Graphs

¢ Graph G =(V, E)
» V = set of vertices
» E = set of edges < (VxV)

+ Types of graphs

Introduction to Algorithms ﬁ
1035 STATE

Graph Algorithms D

cK » Undirected: edge (u, v) = (v, u); for all v, (v, v) ¢ E (No self
loops.)
CSE 680 » Directed: (u, v) is edge from u to v, denoted as u — v. Self loops
are allowed.
Prof. Roger Crawfis » Weighted: each edge has an associated weight, given by a weight

functionw : E —» R.
» Dense: |E| = |V/|%.
» Sparse: |E| << |V[A

: 2
Partially from io.uwinnipeg.ca/~ychen2 ¢ |E| O(|V|)
graphs-1 - 2
Graphs Representation of Graphs
+ If (u, v) € E, then vertex v is adjacent to vertex u. * Two standard ways.
+ Adjacency relationship is: » Adjacency Lists.
» Symmetric if G is undirected. @—® a b | +d | +—c]
» Not necessarily so if G is directed. " b s
+ If G is connected: N ol Tl a—a] {1/
—o |
» There is a path between every pair of vertices.))
» |E|> V|- 1. » Adjacency Matrix.
» Furthermore, if |E| = |V| -1, then G is a tree. 2 2 1232
' 10111
+ Other definitions in Appendix B (B.4 and B.5) as needed. " 21010
(c) 311101
3 4 41010

graphs-1 -3 graphs-1 -4

Adjacency Lists

+ Consists of an array Adj of |V lists.
* One list per vertex.
+ For u € V, Adj[u] consists of all vertices adjacent to u.

e’m 2 [HEEHS L

bl 1 : Z
‘ — If weighted, store weights also in
O—0 ZZ adjacency lists.

Storage Requirement

+ For directed graphs:
» Sum of lengths of all adj. lists is

> out-degree(v) = |E]|

veV

No. of edges leaving v

» Total storage: ©(|V| + |E|)

¢ For undirected graphs:
» Sum of lengths of all adj. lists is

N : > degree(v) = 2|E|
e'v@ . —_ M veVv No. oftgdges incO:dent on v. Edge (u,v) is incident
@‘@ o] ol g—[] +1{o 1/ » Total storage: G)(|V|Ogrv|eléi():esuan "
d| Ha T 3—[c]
Pros and Cons: adj list Adjacency Matrix
+ Pros

» Space-efficient, when a graph is sparse.
» Can be modified to support many graph variants.
+ Cons

» Determining if an edge (u, v) G is not efficient.
» Have to search in u’s adjacency list. ®(degree(u)) time.
* ©(V) in the worst case.

graphs-1-7

¢ |V| x |[V| matrix A.
+ Number vertices from 1 to |V| in some arbitrary manner.
+ Ais then given by:

. 1 if(i,j)eE
Al jl=g; = .

0 otherwise
L 2 1234 2 1234
9"@ 70 111 6"@ 10111
20001 0 211 010
G“@ 31000 1 O‘ 31101
3 4 40000 3 4 41010

A = AT for undirected graphs.

graphs-1-8

L 2

Space and Time

Space: O(V?).

» Not memory efficient for large graphs.

Some graph operations

+ Time: to list all vertices adjacent to u: (V). adjacency matrix adjacency lists

¢ Time: to determine if (u, v) € E: ©(1). insertEdge o) O(e)

+ Can store weights instead of bits for weighted graph.
isEdge o) O(e)
#successors? Oo(V) O(e)
#predecessors? o) O(E)

graphs-1-9 graphs-1- 10
traversing a graph Graph Definitions
+ Path

graphs-1-11

Where to start?
Will all vertices be visited?
How to prevent multiple visits?

» Sequence of nodes nq, n,, ... Ny
» Edge exists between each pair of nodes n;, n,4

» Example
* A, B, Cisapath

graphs-1-12

Graph Definitions

+ Path
» Sequence of nodes ny, n,, ... Ny
» Edge exists between each pair of nodes n;, n;;4;

» Example
* A, B, Cisapath
* A, E, Disnota path

graphs-1-13

Graph Definitions

+ Cycle
» Path that ends back at starting node
» Example

«AE A @

=

graphs-1-14

Graph Definitions

* Cycle
» Path that ends back at starting node

» Example
A E A
*«ABCDEA

+ Simple path

» No cycles in path
+ Acyclic graph

» No cycles in graph

graphs-1- 15

Graph Definitions

+ Reachable
» Path exists between nodes

+ Connected graph
» Every node is reachable from some node in graph

N

Unconnected graphs

graphs-1- 16

Graph-searching Algorithms

¢ Searching a graph:
» Systematically follow the edges of a graph
to visit the vertices of the graph.

