Introduction to Algorithms g
DHIDSSSTATE

Hash Tables

BUCKETYTE 3

CSE 680
Prof. Roger Crawfis

Motivation nmgms

BEVUCKEYEHS

e Arrays provide an indirect way to access a set.
e Many times we need an association between
two sets, or a set of keys and associated data.
e |deally we would like to access this data directly
with the keys.
e We would like a data structure that supports fast
search, insertion, and deletion.
e Do not usually care about sorting.
e The abstract data type is usually called a

Dictionary or Partial Map
e float googleStockPrice = stocks[“Goog”].CurrentPrice;

Dictionaries nmgm

BECEEYE

e What is the best way to implement this?
e Linked Lists?
e Double Linked Lists?
e Queues?
e Stacks?
e Multiple indexed arrays (e.g., datalkey][i]])?
e To answer this, ask what the complexity of the
operations are:
e Insertion
e Deletion
e Search

Direct Addressing nmﬁn 3

BEUCKETYEHB,

e Let’s look at an easy case, suppose:
e The range of keys is 0..m-1
e Keys are distinct

e Possible solution
e Set up an array T[0..m-1] in which
e T[] =x if xe T and key[x] =i
e T[i] = NULL otherwise
e This is called a direct-address table
e Operations take O(1) time!
e So what's the problem?

Direct Addressing 0 ﬁm

Hash Table A

BEVUCKEYEHS

e Direct addressing works well when the
range m of keys is relatively small
e But what if the keys are 32-bit integers?

e Problem 1: direct-address table will have
232 entries, more than 4 billion

e Problem 2: even if memory is not an issue, the
time to initialize the elements to NULL may be

e Solution: map keys to smaller range 0..p-1
e Desire p = O(m).

e Hash Tables provide O(1) support for all
of these operations!

e The key is rather than index an array
directly, index it through some function,
h(x), called a hash function.

e myArray[h(index)]

e Key questions:

e What is the set that the x comes from?
e What is h() and what is its range?

Hash Table nmgm

BECEEYE

Hash Functions mﬁn E

BEUCKETYEHB,

e Consider this problem:

e If | know a prior the m keys from some finite
set U, is it possible to develop a function
h(x) that will uniquely map the m keys onto
the set of numbers 0..m-1?

e In general a difficult problem. Try something simpler.

U 0
(universe of keys)

h(k,)
h(k,)

K

(actual _
keys) h(k;) = h(ks)

h(k;)

m- 1

Hash Functions .,.,,ﬁm

B ¥NCEEYEHE

e A collision occurs when h(x) maps two keys to the
same location.

U 0
(universe of keys)
collision
K — Q
(actual h(ky) = h(Ky)

keys)

h(k;)

Hash Functions nﬂ.ﬁm

BEVUCKEYEHS

A hash function, h, maps keys of a given type to
integers in a fixed interval [0, N —1]

Example:

h(x) =xmod N

is a hash function for integer keys

The integer h(x) is called the hash value of x.
A hash table for a given key type consists of
e Hash function h

e Array (called table) of size N

The goal is to store item (k, 0) at index i = h(k)

e We design a hash table
storing employees
records using their
social security number,
SSN as the key.

e SSNis a nine-digit
positive integer

e Our hash table uses an
array of size N =10,000 9997
and the hash function 9998 200-751.9998]

h(x) = last four digits of X 9999 E

—>[981-101-0002]

—'[451-229-0004]

AW = O

SEICIREE

Our hash table uses an
array of size N = 100.

We have n =49
employees.

e Need a method to handle
collisions.

—'[025-612-0001]

—>[981-101-0002]

—'[451-229-0004]

AW = O

SEICIREE

e As long as the chance
for collision is low, we
can achieve this goal.

e Setting N = 1000 and 9997
looking at the last four 9998
digits will reduce the =
chance of collision. 9% E

176-354-9998

Collisions

Chaining

e Can collisions be avoided?

e In general, no. See perfect hashing for the case
were the set of keys is static (not covered).

e Two primary techniques for resolving

collisions:

e Chaining — keep a collection at each key

slot.

e Open addressing — if the current slot is full

use the next open one.

e Chaining puts elements that hash to the

same slot in a linked list:

(universe of keys)

K
(actual
keys)

Lk ek [

"|k5| _szl _Hk7|_|

Lk | T ke —|

Chaining

Chaining

e How do we insert an element?

