
Introduction to AlgorithmsIntroduction to Algorithms
Graph AlgorithmsGraph Algorithmsgg

CSE 680
Prof. Roger Crawfis

Partially from io.uwinnipeg.ca/~ychen2

Graphs
Graph G = (V, E)
» V = set of vertices

E f d (V V)» E = set of edges ⊆ (V×V)
Types of graphs
» Undirected: edge (u v) = (v u); for all v (v v) ∉ E (No self» Undirected: edge (u, v) = (v, u); for all v, (v, v) ∉ E (No self

loops.)
» Directed: (u, v) is edge from u to v, denoted as u → v. Self loops

ll dare allowed.
» Weighted: each edge has an associated weight, given by a weight

function w : E → R.
» Dense: |E| ≈ |V|2.
» Sparse: |E| << |V|2.

|E| O(|V|2)

graphs-1 - 2

|E| = O(|V|2)

Graphs
If (u, v) ∈ E, then vertex v is adjacent to vertex u.
Adjacency relationship is:
» Symmetric if G is undirected.
» Not necessarily so if G is directed.

If G is connected:
» There is a path between every pair of vertices.

|E| ≥ |V| 1» |E| ≥ |V| – 1.
» Furthermore, if |E| = |V| – 1, then G is a tree.

Other definitions in Appendix B (B.4 and B.5) as needed.

graphs-1 - 3

Representation of Graphs
Two standard ways.
» Adjacency Lists.j y

a b a

b

b

a

d

d c

c

b

» Adjacency Matrix

dc
c
d

d a b

a c

» Adjacency Matrix.

a b
1 2 1 2 3 4

1 0 1 1 1

dc
3 4

1 0 1 1 1
2 1 0 1 0
3 1 1 0 1
4 1 0 1 0

graphs-1 - 4

3 4 4 1 0 1 0

Adjacency Lists
Consists of an array Adj of |V| lists.
One list per vertex.p
For u ∈ V, Adj[u] consists of all vertices adjacent to u.
a b a b d ca

dc

b a

b
c

b

c

d

d c

If weighted, store weights also in
dj li t

d

a b

adjacency lists.

a b d c

dc
b
c

a

d

c

a b

graphs-1 - 5

d a c

Storage Requirement
For directed graphs:
» Sum of lengths of all adj. lists is

∑out-degree(v) = |E|
v∈V

No. of edges leaving v

» Total storage:Θ(|V| + |E|)
For undirected graphs:
» Sum of lengths of all adj. lists is

∑degree(v) = 2|E|
Vv∈V

» Total storage:Θ(|V| + |E|)

No. of edges incident on v. Edge (u,v) is incident
on vertices u and v.

graphs-1 - 6

Pros and Cons: adj list
Pros
» Space-efficient, when a graph is sparse.
» Can be modified to support many graph variants.

Cons
» Determining if an edge (u, v) ∈G is not efficient.

• Have to search in u’s adjacency list. Θ(degree(u)) time.
• Θ(V) in the worst caseΘ(V) in the worst case.

graphs-1 - 7

Adjacency Matrix
|V| × |V| matrix A.
Number vertices from 1 to |V| in some arbitrary manner.| | y
A is then given by:

⎨
⎧ ∈),(if1

][
Eji

jiA
⎩
⎨==

otherwise0
],[ajiA ij

b
1 2 1 2 3 4 a b

1 2 1 2 3 4a

dc

b 1 2 3 4
1 0 1 1 1
2 0 0 1 0
3 0 0 0 1

a

dc

b 1 2 3 4
1 0 1 1 1
2 1 0 1 0
3 1 1 0 1dc

3 4 4 0 0 0 0
dc

3 4 4 1 0 1 0

A = AT for undirected graphs.

graphs-1 - 8

Space and Time
Space: Θ(V2).
» Not memory efficient for large graphs.