+ Used to discover the structure of a graph.
¢ Standard graph-searching algorithms.

» Breadth-first Search (BFS).
» Depth-first Search (DFS).

graphs-1-17

Breadth-first Search

¢ Input: Graph G = (V, E), either directed or undirected,
and source vertex s € V.
¢ Output:
» d[v] = distance (smallest # of edges, or shortest path) from s to v,
forall v € V. d[v] = « if v is not reachable from s.
» 7z]v] = usuch that (u, v) is last edge on shortest path s~ v.
¢ uisv’s predecessor.

» Builds breadth-first tree with root s that contains all reachable
vertices.

graphs-1- 18

Breadth-first Search

+ Expands the frontier between discovered and
undiscovered vertices uniformly across the breadth
of the frontier.

» A vertex is “discovered” the first time it is encountered
during the search.

» A vertex is “finished” if all vertices adjacent to it have
been discovered.

+ Colors the vertices to keep track of progress.
» White — Undiscovered.
— Discovered but not finished.
» Black — Finished.

graphs-1- 19

BES for Shortest Paths

® Finished

o Undiscovered

T
58

graphs-1 - 20

BES(G.s)
1. for each vertex u in V[G] - {s} Example (BFS)
2 do color[u] <« white o
3 d[u] « o initialization
4 n[u] < nil white: undiscovered
5 color[s] « gray gray: discovered
6 d[s]« 0 black: finished
7 afs] < nil aCCess source s r S t u
8 Qe Q: a queue of discovered Q 0 e °
9 enqueue(Q,s) vertices
10 while Q = @ color[v]: color of v
11 do u < dequeue(Q) d[v]: distance from s to v
1 for each v in Adj[u] n[u]: predecessor of v
13 do if color[v] = white e e ° Q
14 then color[v] < gray v W X Y
15 d[v] < dfu] +1
16 n[v] < u
17 enqueue(Q,v) QZ S
18 color[u] « black 0
graphs-1 - 21 graphs-1 - 22
r s t u r S ! 0
Y] w X y \ w X y
Q:wr Q:r tx
11 122
graphs-1 - 23 graphs-1 - 24

Example (BFS)

Example (BFS)

Q:txv Q:xvu
222 223
Example (BEFS) Example (BES)
S t S t
w X w X
Q:vuy Q:uy
233 33

graphs-1 - 27

graphs-1 - 28

Example (BFS) Example (BFS)
S 1 u r S 1 u
3
W X y Y w X y
Q:y Q: &
3
Example (BFS) Analysis of BFS

graphs-1- 31

t
© &
P

u

2
. 2/
W X
BF Tree

®

y

+ Initialization takes O(|V|).

+ Traversal Loop
» After initialization, each vertex is enqueued and dequeued at most
once, and each operation takes O(1). So, total time for queuing is
O(IVI).
» The adjacency list of each vertex is scanned at most once. The
sum of lengths of all adjacency lists is ®(|E|).
¢ Summing up over all vertices => total running time of BFS
Is O(|V| + |E]), linear in the size of the adjacency list
representation of graph.

graphs-1 - 32

Breadth-first Tree

+ For a graph G = (V, E) with source s, the predecessor

subgraphof GisG,= (V,, E,) where

» V, ={veV : n[v] #nil} U {s}

» E ={(n[v],v) e E:veV,_-{s}}
¢ The predecessor subgraph G is a breadth-first tree

if:

» V _ consists of the vertices reachable from s and

» forallv e V_, there is a unique simple path fromstovin G,

that is also a shortest path from s to v in G.

+ The edges in E are called tree edges.

Ed=IV]-1.

graphs-1- 33

Depth-first Search (DES)

+ Explore edges out of the most recently discovered
vertex v.

+ When all edges of v have been explored, backtrack to
explore other edges leaving the vertex from which v
was discovered (its predecessor).

+ “Search as deep as possible first.”

+ Continue until all vertices reachable from the original
source are discovered.

¢ |f any undiscovered vertices remain, then one of them
IS chosen as a new source and search is repeated from
that source.

graphs-1 - 34

Depth-first Search

¢ Input: G = (V, E), directed or undirected. No source
vertex given!

+ Output:
» 2 timestamps on each vertex. Integers between 1 and 2|V|.
« d[v] = discovery time (v turns from white to gray)
« f[v] = finishing time (v turns from gray to black)
» m[v] : predecessor of v = u, such that v was discovered during
the scan of u’s adjacency list.
¢ Coloring scheme for vertices as BFS. A vertex is
» “discovered” the first time it is encountered during the search.

