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Motivation

Arrays provide an indirect way to access a set.y p y
Many times we need an association between 
two sets, or a set of keys and associated data.
Ideally we would like to access this data directlyIdeally we would like to access this data directly 
with the keys.
We would like a data structure that supports fast 

h i ti d d l tisearch, insertion, and deletion.
Do not usually care about sorting.

The abstract data type is usually called aThe abstract data type is usually called a 
Dictionary or Partial Map

float googleStockPrice = stocks[“Goog”].CurrentPrice;

Dictionaries

What is the best way to implement this?y p
Linked Lists?
Double Linked Lists?
Queues?Queues?
Stacks?
Multiple indexed arrays (e.g., data[key[i]])?

T thi k h t th l it f thTo answer this, ask what the complexity of the 
operations are:

Insertion
Deletion
Search

Direct Addressingg

Let’s look at an easy case, suppose:Let s look at an easy case, suppose:
The range of keys is 0..m-1 
Keys are distinct

Possible solution
Set up an array T[0..m-1] in which 

T[i] = x if x∈ T and key[x] = i
T[i] = NULL otherwise

This is called a direct-address tableThis is called a direct address table
Operations take O(1) time!
So what’s the problem?



Direct Addressingg

Direct addressing works well when theDirect addressing works well when the 
range m of keys is relatively small
But what if the keys are 32-bit integers?But what if the keys are 32-bit integers?

Problem 1: direct-address table will have 
232 entries,  more than 4 billion,
Problem 2: even if memory is not an issue, the 
time to initialize the elements to NULL  may be

Solution: map keys to smaller range 0..p-1
Desire p = O(m).

Hash Table

Hash Tables provide O(1) support for allHash Tables provide O(1) support for all 
of these operations!
The key is rather than index an arrayThe key is rather than index an array 
directly, index it through some function, 
h(x), called a hash function.( )

myArray[ h(index) ]
Key questions:y q

What is the set that the x comes from?
What is h() and what is its range?() g

Hash Table

Consider this problem:Consider this problem:
If I know a prior the m keys from some finite 
set U is it possible to develop a functionset U, is it possible to develop a function 
h(x) that will uniquely map the m keys onto 
the set of numbers 0..m-1?

Hash Functions

In general a difficult problem. Try something simpler.g p y g p
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Hash Functions

A collision occurs when h(x) maps two keys to the 
l tisame location.
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Hash Functions

A hash function, h, maps keys of a given type to , , p y g yp
integers in a fixed interval [0, N − 1]
Example:

h( ) d Nh(x) = x mod N
is a hash function for integer keys
The integer h(x) is called the hash value of x.The integer h(x) is called the hash value of x.
A hash table for a given key type consists of

Hash function h
Array (called table) of size N

The goal is to store item (k, o) at index i = h(k)

Examplep

We design a hash table ∅0g
storing employees 
records using their 
social security number

∅
1

2 981-101-0002

025-612-0001

social security number, 
SSN as the key.

SSN is a nine-digit 
iti i t

∅3

4 451-229-0004

positive integer

Our hash table uses an 
array of size N = 10,000 ∅9997

…

y ,
and the hash function
h(x) = last four digits of x

∅

∅

9998

9999
200-751-9998

Examplep

Our hash table uses an 
f i N 100 ∅0

array of size N = 100.
We have n = 49 
employees.

∅
1

2 981-101-0002

025-612-0001

Need a method to handle 
collisions.

As long as the chance 
f lli i i l

∅3

4 451-229-0004

for collision is low, we 
can achieve this goal.
Setting N = 1000 and ∅9997

…

g
looking at the last four 
digits will reduce the 
chance of collision.

∅

∅

9998

9999
200-751-9998
176-354-9998



Collisions

Can collisions be avoided?Can collisions be avoided?
In general, no. See perfect hashing for the case 
were the set of keys is static (not covered).