Time: to list all vertices adjacent to u: Θ(V).
Time: to determine if (u, v) ∈ E: Θ(1).
Can store weights instead of bits for weighted graph.

graphs-1 - 9

Some graph operationsSome graph operations
adjacency matrix adjacency lists

insertEdge O(1) O(e)g

isEdge

()

O(1) O(e)

#successors?

d

O(V) O(e)

O(E)#predecessors? O(V) O(E)

graphs-1 - 10

traversing a graph

ny bos

hidcla chidcla

atlatl
Where to start?
Will all vertices be visited?

graphs-1 - 11

Will all vertices be visited?
How to prevent multiple visits?

Graph Definitions
Path
» Sequence of nodes n1, n2, … nkS q 1, 2, k

» Edge exists between each pair of nodes ni , ni+1

» Example» Example
• A, B, C is a path

graphs-1 - 12

Graph Definitions
Path
» Sequence of nodes n1, n2, … nkS q 1, 2, k

» Edge exists between each pair of nodes ni , ni+1

» Example» Example
• A, B, C is a path
• A, E, D is not a path, , p

graphs-1 - 13

Graph Definitions
Cycle
» Path that ends back at starting nodeg
» Example

• A, E, A, ,

graphs-1 - 14

Graph Definitions
Cycle
» Path that ends back at starting nodeg
» Example

• A, E, A, ,
• A, B, C, D, E, A

Simple pathS p e pat
» No cycles in path

Acyclic graphAcyclic graph
» No cycles in graph

graphs-1 - 15

Graph Definitions
Reachable
» Path exists between nodes

Connected graph
» Every node is reachable from some node in graph» Every node is reachable from some node in graph

graphs-1 - 16

Unconnected graphs

Graph-searching Algorithms
Searching a graph:
» Systematically follow the edges of a graph

to visit the vertices of the graph.
Used to discover the structure of a graph.
Standard graph-searching algorithms.
» Breadth-first Search (BFS).

D h fi S h (DFS)» Depth-first Search (DFS).

graphs-1 - 17

Breadth-first Search
Input: Graph G = (V, E), either directed or undirected,
and source vertex s ∈ V.
OOutput:
» d[v] = distance (smallest # of edges, or shortest path) from s to v,

for all v ∈ V. d[v] = ∞ if v is not reachable from s.for all v ∈ V. d[v] if v is not reachable from s.
» π[v] = u such that (u, v) is last edge on shortest path s v.

• u is v’s predecessor.
B ild b dth fi t t ith t th t t i ll h bl» Builds breadth-first tree with root s that contains all reachable
vertices.

graphs-1 - 18

Breadth-first Search
Expands the frontier between discovered and
undiscovered vertices uniformly across the breadth
of the frontier.
» A vertex is “discovered” the first time it is encountered

d i th hduring the search.
» A vertex is “finished” if all vertices adjacent to it have

been discoveredbeen discovered.
Colors the vertices to keep track of progress.
» White – Undiscovered» White – Undiscovered.
» Gray – Discovered but not finished.
» Black – Finished

graphs-1 - 19

» Black Finished.

BFS for Shortest Paths
Finished

Discovered1 Discovered

Undiscovered
S
1

1
1

2 3 3

1
2

2

S

3 3

3
S
1

1
1 S2

2

S

graphs-1 - 20

2 3 3

BFS(G,s)
1. for each vertex u in V[G] – {s}
2 do color[u] ← white2 do color[u] ← white
3 d[u] ←∝
4 π[u] ← nil
5 color[s] ← gray

white: undiscovered
gray: discovered

initialization

6 d[s] ← 0
7 π[s] ← nil
8 Q ←Φ

black: finished

Q: a queue of discovered

access source s

9 enqueue(Q,s)
10 while Q ≠ Φ
11 do u ← dequeue(Q)
12 for each v in Adj[u]

vertices
color[v]: color of v
d[v]: distance from s to v
π[u]: predecessor of v

12 for each v in Adj[u]
13 do if color[v] = white
14 then color[v] ← gray
15 d[v] ← d[u] + 115 d[v] ← d[u] + 1
16 π[v] ← u
17 enqueue(Q,v)
18 color[u] ← black

graphs-1 - 21

Example (BFS)

