Shortest Path

Introduction to Algorithms ﬁ e Given a weighted directed graph, one
common problem is finding the shortest
Shortest Paths yl;llc = 'A;r path between two given vertices

e Recall that in a weighted graph, the
length of a path is the sum of the weights

CSE 680
Prof. Roger Crawfis of each of the edges in that path

Applications Shortest Path nﬂlﬁh ‘
e One application is circuit design: the e Given the graph below, suppose we wish
time it takes for a change in input to to find the shortest path from vertex 1 to
affect an output depends on the shortest vertex 13

path

Shortest Path

Negative Cycles

e After some consideration, we may
determine that the shortest path is as
follows, with length 14

e Other paths exists, but they are longer

e Clearly, if we have negative vertices, it may
be possible to end up in a cycle whereby
each pass through the cycle decreases the
total length

e Thus, a shortest length would be undefined
for such a graph

e Consider the shortest path
from vertex 1 to 4...

e \We will only consider non-
negative weights.

Shortest Path Example nmgm

BECEEYE

Discussion Items nmﬁm,

BEUCKETYE

e Given:
e Weighted Directed graph G = (V, E).
e Source s, destination t.
e Find shortest directed path from s to t.

rD— g 3
18 Cost of path s-2-3-5-t
14 2 6 = 9+23+2+16
= 48.
30

How many possible paths are there from s to t?

Can we safely ignore cycles? If so, how?

Any suggestions on how to reduce the set of possibilities?

Can we determine a lower bound on the complexity like we did for
comparison sorting?

Key Observation .,.,,ﬂm

e A key observation is that if the shortest path
contains the node v, then:
e It will only contain v once, as any cycles will only add to
the length.
e The path from s to v must be the shortest path to v from
S.
e The path from v to t must be the shortest path to t from
V.
e Thus, if we can determine the shortest path to all
other vertices that are incident to the target vertex
we can easily compute the shortest path.

e Implies a set of sub-problems on the graph with the
target vertex removed.

Dijkstra’s Algorithm

« Works when all of the weights are positive.
* Provides the shortest paths from a source
to all other vertices in the graph.

— Can be terminated early once the shortest
path to t is found if desired.

Shortest Path

» Consider the following graph with positive
weights and cycles.

Dijkstra’s Algorithm

+ A first attempt at solving this problem might require an
array of Boolean values, all initially false, that indicate
whether we have found a path from the source.

OO [([N[OoO|O | W|IN|—~
MMM |mM | M| M |||

Dijkstra’s Algorithm

» Graphically, we will denote this with check
boxes next to each of the vertices (initially
unchecked)

Dijkstra’s Algorithm

* We will work bottom up.

— Note that if the starting vertex has any adjacent
edges, then there will be one vertex that is the
shortest distance from the starting vertex. This is
the shortest reachable vertex of the graph.

« We will then try to extend any existing paths
to new vertices.

+ Initially, we will start with the path of length O
— this is the trivial path from vertex 1 to itself

Dijkstra’s Algorithm

* |If we now extend this path, we should
consider the paths

-(1,2) length 4
-(1,4) length 1
- (1, 5) length 8

The shortest path so far is (1, 4) which is of
length 1.

Dijkstra’s Algorithm

» Thus, if we now examine vertex 4, we may
deduce that there exist the following paths:
—(1,4,5) length 12
-(1,4,7) length 10
- (1, 4, 8) length 9 (4)

gl §

@

11

©

Dijkstra’s Algorithm

* We need to remember that the length of
that path from node 1 to node 4 is 1

» Thus, we need to store the length of a
path that goes through node 4:

Dijkstra’s Algorithm

We have already discovered that there is a
path of length 8 to vertex 5 with the path
(1, 5).

