempts
to identify a cross-platform heuristic to identify kneepoints,
especially for cloud platforms where processor cache sizes
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are not known. Our experiments in the next section show that
kneepoint selection is insensitive to small errors.

IV. EXPERIMENTAL SETUP

We set up two subsampling workloads. EAGLET [34],
described earlier, is open-source software that finds disease-
causing genes from a collection of sequenced families. Our
dataset originally comprised DNA sequences of 400 families
(over 4,000 individuals) who volunteered for a Bi-Polar study,
but we grew this data as needed. The data of a single family is
represented in a data sample from this workload. The workload
recomputed analysis that unveiled well-known linkages [4].
In total, the original data exceeded 230 MB. As is common
practice in genetic analysis, we ran the workload 30 times
for each sample, making the job size 6.9 GB (i.e., 230 MB
x 30). For larger tests, we created synthetic data based on
patterns in the original data. Our largest test was a 1 TB job
spanning 684K families. The distribution of family sizes (and
hence sample sizes) was heavy tailed. Outliers were preserved
in our synthetic data.

We also set up a subsampling workload based on Netflix
movie ratings [1], [41]. Here, each sample represents a movie
that Netflix streamed to its users. The data within each sample
are tuples composed of the date, user id, and the user’s rating
of the movie. Our workload subsampled ratings for each movie
to estimate typical user ratings by month. Data size was 2
GB with 118 KB per movie. By subsampling, we found the
user ratings faster than exhaustive calculation would have [41]
but we also allowed errors to occur. We classified two types
of Netflix workloads: High confidence and low confidence.
The high confidence workload estimates average user ratings
with a 98% confidence interval, choosing less speedup and
more accuracy. The low confidence workload estimates use
two orders of magnitude fewer ratings, accepting more error
for speedup.
Task Sizing: Our EAGLET and Netflix workloads differed in
terms of software complexity. EAGLET used multiple (> 5)
open-source software packages that spanned three program-
ming languages. Our Netflix workloads used only Bash scripts.
We hypothesized that EAGLET was more likely to suffer from
tiny-task scheduling overhead.

Both workloads used a pointer to a file containing the
actual input data. If the file was large and contained many
samples, the task operating on the file was large. If the file
was small and contained few samples, the resulting task was
tiny. Precisely, we define large tasks as jobs that consist of

all of the samples partitioned to a node (i.e., Sn samples in 1
file). The tiniest tasks have Sn files that are piped one-by-one
into the respective programs.
Platforms: We compared the following platforms.
1. BashReduce w/ Task Sizing (BTS): We set up BashRe-
duce [10] with netcat for inter-node communication via pipes.
BashReduce centralizes scheduling and shuffling stages on a
single master node. In our setup, the master node also decides
on task sizes by creating input files locally and distributing
them to all other worker nodes. The master node includes
the offline script described in Figure 5. Unless otherwise
mentioned, BTS sets task size to 2.5 MB for EAGLET and 1
MB for Netflix. If any master or worker node fails, the entire
BashReduce job is restarted.

2. BashReduce w/ Large Tasks (BLT): In this setup, the master
node referred to all samples on a node within a single file.

3. BashReduce w/ Tiniest Tasks (BTT): In this setup, the master
node referred to only 1 sample in each of Sn input files.

4. Vanilla Hadoop (VH): We compared other platforms against
Hadoop, a widely used platform for data analysis. Our default
configurations uses an HDFS replication factor of N

2 to reduce
data migration traffic. A large replication factor is a sensible
optimization for interactive workloads that use relatively small
datasets. Each node is configured to have as many map slots
as cores.

5. Job-Level Hadoop (JLH) disables TaskTracker, the feature
responsible for task level recovery. Also, speculative execution
is disabled. These optimizations make Hadoop more suitable
for our interactive workloads by reducing task startup and
runtime overheads.

6. Lite Hadoop (LH): This benchmark produces incorrect
results but achieves very low overhead on the Hadoop plat-
form. We use it to benchmark overhead from Java Runtime
and to understand the potential for revised subsampling-aware
Hadoop. We changed EAGLET so that it fixes intermediate
files used to pass data between software components. The
subsampling portion of EAGLET was unaffected. We set the
replication factor to N on the intermediate files, ensuring no
HDFS data transfer would slow down the platform.