∞ 0 ∞ ∞
r s t u

∞ ∞ ∞∞
v w x y

Q: s
0

graphs-1 - 22

0

Example (BFS)

1 0 ∞ ∞
r s t u

1 ∞ ∞∞
v w x y

Q: w r
1 1

graphs-1 - 23

1 1

Example (BFS)

1 0 2 ∞
r s t u

1 2 ∞∞
v w x y

Q: r t x
1 2 2

graphs-1 - 24

1 2 2

Example (BFS)

1 0 2 ∞
r s t u

1 2 ∞2
v w x y

Q: t x v
2 2 2

graphs-1 - 25

2 2 2

Example (BFS)

1 0 2 3
r s t u

1 2 ∞2
v w x y

Q: x v u
2 2 3

graphs-1 - 26

2 2 3

Example (BFS)

1 0 2 3
r s t u

1 2 32
v w x y

Q: v u y
2 3 3

graphs-1 - 27

2 3 3

Example (BFS)

1 0 2 3
r s t u

1 2 32
v w x y

Q: u y
3 3

graphs-1 - 28

3 3

Example (BFS)

1 0 2 3
r s t u

1 2 32
v w x y

Q: y
3

graphs-1 - 29

3

Example (BFS)

1 0 2 3
r s t u

1 2 32
v w x y

Q: ∅

graphs-1 - 30

Example (BFS)

1 0 2 3
r s t u

1 2 32
v w x y

BF Tree

graphs-1 - 31

Analysis of BFS
Initialization takes O(|V|).
Traversal Loop
» After initialization, each vertex is enqueued and dequeued at most

once, and each operation takes O(1). So, total time for queuing is
O(|V|).(| |)

» The adjacency list of each vertex is scanned at most once. The
sum of lengths of all adjacency lists is Θ(|E|).

Summing up over all vertices => total running time of BFSSumming up over all vertices > total running time of BFS
is O(|V| + |E|), linear in the size of the adjacency list
representation of graph.

graphs-1 - 32

Breadth-first Tree
For a graph G = (V, E) with source s, the predecessor
subgraph of G is Gπ = (Vπ , Eπ) where
» Vπ ={v∈V : π[v] ≠ nil} U {s}
» Eπ ={(π[v], v) ∈ E : v ∈ Vπ - {s}}

The predecessor subgraph Gπ is a breadth-first tree
if:

V i t f th ti h bl f d» Vπ consists of the vertices reachable from s and
» for all v ∈ Vπ , there is a unique simple path from s to v in Gπ

that is also a shortest path from s to v in G. p
The edges in Eπ are called tree edges.
|Eπ| = |Vπ| - 1.

graphs-1 - 33

| π| | π|

Depth-first Search (DFS)
Explore edges out of the most recently discovered
vertex v.
When all edges of v have been explored, backtrack to
explore other edges leaving the vertex from which v
was discovered (its predecessor).
“Search as deep as possible first.”
Continue until all vertices reachable from the original
source are discovered.
If any undiscovered vertices remain, then one of them
is chosen as a new source and search is repeated from
th t

graphs-1 - 34

that source.

Depth-first Search
Input: G = (V, E), directed or undirected. No source
vertex given!
Output:
» 2 timestamps on each vertex. Integers between 1 and 2|V|.

• d[v] = discovery time (v turns from white to gray)
• f [v] = finishing time (v turns from gray to black)

» π[v] : predecessor of v = u, such that v was discovered during» π[v] : predecessor of v u, such that v was discovered during
the scan of u’s adjacency list.