Two primary techniques for resolving 
collisions:collisions:

Chaining – keep a collection at each key 
slot.
Open addressing – if the current slot is full 
use the next open one.p

Chainingg

Chaining puts elements that hash to theChaining puts elements that hash to the 
same slot in a linked list:
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Chainingg

How do we insert an element?How do we insert an element?
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Chainingg

How do we delete an element?
Do we need a doubly-linked list for efficient delete?
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Chainingg

How do we search for a element with aHow do we search for a element with a 
given key?
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Open Addressingp g

Basic idea:Basic idea:
To insert: if slot is full, try another slot, …, until 
an open slot is found (probing)p (p g)
To search, follow same sequence of probes as 
would be used when inserting the element

If reach element with correct key, return it
If reach a NULL pointer, element is not in table

G d f fi d t ( ddi b t d l ti )Good for fixed sets (adding but no deletion)
Example: spell checking

Open Addressing p g

The colliding item is placed in a The colliding item is placed in a 
different cell of the table.

No dynamic memory.
Fixed Table size.

Load factor: n/N, where n is  the number 
f it t t d N th i f th h hof items to store and N the size of the hash 

table. 
Cleary n ≤ N or n/N ≤ 1Cleary, n ≤ N, or n/N ≤ 1. 

To get a reasonable  performance, n/N<0.5.

Probingg

They key question is what should theThey key question is what should the 
next cell to try be?
Random would be great but we need toRandom would be great, but we need to 
be able to repeat it.
Th t h iThree common techniques:

Linear Probing (useful for discussion only)
Quadratic Probing
Double Hashing



Linear Probingg

Linear probing handles Example:Linear probing handles 
collisions by placing the 
colliding item in the next
(circularly) available table

Example:
h(x) = x mod 13
Insert keys 18, 41, 22, 44, 
59 32 31 73 in this(circularly) available table 

cell.
Each table cell inspected 
is referred to as a probe

59, 32, 31, 73, in this 
order

is referred to as a probe.
Colliding items lump 
together, causing future 

lli i t

0 1 2 3 4 5 6 7 8 9 10 11 12

collisions to cause a 
longer sequence of 
probes.

41 18 44 59 32 22 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12

Search with Linear Probingg

Consider a hash table A that 
uses linear probing Algorithm get(k)uses linear probing
get(k)

We start at cell h(k) 
We probe consecutive 

g g ( )
i ← h(k)
p ← 0
repeate p obe co secu e

locations until one of the 
following occurs

An item with key k is found, 
or
A ll i f d

c ← A[i]
if c = ∅

return null
l if k () kAn empty cell is found, or

N cells have been 
unsuccessfully probed 

To ensure the efficiency, if k
is not in the table we want to

else if c.key () = k
return c.element()

else
i ← (i + 1) mod Nis not in the table, we want to 

find an empty cell as soon as 
possible. The load factor can 
NOT be close to 1.

i ← (i + 1) mod N
p ← p + 1

until p = N
return null

Linear Probingg

Search for key=20 Example:Search for key 20.
h(20)=20 mod 13 =7. 
Go through rank 8, 9, …, 12, 
0

Example:
h(x) = x mod 13
Insert keys 18, 41, 22, 44, 
59 32 31 73 12 20 in0.

Search for key=15
h(15)=15 mod 13=2.

59, 32, 31, 73, 12, 20 in 
this order

( )
Go through rank 2, 3 and 
return null. 0 1 2 3 4 5 6 7 8 9 10 11 12

20 41 18 44 59 32 22 31 73 12

0 1 2 3 4 5 6 7 8 9 10 11 12

Updates with Linear Probingp g

To handle insertions and 
d l i i d

put(k, o)
deletions, we introduce a 
special object, called 
AVAILABLE, which replaces 
deleted elements

We throw an exception if the 
table is full
We start at cell h(k) 
We probe consecutive cellsdeleted elements

remove(k)
We search for an entry with 
key k

We probe consecutive cells 
until one of the following 
occurs

A cell i is found that is either 
empty or stores

If such an entry (k, o) is 
found, we replace it with the 
special item AVAILABLE
and we return element o

empty or stores 
AVAILABLE, or
N cells have been 
unsuccessfully probed

We store entry (k ) in cell iand we return element o
Have to modify other methods 
to skip available cells.