Thus, we can safely ignore this longer

— 5 of length 12 o 2 path. L8
— 7 of length 10 \ Owme®
9 8
—8 of length 9 o o . .
@
LN} ’ L] LN} , L]
Dijkstra’s Algorithm Dijkstra’s Algorithm
* We now know that: There cannot exisF a shorter path to _either of the vertices
— There exist paths from vertex 110 [Vertox Length 1t orté}, since the distances can only increase at each
vertices {2,4,5,7,8}. 1 0 lera |on.' . Vertex | Length
_ We know that the shortest path V_/e_ codnS|der these vertices to be 1 0
from vertex 1 to vertex 4 is of 2 4 visite 2 4
length 1. 4 1 ., 1
If you only knew this information and
— We know that_ the shortest Path to 5 8 nothing else about the graph, what is the 5 8
the other vertices {2,5,7,8} is at 7 10 possible lengths from vertex 1 to vertex 2?
most the length listed in the table 8 9 What about to vertex 7? 7 10
to the right. 8 9

Relaxation

e Maintaining this shortest discovered
distance d[v] is called relaxation:

Relax(u,v,w) {
if (d[v] > d[u]+w) then
dlv]=d[u]+w;

Dijkstra’s Algorithm

* In Dijkstra’s algorithm, we always take the
next unvisited vertex which has the current
shortest path from the starting vertex in
the table.

* This is vertex 2

}

j iRelax gv i éRelax 6 v 6 :* |

5 7 5 6 1 8 ®
Dijkstra’s Algorithm Dijkstra’s Algorithm

« We can try to update the shortest paths to
vertices 3 and 6 (both of length 5)
however:

— there already exists a path of length 8 < 10 to
vertex 5 (10 =4 + 6)
— we already know the shortest path to 4 is 1

1

-
(o]
a

» To keep track of those vertices to which no
path has reached, we can assign those
vertices an initial distance of either
— infinity (=),

— a number larger than any possible path, or
— a negative number

» For demonstration purposes, we will use «

Dijkstra’s Algorithm Dijkstra’s Algorithm

» As well as finding the length of the « We will store a table of pointers, each
shortest path, we’d like to find the initially O
corresponding shortest path « This table will be updated each

« Each time we update the shortest distance time a distance is updated
to a particular vertex, we will keep track of

the predecessor used to reach this vertex

on the shortest path.

Ol [N |h[W|IN|~
oO|O|O|lO|lO|O|O|O|O

Dijkstra’s Algorithm Dijkstra’s Algorithm
» Graphically, we will display the reference » Thus, for our initialization:
to the preceding vertex by a red arrow — we set the current distance to the initial vertex
— if the distance to a vertex is «, there will be no as 0
preceding vertex — for all other vertices, we set the current
— otherwise, there will be exactly one preceding distance to «
vertex — all vertices are initially marked as unvisited

— set the previous pointer for all vertices to null

Dijkstra’s Algorithm

* Thus, we iterate:

—find an unvisited vertex which has the shortest
distance to it

— mark it as visited

— for each unvisited vertex which is adjacent to
the current vertex:

+ add the distance to the current vertex to the weight
of the connecting edge

« if this is less than the current distance to that
vertex, update the distance and set the parent
vertex of the adjacent vertex to be the current
vertex

Dijkstra’s Algorithm

 Halting condition:

— we successfully halt when the vertex we are
visiting is the target vertex

— if at some point, all remaining unvisited
vertices have distance «, then no path from
the starting vertex to the end vertex exits

* Note: We do not halt just because we
have updated the distance to the end
vertex, we have to visit the target vertex.

Example

» Consider the graph:
— the distances are appropriately initialized
— all vertices are marked as being unvisited

Example

* Visit vertex 1 and update its neighbours,
marking it as visited
— the shortest paths to 2, 4, and 5 are updated

Example
 The next vertex we visit is vertex 4
— vertex 5 1+11=8 don’t update
— vertex 7 1T+ 9< update
— vertex 8 1+ 8< update

Example

* Next, visit vertex 2

— vertex 3 4+1<e update

— vertex 4 already visited
— vertex 5 4+6=28 don’t update
— vertex 6 4+1< update

Example

* Next, we have a choice of either 3 or 6

» We will choose to visit 3
— vertex 5 5+2<8 update
— vertex 6 5+525 don’t update

Example
» We then visit 6
— vertex 8 5+729 don’t update
— vertex 9 5+8 < update

Example

» Next, we finally visit vertex 5:
— vertices 4 and 6 have already been visited

— vertex 7 7+1<10 update
— vertex 8 7+1< 9 update
— vertex 9 7+8213 don’t update

Example

* Given a choice between vertices 7 and 8,
we choose vertex 7

— vertices 5 has already been visited
— vertex 8 8+228 don’t update

Example

* Next, we visit vertex 8:
— vertex 9 8§+3<13 update

Example

* Finally, we visit the end vertex

» Therefore, the shortest path from 1 to 9
has length 11

Example

« We can find the shortest path by working
back from the final vertex:

-9,8,5,3,2,1
» Thus, the shortest path is (1, 2, 3, 5, 8, 9)

Example

* In the example, we visited all vertices in
the graph before we finished

* This is not always the case, consider the
next example

Example

* Find the shortest path from 1 to 4:
— the shortest path is found after only three vertices are
visited
— we terminated the algorithm as soon as we reached
vertex 4
— we only have useful information about 1, 3, 4
— we don’t have the shortest path to vertex 2

Dijkstra’s algorithm

d[s] <« 0
for eachv € V — {s}
do d[v] «—
S«
Q«V © Q is a priority queue maintaining V — S
while Q =
do u < ExTrRACT-MIN(Q)
S« Su{u}
for each v € Adj[u]
do if d[v] > d[u] + w(u, v)
then d[v] < d[u] + w(u, v)
p[v] «u

Dijkstra’s algorithm

d[s] « O
foreachv e V—{s}
do d[v] «
S«
Q«V = Q is a priority queue maintaining V — S
while Q =
do u <« ExTrACT-MIN(Q)
S« Su{u}
for each v € Adj[u] _
do if d[v] > d[u] + w(u, v) relaxation
then d[v] <« d[u] + w(u, v) step
plv] <—u \

Implicit DECREASE-KEY

Example of Dijkstra’s algorithm

Graph with
nonnegative
edge weights:

Example of Dijkstra’s algorithm

Initialize:

Example of Dijkstra’s algorithm

“A” « EXTRACT-MIN(Q):

Example of Dijkstra’s algorithm

Relax all edges leaving A:

“C” « EXTRACT-MIN(Q):

Example of Dijkstra’s algorithm

Example of Dijkstra’s algorithm
7 11
2

Relax all edges leaving C:

Q B D
0 o o o o 3 5

10 3 o o

7 11 5

S:{ACE}

Example of Dijkstra’s algorithm

Relax all edges leaving E:

Q: A B C D
0 oo o o o 3 5
10 3 o o
7 11 5
7 11 S:{A,C,E}

“B” «~ EXTRACT-MIN(Q):

Example of Dijkstra’s algorithm

Q D
0 oo o o o 3 5
10 3 o o
7 11 5
7 11 S:{ACEB}

Example of Dijkstra’s algorithm

Relax all edges leaving B:

“D” «~ EXTRACT-MIN(Q):

Example of Dijkstra’s algorithm

Q:
0 o o o o 3 5
10 3 o o
7 11 5
7 11 S:{A,C,E,B,D}

Summary

» Given a weighted directed graph, we can
find the shortest distance between two
vertices by:

— starting with a trivial path containing the initial
vertex

— growing this path by always going to the next
vertex which has the shortest current path

Practice

Mode Included Distance FPath

: ;
B t 4 A
[= /f/t 5 A
5] /f/t 5 A
i t ogw 9| BF
] Ft &8 |-'B

Give the shortest path tree for node
A for this graph using Dijkstra’s
shortest path algorithm. Show your
work with the 3 arrays given and
draw the resultant shortest path tree
with edge weights included.

Bellman-Ford Algorithm nmgm

BECEEYE

BellmanFord()

for each v e V Initialize d[] which

will converge to

dfv] = ; shortest-path value
d[s] = O;
for i=1 to |V]-1 Relaxation:

for each edge (u,v) € E Make |V]-1 passes,

Relax(u,v, w(u,v)): relaxing each edge

for each edge (u,v) € E Test for solution:
if (d[v] > d[u] + w(u,Vv)) have we converged
return “no solution”; yet? le, 3 negative
cycle?

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w

DAG Shortest Paths

e Bellman-Ford takes O(VE) time.

e For finding shortest paths in a DAG, we can do much better by
using a topological sort.

e If we process vertices in topological order, we are guaranteed to
never relax a vertex unless the adjacent edge is already finalized.
Thus: just one pass. O(V+E)

DAG-Shortest-Paths(G, w, s)
topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE(G, s)
for each vertex u, taken in topologically sorted order
do for each vertex v e Adj[u]
do Relax(u, v, w)