» A vertex is “finished” if it is a leaf node or all vertices adjacent
to it have been finished.

graphs-1 - 35

Pseudo-code

DES(G) DES-Visit(u)
1. for each vertex u € V[G] 1. color[u] <~ GRAY // White vertex u
2. do color[u] < white has been discovered
3, n[u] <~ NIL 2. time <« time+1
4. time <0 3 d[u] < time
5. for each vertex u e V[G] 4. foreachv e Adj[u]
6. doif color[u] = white 5 do if color[v] = WHITE
7. then DFS-Visit(u) 6 then m[v] <~ u
7 DFS-Visit(v)
8 color[u] « BLACK // Blacken u;
Uses a global timestamp time. | it is finished.
9. f[u] < time « time + 1

graphs-1 - 36

graphs-1- 37

Example (DFS)

Example (DFS)

W

graphs-1 - 38

graphs-1 - 39

Example (DFES)

%%

Example (DFS)

u Vv W
%%
@W—CE O

X y z

graphs-1 - 40

Example (DFS)

u Vv w
X y z

graphs-1-41

Example (DFS)

u v w
X y z

graphs-1 - 42

Example (DFES)

W

graphs-1-43

Example (DFS)

W

graphs-1- 44

Example (DFS)

graphs-1 - 45

Example (DFS)

graphs-1 - 46

Example (DFES)

graphs-1 - 47

Example (DFS)

graphs-1 - 48

Example (DFS)

Example (DFS)

W
C.”
@ s

z

Example (DFS) Example (DFS)
w
.8
D

Analysis of DFS

+ Loops on lines 1-2 & 5-7 take ®(V) time, excluding time
to execute DFS-Visit,

+ DFS-Visit is called once for each white vertex veVv
when it’s painted gray the first time. Lines 3-6 of DFS-
Visit is executed |Adj[v]| times. The total cost of
executing DFS-Visit is 2,_ |Adj[V]| = ©(E)

¢ Total running time of DFS is O(|V| + |E|).

graphs-1 - 53

Recursive DFS Algorithm

Traverse()
for all nodes X
set X.tag = False
Visit (15t node)
Visit (X)
set X.tag = True
for each successor Y of X
if (Y.tag = False)
Visit (Y)

graphs-1 - 54

Parenthesis Theorem

Theorem 22.7

For all u, v, exactly one of the following holds:

1.d[u] < f[u] <d[v] < f[v]ord[v] <f[v]<d[u]<f[u]and neitheru
nor v is a descendant of the other.

2. d[u] <d[v] <f[v] <f[u]and v is adescendant of u.

3.d[v] <d[u] <f[u] <f[v]and u is a descendant of v.

¢ Sod[u] <d[v] < f[u] <f[v] cannot happen.
¢ Like parentheses: d[u] fu]
cokOnaniol oy L)]
¢ NotOK: ([)1[(1) dv] f[v] d[v] flv]
Corollary
v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u].

graphs-1 - 55

Example (Parenthesis Theorem)

sy (xx)y) (ww)2z)s) (t(vv) (uu)t)

graphs-1 - 56

Depth-First Trees

* Predecessor subgraph defined slightly different from
that of BFS.

¢ The predecessor subgraph of DFSis G, = (V, E))
where E_={(=[v], v) : v € Vand =n[v] # nil}.
» How does it differ from that of BFS?

» The predecessor subgraph G forms a depth-first forest
composed of several depth-first trees. The edges in E ,are
called tree edges.

Definition:
Forest: An acyclic graph G that may be disconnected.

graphs-1 - 57

White-path Theorem

Theorem 22.9

v is a descendant of u in DF-tree if and only if at time d[u], there
is a path u ~~v consisting of only white vertices. (Except for u,
which was just colored gray.)

graphs-1 - 58

Classification of Edges

* Tree edge: in the depth-first forest. Found by exploring
(u, v).

+ Back edge: (u, v), where u is a descendant of v (in the
depth-first tree).

¢ Forward edge: (u, v), where v is a descendant of u, but
not a tree edge.

+ Cross edge: any other edge. Can go between vertices in
same depth-first tree or in different depth-first trees.

Theorem:
In DFS of an undirected graph, we get only tree and back edges.
No forward or cross edges.

graphs-1 - 59

Classifying edges of a digraph

¢ (u,Vv)is:
» Tree edge — if v is white
» Back edge — if v is gray
» Forward or cross - if v is black
¢ (u,v)is:
» Forward edge — if v is black and d[u] < d[v] (v was discovered
after u)
» Cross edge — if v is black and d[u] > d[v] (u discovered after v)

graphs-1 - 60 60

More applications

+ Does directed G contain a directed cycle? Do DFS if
back edges yes. Time O(V+E).