We store entry (k, o) in cell i



Quadratic Probingg

Primary clustering occurs with linearPrimary clustering occurs with linear 
probing because the same linear pattern:

if a bin is inside a cluster then the next binif a bin is inside a cluster, then the next bin 
must either:

also be in that cluster, oralso be in that cluster, or
expand the cluster

Instead of searching forward in a linearInstead of searching forward in a linear 
fashion, consider searching forward 
using a quadratic functionusing a quadratic function

Quadratic Probingg

Suppose that an element should appearSuppose that an element should appear 
in bin h:

if bin h is occupied then check the followingif bin h is occupied, then check the following 
sequence of bins:

h + 12 h + 22 h + 32 h + 42 h + 52h + 1 ,  h + 2 ,  h + 3 ,  h + 4 ,   h + 5 , ...
h + 1,   h + 4,   h + 9,    h + 16,  h + 25, ...

For example with M 17:For example, with M = 17:

Quadratic Probingg

If one of h + i2 falls into a cluster thisIf one of h + i falls into a cluster, this 
does not imply the next one will

Quadratic Probingg

For example suppose an element wasFor example, suppose an element was 
to be inserted in bin 23 in a hash table 
with 31 binswith 31 bins
The sequence in which the bins would 
be checked is:be checked is:

23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0



Quadratic Probingg

Even if two bins are initially close theEven if two bins are initially close, the 
sequence in which subsequent bins are 
checked varies greatlychecked varies greatly
Again, with M = 31 bins, compare the 
first 16 bins which are checked startingfirst 16 bins which are checked starting 
with 22 and 23:

22, 23, 26,  0,   7, 16, 27,   9, 24, 10, 29, 19, 11,   5,   1, 30
23, 24, 27,  1,   8, 17, 28, 10, 25, 11, 30, 20, 12,   6,   2,   0

Quadratic Probingg

Thus quadratic probing solves theThus, quadratic probing solves the 
problem of primary clustering
Unfortunately there is a second problemUnfortunately, there is a second problem 
which must be dealt with
S h M 8 biSuppose we have M = 8 bins:

12 ≡ 1, 22 ≡ 4, 32 ≡ 1
In this case, we are checking bin h + 1
twice having checked only one other bing y

Quadratic Probingg

Unfortunately there is no guarantee thatUnfortunately, there is no guarantee that
h + i2 mod M

ill l th h 0 1 1will cycle through 0, 1, ..., M – 1
Solution:

require that M be prime
in this case, h + i2 mod M for i = 0, ..., (M –(
1)/2 will cycle through exactly (M + 1)/2
values before repeating

Quadratic Probingg

Example with M = 11:Example with M  11:
0, 1, 4, 9, 16 ≡ 5, 25 ≡ 3, 36 ≡ 3

With M 13:With M = 13:
0, 1, 4, 9, 16 ≡ 3, 25 ≡ 12, 36 ≡ 10, 49 ≡ 10

With M = 17:
0, 1, 4, 9, 16, 25 ≡ 8, 36 ≡ 2, 49 ≡ 15, 64 ≡ 13, 81 ≡ 

13



Quadratic Probingg

Thus quadratic probing avoids primaryThus, quadratic probing avoids primary 
clustering
Unfortunately we are not guaranteedUnfortunately, we are not guaranteed 
that we will use all the bins
I lit if th h h f ti iIn reality, if the hash function is 
reasonable, this is not a significant 

bl til λ h 1problem until λ approaches 1

Secondary Clusteringy g

The phenomenon of primary clusteringThe phenomenon of primary clustering 
will not occur with quadratic probing
However if multiple items all hash to theHowever, if multiple items all hash to the 
same initial bin, the same sequence of 
numbers will be followednumbers will be followed
This is termed secondary clustering
The effect is less significant than that of 
primary clustering