Coloring scheme for vertices as BFS. A vertex is
» “discovered” the first time it is encountered during the search.
» A vertex is “finished” if it is a leaf node or all vertices adjacent

i h b fi i h d

graphs-1 - 35

to it have been finished.

Pseudo-code
DFS(G)
1. for each vertex u ∈ V[G]
2 d l [] hit

DFS-Visit(u)
1. color[u] ← GRAY // White vertex u

has been discovered2. do color[u] ← white
3. π[u] ← NIL
4. time ← 0

has been discovered
2. time ← time + 1
3. d[u] ← time

5. for each vertex u ∈ V[G]
6. do if color[u] = white
7. then DFS-Visit(u)

4. for each v ∈ Adj[u]
5. do if color[v] = WHITE
6. then π[v] ← u7. then DFS Visit(u)

Uses a global timestamp time

7. DFS-Visit(v)
8. color[u] ← BLACK // Blacken u;

it is finished.Uses a global timestamp time. s s ed.
9. f[u] ← time ← time + 1

graphs-1 - 36

Example (DFS)

1/
u v w

x y z

graphs-1 - 37

Example (DFS)

1/ 2/
u v w

x y z

graphs-1 - 38

Example (DFS)

1/ 2/
u v w

3/3/
x y z

graphs-1 - 39

Example (DFS)

1/ 2/
u v w

4/ 3/4/ 3/
x y z

graphs-1 - 40

Example (DFS)

1/ 2/
u v w

4/ 3/

B

4/ 3/
x y z

graphs-1 - 41

Example (DFS)

1/ 2/
u v w

4/ 3/

B

4/5 3/
x y z

graphs-1 - 42

Example (DFS)

1/ 2/
u v w

4/ 3/6

B

4/5 3/6
x y z

graphs-1 - 43

Example (DFS)

1/ 2/7
u v w

4/ 3/6

B

4/5 3/6
x y z

graphs-1 - 44

Example (DFS)

1/ 2/7
u v w

4/ 3/6

BF

4/5 3/6
x y z

graphs-1 - 45

Example (DFS)

1/8 2/7
u v w

4/ 3/6

BF

4/5 3/6
x y z

graphs-1 - 46

Example (DFS)

1/8 2/7 9/
u v w

4/ 3/6

BF

4/5 3/6
x y z

graphs-1 - 47

Example (DFS)

1/8 2/7 9/
u v w

4/ 3/6

BF C

4/5 3/6
x y z

graphs-1 - 48

Example (DFS)

1/8 2/7 9/
u v w

4/ 3/6 10/

BF C

4/5 3/6 10/
x y z

graphs-1 - 49

Example (DFS)

1/8 2/7 9/
u v w

4/ 3/6 10/

BF C

4/5 3/6 10/
x y z

B

graphs-1 - 50

Example (DFS)

1/8 2/7 9/
u v w

4/ 3/6

BF C

4/5 3/6 10/11

x y z
B

graphs-1 - 51

Example (DFS)

1/8 2/7 9/12
u v w

4/ 3/6

BF C

4/5 3/6 10/11

x y z
B

graphs-1 - 52

Analysis of DFS

Loops on lines 1-2 & 5-7 take Θ(V) time, excluding time
to execute DFS-Visitto execute DFS-Visit.

DFS-Visit is called once for each white vertex v∈V
when it’s painted gray the first time. Lines 3-6 of DFS-
Visit is executed |Adj[v]| times. The total cost of
executing DFS Visit is ∑ |Adj[v]| = Θ(E)executing DFS-Visit is ∑v∈V|Adj[v]| = Θ(E)

Total running time of DFS is Θ(|V| + |E|).

graphs-1 - 53

Recursive DFS Algorithm
Traverse()

for all nodes Xfor all nodes X
set X.tag = False

Visit (1st node)Visit (1 node)
Visit (X)