Hardware: We used a private cloud with three types of
servers, shown in Table II. Processors include AMD and Intel
brands that vary by cache size, memory capacity, and pro-
cessing speed. Our experimental setup restricted the amount
of hardware available to focus on performance improvement
using limited hardware.

V. EXPERIMENTAL RESULTS

Figure 7 compares the BashReduce setups. For this test, we
used 6 nodes of hardware type 1 (See Table II). In total, the
tests ran on 72 cores. These tests used only the original data
from the Bi-Polar study and movie ratings. We observed that
BTS achieved throughput 10–90% higher than BLT and 26–
32% higher than BTS. Because the Netflix sampling workload
uses fewer software components than EAGLET, it was able
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Type 1 Type 2 Type 3

Processor Xeon Xeon Opteron
Cores per Node 12 12 32
Processing Speed 2.0G 2.3G 2.3G
L2 Cache 15MB 15MB 32MB
Memory 32GB 32GB 64GB
Virtualized No No Yes

TABLE II: Hardware used in our studies.

to better exploit cache locality, resulting in favorable BTT
results. In contrast, EAGLET suffered additional per-task
runtime overhead from starting many software components on
tiny tasks. BTS balances these issues, typically outperforming
its closest competitor by 17%.

Figure 8 shows that kneepoints occurred for the Netflix
workloads as well. Results shown were run on top of BashRe-
duce. However, the kneepoints occurred at different places for
the high and low confidence workloads despite subsampling
the same data. We expected this result because cache locality
patterns varied depending on the confidence level desired.
Our offline approach can find a different kneepoint depending
on the workload, provided the data is available. For results
presented in this section, we used only 1 kneepoint (1 MB) for
both Netflix workloads. Results with high confidence workload
in Figure 7 show that exact kneepoints are not needed to
improve throughput relative to BLT and BTT. To quantify how
robust our approach is, we created five Netflix workloads that
varied according to their output confidence level. Among the
five workloads, the 1 MB task size ranked in the top 2 task
sizes (in terms of throughput) three times. In the cases where
it was not the best performing task size, it was within 10%
of the best. Further, the 1 MB task size setting outperformed
large and tiniest task settings in all 5 workloads.
BTS versus Hadoop: Hadoop is a widely used platform
for data processing. However, it is not designed for short,
interactive jobs [38]. We compared the throughput of BTS
to three Hadoop setups across different job sizes. For these
tests, we ran the EAGLET subsampling workload on type 2
hardware, varying job size. We changed the job size by adding
synthetic families to the Bi-Polar data.
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Fig. 8: Kneepoints in the Netflix subsampling workloads on
BashReduce.

Figure 9 shows that BTS sped up VH by almost 5X on
jobs with a 12 MB task size. For reference, we found that a
12 MB job can test a genetic hypothesis on 40 families with 15
subsamples per family. As the job size increased, BTS offered
less speedup because VH was able to amortize its startup costs.
We recall here that JLH had lower startup costs and runtime
overhead compared to VH. JLH performs better on short jobs,
but BTS still offered 3.7X speedup.

Along with tracking task-level failures, the Hadoop platform
monitors CPU utilization, I/O efficiency and other system
metrics. The metrics are queried frequently to produce user-
friendly web displays about the state of the system. We added
system level monitoring into BTS. We used Oprofile [19] to
capture L2 and L3 cache misses, instruction counts, accesses
to memory, and CPU utilization data. We collected this data
every second, sending it to a central node for display. We do
not claim that our approach rivals the sophistication of Hadoop
(i.e., production code). Instead, our goal was to understand
the impact of adding monitoring on BTS. We observed that
BTS with monitoring suffered a 21% slowdown on MB-sized
jobs, due to the increased startup overhead. On GB-sized jobs
or larger, the runtime overhead caused an additional 15%
slowdown. Despite these delays, BTS with monitoring still
speeds up JLH by 2.5X on small jobs and 1.5X on larger
jobs.