Double Hashingg

Use two hash functions
If M is prime, eventually will examine every 
position in the table
double_hash_insert(K)
if(table is full) error
probe = h1(K)probe = h1(K)
offset = h2(K)
while (table[probe] occupied)

probe = (probe + offset) mod M
table[probe] = K

Double Hashingg

Many of same (dis)advantages as linearMany of same (dis)advantages as linear 
probing
Distributes keys more uniformly thanDistributes keys more uniformly than 
linear probing does
N tNotes:

h2(x) should never return zero.
M should be prime.



Double Hashing Exampleg p

h1(K) = K mod 13h1(K)  K mod 13
h2(K) = 8 - K mod 8

we want h2 to be an offset to addwe want h2 to be an offset to add
18 41 22 44 59 32 31 73

0 1 2 3 4 5 6 7 8 9 10 11 120      1     2     3     4     5     6     7     8     9    10   11   12

44 41 73 18 32 53 31 22

0      1     2     3     4     5     6     7     8     9    10   11   12

Open Addressing Summaryp g y

In general, the hash function contains two 
t

g
arguments now:

Key value
Probe number
h(k,p),    p=0,1,...,m-1

Probe sequences
<h(k 0) h(k 1) h(k m 1)><h(k,0), h(k,1), ..., h(k,m-1)>

Should be a permutation of <0,1,...,m-1>
There are m! possible permutations 
Good hash functions should be able to produce 
all m! probe sequences

Open Addressing Summaryp g y

None of the methods discussed can 
generate more than m2 different probing 
sequences.
Linear Probing:Linear Probing:

Clearly, only m probe sequences.
Quadratic Probing:Quadratic Probing:

The initial key determines a fixed probe 
sequence, so only m distinct probe sequences.

D bl H hiDouble Hashing
Each possible pair (h1(k),h2(k)) yields a distinct 
probe, so m2 permutations.p , p

Choosing A Hash Functiong

Clearly choosing the hash function wellClearly choosing the hash function well 
is crucial.

What will a worst case hash function do?What will a worst-case hash function do?
What will be the time to search in this case?

Wh t d i bl f t f th h hWhat are desirable features of the hash 
function?

Sh ld di ib k if l i lShould distribute keys uniformly into slots
Should not depend on patterns in the data



From Keys to Indicesy

A hash function is usually the composition of y p
two maps:

hash code map: key integer
i i t [0 N 1]compression map: integer [0, N − 1]

An essential requirement of the hash function 
is to map equal keys to equal indicesis to map equal keys to equal indices
A “good” hash function minimizes the 
probability of collisionsp y

Java Hash

Java provides a hashCode() method forJava provides a hashCode() method for 
the Object class, which typically returns 
the 32-bit memory address of the objectthe 32 bit memory address of the object. 
This default hash code would work 
poorly for Integer and String objectspoorly for Integer and String objects
The hashCode() method should be 

it bl d fi d b lsuitably redefined by classes.

Popular Hash-Code Mapsp p

Integer cast: for numeric types with 32Integer cast: for numeric types with 32 
bits or less, we can reinterpret the bits of 
the number as an intthe number as an int
Component sum: for numeric types with 
more than 32 bits (e g long andmore than 32 bits (e.g., long and 
double), we can add the 32-bit 
componentscomponents. 