X Tset X.tag = True
for each successor Y of X

if (Y.tag = False)
Visit (Y)

graphs-1 - 54

Parenthesis Theorem
Theorem 22.7
For all u, v, exactly one of the following holds:
1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither u

nor v is a descendant of the other.
2 d[u] < d[v] < f [v] < f [u] and v is a descendant of u2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.
3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

So d[u] < d[v] < f [u] < f [v] cannot happen.
Like parentheses:

OK: () [] ([]) [()] ()
d[u]

[
f[u]

]OK: () [] ([]) [()]
Not OK: ([)] [(])

Corollary

(
d[v]

)
f[v]

(
d[v]

)
f[v]

[]

graphs-1 - 55

v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u].

Example (Parenthesis Theorem)

y t
3/6 2/9 1/10

y z s

B F

11/16

t

4/5 7/8 12/13

B F

14/15C C C

C B

4/5 7/8 12/13

x w v
14/15

u
C C C

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

graphs-1 - 56

Depth-First Trees
Predecessor subgraph defined slightly different from
that of BFS.
The predecessor subgraph of DFS is Gπ = (V, Eπ)
where Eπ ={(π[v], v) : v ∈ V and π[v] ≠ nil}.
» How does it differ from that of BFS?
» The predecessor subgraph Gπ forms a depth-first forest

composed of several depth first trees The edges in E arecomposed of several depth-first trees. The edges in Eπ are
called tree edges.

Definition:
Forest: An acyclic graph G that may be disconnected.

graphs-1 - 57

White-path Theorem
Theorem 22.9
v is a descendant of u in DF-tree if and only if at time d[u], there
i th i ti f l hit ti (E t fis a path u v consisting of only white vertices. (Except for u,
which was just colored gray.)

graphs-1 - 58

Classification of Edges
Tree edge: in the depth-first forest. Found by exploring
(u, v).
B k d () h i d d f (i hBack edge: (u, v), where u is a descendant of v (in the
depth-first tree).
Forward edge: (u v) where v is a descendant of u butForward edge: (u, v), where v is a descendant of u, but
not a tree edge.
Cross edge: any other edge. Can go between vertices in g y g g
same depth-first tree or in different depth-first trees.

ThTheorem:
In DFS of an undirected graph, we get only tree and back edges.
No forward or cross edges.

graphs-1 - 59

Classifying edges of a digraph
(u, v) is:
» Tree edge – if v is white
» Back edge – if v is gray
» Forward or cross - if v is black

(u, v) is:
» Forward edge – if v is black and d[u] < d[v] (v was discovered

after u)after u)
» Cross edge – if v is black and d[u] > d[v] (u discovered after v)

graphs-1 - 60 60

More applications
Does directed G contain a directed cycle? Do DFS if
back edges yes. Time O(V+E).
D di d G i l ? S di dDoes undirected G contain a cycle? Same as directed
but be careful not to consider (u,v) and (v, u) a cycle.
Time O(V) since encounter at most |V| edges (if (u v) and (v u) areTime O(V) since encounter at most |V| edges (if (u, v) and (v, u) are
counted as one edge), before cycle is found.
Is undirected G a tree? Do dfsVisit(v). If all vertices are ()
reached and no back edges G is a tree. O(V)

graphs-1 - 61 61

C# Interfaces
using System;
using System.Collections.Generic;
using System.Security.Permissions;
[assembly: CLSCompliant(true)]
namespace OhioState.Collections.Graph {

/// <summary>
/// The Graph interface
/// </summary>
/// <typeparam name="N">The type associated at each node. Called a

node or node label</typeparam>
/// t "E" Th t i t d t h d Al ll d/// <summary>

/// IEdge provides a standard interface to specify an edge and any
/// data associated with an edge within a graph.
/// </summary>
/// <typeparam name="N">The type of the nodes in the

graph </typeparam>

/// <typeparam name="E">The type associated at each edge. Also called
the edge label.</typeparam>

public interface IGraph<N,E> {
/// <summary>
/// Iterator for the nodes in the graoh.
/// </summary>graph.</typeparam>

