Introduction to Algorithms

Graph Algorithms DHIDSSTATE

CSE 680
Prof. Roger Crawfis

Bipartiteness

Graph G = (V,E) is bipartite iff it can be partitioned into two sets of
nodes A and B such that each edge has one end in A and the other
endinB

Alternatively:
» Graph G = (V,E) is bipartite iff all its cycles have even length

» Graph G = (V,E) is bipartite iff nodes can be coloured using two
colours

Question: given a graph G, how to test if the graph is bipartite?
Note: graphs without cycles (trees) are bipartite

@ bipartite: Q‘ LR

non bipartite

Testing bipartiteness

Method: use BFS search tree

Recall: BFS is a rooted spanning tree.

Algorithm:

¢ Run BFS search and colour all nodes in odd layers red, others blue

¢ Go through all edges in adjacency list and check if each of them has two different
colours at its ends - if so then G is bipartite, otherwise it is not

We use the following alternative definitions in the analysis:
» Graph G = (V,E) is bipartite iff all its cycles have even length, or
» Graph G = (V,E) is bipartite iff it has no odd cycle

ey
LY

bipartite ™...i =

A .
.

non bipartite

Topological Sort nﬂ,ﬁh

BEUCKETYEHB,

Want to “sort” or linearize a directed acyclic graph (DAG).

T 6

Topological Sort umgms

B ¥NCEEYEHE

e Performed on a DAG.

e Linear ordering of the vertices of G such that if
(u, v) € E, then u appears before v.
Topological-Sort (G)
1. call DFS(G) to compute finishing times f [v] for all v € V

2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: O(V + E).

Example

Linked List:

Linked List:

Linked List:

E

Example

Linked List:

Example

Linked List:

Linked List:

Linked List:

Example

Example

A B D
C E
Linked List:

B Cc D E

A B D
C E
Linked List:

B Cc D E

ﬂlﬂgﬂ

Precedence Example nﬂ,ﬁm

BECEEYE

A B D
C E
Linked List:

A B Cc D E

BEUCKETYE

e Tasks that have to be done to eat
breakfast:
e get glass, pour juice, get bowl, pour cereal,
pour milk, get spoon, eat.
e Certain events must happen in a certain
order (ex: get bowl before pouring milk)

e For other events, it doesn't matter (ex:
get bowl and get spoon)

Precedence Example

Precedence Example

et glass
geto get bowl

pour juice
pour cereal

pour milk get spoon

eat breakfast

Order: glass, juice, bowl, cereal, milk, spoon, eat.

e Topological Sort

1 2 3 45 6 7 8 9 10 1 12 13 14

eat milk spoon
juice cereal
glass bowl

consider reverse order of finishing times:
spoon, bowl, cereal, milk, glass, juice, eat

Precedence Example nmgm

BECEEYE

Correctness Proof

e What if we started with juice?

1 2 3 45 6 7 8 9 10 1 12 13 14

eat glass milk spoon
juice cereal
bowl

consider reverse order of finishing times:
spoon, bowl, cereal, milk, glass, juice, eat

e Show if (U, v) € E, then f [v] < f [u].
e \When we explore (u, v), what are their colors?
e Note, u is gray — we are exploring it
e Isv gray?
e No, because then v would be an ancestor of u.
e = (U, V) is a back edge.
e = a cycle (dag has no back edges).
e Is v white?
e Then v becomes descendant of u.
e By parenthesis theorem, d[u] < d[v] < f[v] < f[u].
e Is v black?
e Then v is already finished.
e Since we're exploring (u, v), we have not yet finished u.
e Therefore, f [v] < f [u].

Uses of SCC’s

e Consider a directed graph.

e A strongly connected component (SCC)
of the graph is a maximal set of nodes
with a (directed) path between every pair
of nodes.

e If a path from u to v exists in the SCC, then
a path from v to u also exists.

e Problem: Find all the SCCs of the graph.

e Packaging software modules

e Construct directed graph of which modules
call which other modules

e A SCC is a set of mutually interacting
modules

e Pack together those in the same SCC

Main Idea of SCC Algorithm ,,,,,ﬁn :

BEUCKETYEHB,

SCC Example nmgm

four SCCs

e DFS tells us which nodes are reachable
from the roots of the individual trees

e Also need information in the other
direction: is the root reachable from its
descendants?

e Run DFS again on the transpose graph
(reverse the directions of the edges)

SCC Algorithm

Input: directed graph G = (V,E)

1. call DFS(G) to compute finishing times

2. compute GT // transpose graph

3. call DFS(GT), considering nodes in
decreasing order of finishing times

4. each tree from Step 3 is a separate
SCCof G

SCC Algorithm Example

F—O—=0—ED

input graph - run DFS

After Step 1

—
©
-
c
=

& fin(c)
o fin(d)

10 11 12 13 14 15 16

c d h
b e g

a f

Order of nodes for Step 3: f, g, h,a, e, b,d, c

After Step 2

O—O=0—D

transposed input graph - run DFS with specified order of
nodes

After Step 3 umgms

B ¥NCEEYEHE

Run Time of SCC Algorithm nﬂ,ﬁm

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16

h e Cc

f a b d

SCCs are {f,h,g} and {a,e} and {b,c} and {d}.

e Step 1. O(V+E) to run DFS
e Step 2: O(V+E) to construct transpose
graph, assuming adjacency list rep.
e Adjacency matrix is O(1) time w/ wrapper.
e Step 3: O(V+E) to run DFS again
e Step 4: O(V) to output result
e Total: O(V+E)

Component Graph nmgm

BECEEYE

P GSCC = (VSCC’ ESCC)_
e \/SCC has one vertex for each SCC in G.

e ESCC has an edge if there’s an edge
between the corresponding SCC’s in G.

GSCC hased on example
graph from before

Component Graph Facts nﬂ,ﬁh

BEUCKETYEHB,

e Claim: GSCC js a directed acyclic graph.

e Suppose there is a cycle in GSC¢ such that
component C; is reachable from component C; and
vice versa.

e Then C;and C; would not be separate SCCs.
e Lemma: If there is an edge in GSCC from
component C' to component C, then
f(C") > f(C).
e Consider any component C during Step 1 (running
DFS on G)
e Let d(C) be earliest discovery time of any node in C
e Let f(C) be latest finishing time of any node in C