Popular Hash-Code Mapsp p

Polynomial accumulation: for strings ofPolynomial accumulation: for strings of 
a natural language, combine the 
character values (ASCII or Unicode) a 0character values (ASCII or Unicode) a 0
a 1 ... a n-1 by viewing them as the 
coefficients of a polynomial: a 0 + a 1 x +coefficients of a polynomial: a 0 + a 1 x + 
...+ x n-1 a n-1



Popular Hash-Code Mapsp p

The polynomial is computed with Horner’sThe polynomial is computed with Horner s 
rule, ignoring overflows, at a fixed value x:
a0 + x (a1 + x (a2 + ... x (an-2 + x an-1 ) ... ))
The choice x = 33, 37, 39, or 41 gives at 
most 6 collisions on a vocabulary of 50,000 
English words

Why is the component-sum hash code 
bad for strings?

Random Hashingg

Random hashingRandom hashing
Uses a simple random number generation 
techniquetechnique
Scatters the items “randomly” throughout 
the hash tablethe hash table

Popular Compression Maps p p p

Division: h(k) = |k| mod N( ) | |
the choice N =2 k is bad because not all the bits are
taken into account
the table size N is usually chosen as a primethe table size N is usually chosen as a prime
number
certain patterns in the hash codes are propagated

Multiply, Add, and Divide (MAD):
h(k) = |ak + b| mod N
li i t tt id d d N  0eliminates patterns provided a mod N ≠ 0

same formula used in linear congruential (pseudo)
random number generatorsg

The Division Method

h(k) = k mod m( )
In words: hash k into a table with m slots using 
the slot given by the remainder of k divided by 
mm

What happens to elements with adjacent 
values of k?
What happens if m is a power of 2 (say 
2P)?
What if m is a power of 10?What if m is a power of 10?
Upshot: pick table size m = prime number 
not too close to a power of 2 (or 10)not too close to a power of 2 (or 10)



The Multiplication Methodp

For a constant A 0 < A < 1:For a constant A, 0 < A < 1:
h(k) = ⎣ m (kA - ⎣kA⎦) ⎦

What does this term represent?

The Multiplication Methodp

For a constant A 0 < A < 1:For a constant A, 0 < A < 1:
h(k) = ⎣ m (kA - ⎣kA⎦) ⎦

Fractional part of kA

Choose m = 2P

Choose A not too close to 0 or 1Choose A not too close to 0 or 1
Knuth: Good choice for A = (√5  - 1)/2

Analysis of Chainingy g

Assume simple uniform hashing: eachAssume simple uniform hashing: each 
key in table is equally likely to be hashed 
to any slotto any slot.
Given n keys and m slots in the table: 
the load factor α = n/m = average # keysthe load factor α = n/m = average # keys 
per slot.

Analysis of Chainingy g

What will be the average cost of anWhat will be the average cost of an  
unsuccessful search for a key?

O(1+α)



Analysis of Chainingy g

What will be the average cost of anWhat will be the average cost of an  
unsuccessful search for a key?

O(1+α)

Analysis of Chainingy g

What will be the average cost of aWhat will be the average cost of a 
successful search?

O(1 + α/2) = O(1 + α)

Analysis of Chainingy g

So the cost of searching = O(1 + α)So the cost of searching = O(1 + α)
If the number of keys n is proportional to 
the number of slots in the table what isthe number of slots in the table, what is 
α?
A O(1)A: α = O(1)

In other words, we can make the expected 
t f hi t t if kcost of searching constant if we make α

constant

Analysis of Open Addressingy p g

Consider the load factor, α, and assume each key is 
if l h h duniformly hashed.

Probability that we hit an occupied cell is then α.
Probability that we the next probe hits an occupiedProbability that we the next probe hits an occupied 
cell is also α.
Will terminate if an unoccupied cell is hit: α(1- α).
From Theorem 11 6 the expected number of probesFrom Theorem 11.6, the expected number of probes 
in an unsuccessful search is at most 1/(1- α).
Theorem 11.8: Expected number of probes in a 
successful search is at most:successful search is at most:

⎟
⎠
⎞

⎜
⎝
⎛

−αα 1
1ln1

⎠⎝