/// <typeparam name="E">The type of the data on an edge.</typeparam>
public interface IEdge<N,E> {

/// <summary>
/// Get the Node label that this edge emanates from.
/// </summary>

y
IEnumerable<N> Nodes { get; }
/// <summary>
/// Iterator for the children or neighbors of the specified node.
/// </summary>
/// <param name="node">The node.</param>

N From { get; }
/// <summary>
/// Get the Node label that this edge terminates at.
/// </summary>
N To { get; }
/// < >

/// <returns>An enumerator of nodes.</returns>
IEnumerable<N> Neighbors(N node);
/// <summary>
/// Iterator over the parents or immediate ancestors of a node.
/// </summary>
/// <remarks>May not be supported by all graphs </remarks>/// <summary>

/// Get the edge label for this edge.
/// </summary>
E Value { get; }

}

/// <remarks>May not be supported by all graphs.</remarks>
/// <param name="node">The node.</param>
/// <returns>An enumerator of nodes.</returns>
IEnumerable<N> Parents(N node);

graphs-1 - 62

C# Interfaces
/// <summary>
/// Iterator over the emanating edges from a node.
/// </summary>
/// <param name="node">The node.</param>
/// <returns>An enumerator of nodes.</returns>
IEnumerable<IEdge<N, E>> OutEdges(N node);
///

/// <returns>The edge.</returns>
E GetEdgeLabel(N fromNode, N toNode);
/// <summary>
/// Exception safe routine to get the label on an edge.
/// </summary>
/// <param name="fromNode">The node that the edge emanates
from </param>/// <summary>

/// Iterator over the in-coming edges of a node.
/// </summary>
/// <remarks>May not be supported by all graphs.</remarks>
/// <param name="node">The node.</param>
/// <returns>An enumerator of edges.</returns>
IEnumerable<IEdge<N E>> InEdges(N node);

from.</param>
/// <param name="toNode">The node that the edge terminates
at.</param>
/// <param name="edge">The resulting edge if the method was
successful. A default
/// value for the type if the edge could not be found.</param>
/// <returns>True if the edge was found. False otherwise.</returns>
b l T G tEd (N f N d N t N d t E d)IEnumerable<IEdge<N, E>> InEdges(N node);

/// <summary>
/// Iterator for the edges in the graph, yielding IEdge's
/// </summary>
IEnumerable<IEdge<N, E>> Edges { get; }
/// <summary>
/// Tests whether an edge exists between two nodes.

bool TryGetEdge(N fromNode, N toNode, out E edge);
}

}

/// </summary>
/// <param name="fromNode">The node that the edge emanates
from.</param>
/// <param name="toNode">The node that the edge terminates
at.</param>
/// <returns>True if the edge exists in the graph. False
otherwise.</returns>
bool ContainsEdge(N fromNode, N toNode);
/// <summary>
/// Gets the label on an edge.
/// </summary>
/// <param name="fromNode">The node that the edge emanates
from.</param>
/// <param name="toNode">The node that the edge terminates

graphs-1 - 63

/// param name toNode The node that the edge terminates
at.</param>

C# Interfaces
using System;

namespace OhioState.Collections.Graph {
/// <summary>
/// Graph interface for graphs with finite size.
/// //// </summary>
/// <typeparam name="N">The type associated at each node. Called a node or node
label</typeparam>

/// <typeparam name="E">The type associated at each edge. Also called the edge
label.</typeparam>yp p

/// <seealso cref="IGraph{N, E}"/>
public interface IFiniteGraph<N, E> : IGraph<N, E> {

/// <summary>
/// Get the number of edges in the graph.
/// </summary>
int NumberOfEdges { get; }
/// <summary>
/// Get the number of nodes in the graph.
/// </summary>/// </summary>
int NumberOfNodes { get; }

}
}

graphs-1 - 64