EAGLET allows scientists to test genetic hypotheses before
sending them away for costly lab work. This process could
proceed much faster if it were interactive. Before this work,
we observed that vanilla EAGLET (i.e., without Hadoop or
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BashReduce) took an hour to complete a 230 MB job on a type
2 node; it was not designed for parallel execution. Running
EAGLET within Hadoop and BashReduce platforms improved
performance by using all available cores. Figure 10 shows
BTS’s speedup over VH. These tests used 72 cores of type
2 hardware. With BTS, we completed a 91 MB job in 40
seconds. The same job took 150 seconds to run on VH. A 230
MB job ran on BTS in 68 seconds, a 59X speedup over vanilla
EAGLET on 12 cores. For comparison to the state of the art,
recent studies with CloudBlast, a competing tool for secondary
genetic analysis, achieved 60 Mb/s [30] and 24 Mb/s [31]. BTS
sustains 117 Mb/s. Note, these results are anecdotal. We can
not compare them directly because the workloads differ.

We also compared against LH. LH suffered from high
startup costs when job sizes were small, essentially matching
VH up to 1.1 GB sized jobs. It never achieved response times
within 100 seconds. As job size increased, LH approached
BTS performance. However, BTS (due to task scheduling)
maintained 25% throughput gain even under a 1 TB job size.
Elasticity: Figure 11 shows throughput as we changed the
number of cores in BTS. The platform scaled linearly up to
1 TB job. These tests were conducted on a 1 Gb/S network.
The 72-core test (i.e., 6 type 2 nodes) produced results at
45% of network capacity. In Figure 11, regions where 72-
core throughput equalled 36-core performance reflected startup
costs. Large job sizes amortize these costs. For interactive
workloads that run small jobs, however, the 72-core tests
wasted resources. Managers should scale out until additional
cores provide diminishing returns and no further.

Service-level objectives guarantee that a job will finish
within a fixed running time [6], [32], [41], [42]. For data
processing workloads, a job’s running time depends on its
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clusters scaled to efficiently meet service level objectives.

size and the platform’s achieved throughput at that size. If the
job size is too small, startup costs dominate, limiting the data
that can be processed within the fixed running time. Figure 12
shows BTS performance under various service level objectives.
Each result reflects the platform configuration with highest
achieved throughput within the fixed running time. Note, the
72-core case was only the best for 2-minute and 5-minute
bounds. It has high startup costs, which allows the 36-core and
12-core case to perform better under tight bounds. Figure 12
shows performance relative to BTS’s peak throughput without
any service level objective. For reference, we also show the
fixed running time relative to the running time when peak
throughput was achieved. We observed that under a 2 minute
SLO BTS achieved 50% of its peak throughput. For reference,
a 2 minute SLO represents 4% of the 50 minute run time
needed to achieve peak throughput on 72 cores. A 5 minute
SLO achieved 83% of peak throughput.
Virtualization and Heterogeneity: We tested our workloads
on user-mode Linux virtual machines. For these tests, we
used the original datasets for each workload. Each virtual
machine was allocated 1 AMD Opteron core (i.e., type 3 in
Table II). We re-ran our task sizing algorithm on this hardware;
EAGLET had a kneepoint at a task size of 1.2 MB and
Netflix had a kneepoint at a task size of 1 MB. Compared
to type 2 hardware, i.e., without virtualization, we observed
slowdown of 16% across both workloads. BTS still scaled out
well, Figure 13(a) shows linear improvement for the Netflix
workload.

We tested BTS under a heterogeneous environments where
12 of 60 cores were 15% slower than the others (i.e., 1
slow node). The slow node was of type 1 hardware and
the others were of type 3 hardware. The slow nodes caused
proportional slowdown on MB-sized jobs. However, as job size
grew, BTS’s round robin scheduler skipped over busy, slower
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Fig. 13: Running time on BTS

cores, assigning more tasks to the faster cores. As a result, the
performance loss is divided across 48 cores.

Finally, we studied the impact of reduce tasks. The BashRe-
duce platform does not support multiple reduce slots grace-
fully. It requires mapping data back to all nodes and running
the reduce stage as a map stage in an interactive computation.
We used simulation to understand the impact of multiple re-
duce stages, and corresponding communication delay. We used
formulas from [41] to understand the expected performance as
reduce tasks increase. We calibrated these models with average
map time, reduce time, and shuffle time from our experiments
with 1-node map reduce. Figure 13(c) highlights the results.
With EAGLET, secondary genetic analysis is compute inten-
sive [30]. As a result, adding reduce tasks quickly exhibits
diminishing returns. The Netflix workload, however, can speed
up at the reduce stage.