+ Does undirected G contain a cycle? Same as directed
but be careful not to consider (u,v) and (v, u) a cycle.
Time O(V) since encounter at most |V| edges (if (u, v) and (v, u) are
counted as one edge), before cycle is found.

¢ Isundirected G a tree? Do dfsVisit(v). If all vertices are
reached and no back edges G is a tree. O(V)

graphs-1- 61 61

C# Interfaces

using System; /Il <summary>
using System.Collections.Generic; /Il The Graph interface
using System.Security.Permissions; Ml </lsummary>
[assembly: CLSCompliant(true)] /Il <typeparam name="N">The type associated at each node. Called a
namespace OhioState.Collections.Graph { node or node label</typeparam>
Il <summary> /Il <typeparam name="E">The type associated at each edge. Also called

the edge label.</typeparam>
public interface IGraph<N,E> {
Il <summary>
/Il terator for the nodes in the graoh.

/Il [Edge provides a standard interface to specify an edge and any
/Il data associated with an edge within a graph

I </summary>

1Il <typeparam name="N">The type of the nodes in the

graph.</typeparam> Il <Isummary>

/Il <typeparam name="E">The type of the data on an edge.</typeparam> IEnumerable<N> Nodes { get; }

public interface IEdge<N,E> { /Il <summary>
Il <summary> /Il lterator for the children or neighbors of the specified node.
/Il Get the Node label that this edge emanates from /Il <Isummary>
Il </summary> /Il <param name="node">The node.</param>
N From { get; } /Il <returns>An enumerator of nodes.</returns>
/Il <summary> |Enumerable<N> Neighbors(N node);
/Il Get the Node label that this edge terminates at. [l <summary>
1l <Isummary> /Il lterator over the parents or immediate ancestors of a node.
N To{get;} Il <Isummary>
Il <summary> /Il <remarks>May not be supported by all graphs.</remarks>
1/l Get the edge label for this edge. /Il <param name="node">The node.</param>
Il <Isummary> /Il <returns>An enumerator of nodes.</returns>
E Value { get; } |Enumerable<N> Parents(N node);

}

graphs-1 - 62

C# Interfaces

/Il <summary> /Il <returns>The edge.</returns>

/Il lterator over the emanating edges from a node. E GetEdgelLabel(N fromNode, N toNode);

Il </lsummary> Il <summary>

1l <param name="node">The node.</param> /Il Exception safe routine to get the label on an edge.

/Il <returns>An enumerator of nodes.</returns> JIl <Isummary>

IEnumerable<IEdge<N, E>> OutEdges(N node); /Il <param name="fromNode">The node that the edge emanates
/Il <summary> from.</param>

/Il Iterator over the in-coming edges of a node. /Il <param name="toNode">The node that the edge terminates

at.</param>
/Il <param name="edge">The resulting edge if the method was
successful. A default

NI </summary>
/Il <remarks>May not be supported by all graphs.</remarks>

;x SEE ”a'm:”'mm’"ﬂhi ngde,</;/)aram> /Il value for the type if the edge could not be found.</param>
<returns>An enumerator of edges.</returns> /Il <returns>True if the edge was found. False otherwise.</returns>

IEnumerable<iEdge<N, E>> InEdges(N node); bool TryGetEdge(N fromNode, N toNode, out E edge);
/Il <summary> }

/Il Iterator for the edges in the graph, yielding IEdge's)
Il </summary>

IEnumerable<IEdge<N, E>> Edges { get; }

/Il <summary>

/Il Tests whether an edge exists between two nodes.

I </summary>

/Il <param name="fromNode">The node that the edge emanates
from.</param>

/Il <param name="toNode">The node that the edge terminates
at.</param>

/Il <returns>True if the edge exists in the graph. False
otherwise.</returns>

bool ContainsEdge(N fromNode, N toNode);

/Il <summary>

/Il Gets the label on an edge

Il </summary>

/Il <param name="fromNode">The node that the edge emanates
from.</param>

/Il <param name="toNode">The node that the edge terminates
at.</param>

graphs-1 - 63

C# Interfaces

using System;
namespace OhioState.Collections.Graph {
/Il <summary>
/Il Graph interface for graphs with finite size.
/Il </lsummary>

/Il <typeparam name="N">The type associated at each node. Called a node or node
label</typeparam>

/Il <typeparam name="E">The type associated at each edge. Also called the edge
label.</typeparam>

/Il <seealso cref="IGraph{N, E}"/>
public interface IFiniteGraph<N, E>: IGraph<N, E> {
/Il <summary>
/Il Get the number of edges in the graph.
/Il </[summary>
int NumberOfEdges { get; }
/Il <summary>
/Il Get the number of nodes in the graph.
/Il </[summary>
int NumberOfNodes { get; }

graphs-1 - 64