VI. RELATED WORK

It is challenging to coordinate processors, routers, memory
controllers, and disks in parallel, especially for interactive
workloads. In this section, we describe recent papers on
scheduling algorithms, data storage architectures, modeling
approaches, and workload-specific designs. These papers ad-
vanced the state of the art for interactive, data-parallel plat-
forms. In comparison, this paper targets subsampling, data-
parallel workloads. We show that task size affects data access
times and design a platform and scheduler to support tiny
tasks.

Large clusters provide resources shared by many data
platforms. These platforms have their own schedulers that
may independently and accidentally overload nodes, causing
transient queuing delays. As we observed, even seemingly
small delays have large effects on tiny tasks. The Sparrow
scheduler [26], [27] presents a data-parallel version of power-
of-two load balancing [23] that allows independent schedulers
to avoid transient delays. Each node’s operating system and
background jobs also cause transient delays. Replication for
predictability [3], [16], [32] sends requests to multiple nodes
and takes the first response, masking transient delays. Within
local networks, individual paths can become overloaded. These
issues are hard to resolve because application and network
interactions are opaque [9]. Mizan [18] focuses on Pregel
workloads, providing a high throughput scheduler that bal-
ances network I/O between vertex queues.

Moore’s law proves that exploiting parallelism offers di-
minishing returns for execution time. Platforms should use
enough parallel resources to achieve service level objectives
but no more. Zhang et al. [42] model execution time for Pig,
a platform for iterative map-reduce, as a function of parallel
resources used. Such performance models can be used to
make online management decisions [33]. GreenHadoop and
GreenSlot [14], [15] also create accurate performance models.
However, their focus was exploiting intermittent renewable
energy for reduced carbon footprint [11]. AMAT (average
memory access time) is a simple model that makes a strong
point: faster storage can significantly decrease execution times.
RDD [40], Data Cube [24], Pig [42],FCS [36] and [16] lower
execution times by using main memory for storage, rather than
disk. However, main memory is volatile and costly. Often, it is
paired with disk or SSD in hybrid storage. Tsai et al. [35] pro-
vide a framework to compare caching and partitioned hybrid
architectures. hStorageDB is one such hybrid system [20].

Graph workloads often run tasks starting from the same
vertex multiple times. Each run differs because weights or
edges from the vertex have changed slightly. These workloads
can reduce their execution time by reusing results from prior
tasks. Data mining and machine learning workloads have sim-
ilar properties. McSherry et al. [21] propose language support
for differential dataflow, a paradigm that allows programmers
to specify incremental structure in their programs. RDD [40]
users can call functions on cache misses, allowing for certain
types of incremental workloads. Waterland et al. [37] cache
results for parallel applications transparently within the oper-
ating system. Non-determinism presents a challenge for the
above approaches. For example, results for our subsampling
workloads are not easily cached by input data alone. One
solution would cache random-seed keys along with data,
but this may disturb the statistical power of subsampling.
Other recent work has studied the efficiency of cloud caches,
especially for data-parallel workloads [5], [8], [17].

VII. CONCLUSION

Many workloads now consist of more data than data-parallel
platforms can process within interactive response time con-
straints. Subsampling reduces processing requirements while
providing statistical confidence on the accuracy of results.
In this paper, we studied subsampling workloads, showing
that subsampling from a large working set can significantly
degrade cache locality. We made a case for tiny tasks, i.e.,
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splitting subsampling workloads into many tasks with small
working sets. Tiny tasks offer improved cache locality but
suffer from scheduling overheads. We contend that schedul-
ing overheads can be managed. First, different platforms
exhibit very different scheduling overheads depending on their
objectives. Platforms designed for task-level recovery have
overheads that are too high for tiny tasks. Platforms designed
for job-level recovery perform better. Second, we show that
task sizing can amortize some scheduling overheads with
only a small increase in cache miss rate. Our approach uses
kneepoints on the task size to miss rate curve to determine
task size. We demonstrated the benefit of our approach using
genetic analysis and e-commerce datasets. On short, interactive
workloads, our improved platform performed 9X better than
vanilla Hadoop.
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