(universe of keys)

K
(actual
keys)

Lk ek [

"lksl _szl _Hk7|_|

Lk | ke [—|

e How do we delete an element?

e Do we need a doubly-linked list for efficient delete?

(universe of keys)

K
(actual
keys)

Lk ek [

"lksl _szl _Hk7|_|

Lk | ke [—|

Chaining umgms

B ¥NCEEYEHE

e How do we search for a element with a
given key? -

U _
(universe of keys) __.l K, | _H k, |_|

K —_

] e HET

ky | —
Ky Ikél_l

Open Addressing nmgns

CKEYEHS

e Basic idea:

e To insert: if slot is full, try another slot, ..., until
an open slot is found (probing)

e To search, follow same sequence of probes as
would be used when inserting the element
e If reach element with correct key, return it
e If reach a NULL pointer, element is not in table

e Good for fixed sets (adding but no deletion)
e Example: spell checking

Open Addressing nmgm

BECEEYE

e The colliding item is placed in a
different cell of the table.

e No dynamic memory.
e Fixed Table size.
e Load factor: n/N, where nis the number

of items to store and N the size of the hash
table.

e Cleary,n<N,orn/N<1.
e To get a reasonable performance, n/N<0.5.

Probing nmﬁa -

BEUCKETYEHB,

e They key question is what should the
next cell to try be?

e Random would be great, but we need to
be able to repeat it.

e Three common techniques:
e Linear Probing (useful for discussion only)
e Quadratic Probing
e Double Hashing

Linear Probing

ﬂlﬂgﬂE

B ¥NCEEYEHE

r"’
Search with Linear Probing nmi(7

e Linear probing handles
collisions by placing the
colliding item in the next
(circularly) available table
cell.

e Each table cell inspected
is referred to as a probe.

e Colliding items lump
together, causing future
collisions to cause a
longer sequence of
probes.

e Example:
e h(X)=xmod 13
e Insert keys 18, 41, 22, 44,
59, 32, 31, 73, in this
order

01234546 7289101112

LL fal T 11 [so] [z[=] []

0123456 789101112

e Consider a hash table A that
uses linear probing
e get(k)

e We start at cell h(k)

e \We probe consecutive
locations until one of the
following occurs

o An item with key k is found,
or

e An empty cell is found, or

e N cells have been
unsuccessfully probed

e To ensure the efficiency, if k
is not in the table, we want to
find an empty cell as soon as
possible. The load factor can
NOT be close to 1.

Algorithm

i « h(k)
p«<0
repeat
¢« Ali]
ifc=0
return null
else if c.key () =k
return c.element()
else
i< (i+1)modN
p—p+1
until p=N
return null

Linear Probing

Updates with Linear Probingmﬁm

BEUCKETYEHB,

e Search for key=20.
e h(20)=20 mod 13 =7.

e Gothroughrank 8,9, ..., 12,

0.

e Search for key=15
e h(15)=15 mod 13=2.

e Go through rank 2, 3 and
return null.

e Example:
e h(x)=Xxmod 13

e Insert keys 18, 41, 22, 44,
59, 32,31,73,12,20in
this order

01234546 7289101112

[z [al T 1 [[so] [z]=] [+

0123456 7289101112

e To handle insertions and
deletions, we introduce a
special object, called
AVAILABLE, which replaces
deleted elements

e remove(k)

e We search for an entry with
key k

e If such an entry (k, 0) is
found, we replace it with the
special item AVAILABLE
and we return element 0

e Have to modify other methods
to skip available cells.

e put(k, 0)
e We throw an exception if the

table is full
We start at cell h(k)

e We probe consecutive cells

until one of the following
occurs
e Acelliis found that is either
empty or stores
AVAILABLE, or
e N cells have been
unsuccessfully probed

e We store entry (k, 0) incell i

Quadratic Probing

Quadratic Probing

e Primary clustering occurs with linear
probing because the same linear pattern:
e if a bin is inside a cluster, then the next bin
must either:
e also be in that cluster, or
e expand the cluster
e Instead of searching forward in a linear
fashion, consider searching forward
using a quadratic function

e Suppose that an element should appear
in bin h:
e if bin h is occupied, then check the following
sequence of bins:
h+12, h+22 h+32 h+4%2 h+52 ..
h+1, h+4, h+9, h+16, h+25, ..
e For example, with M = 17:

hash(obj) == 3

NN
+4 17 +27 +3°

Quadratic Probing nmgm

BECEEYE

e If one of h + i? falls into a cluster, this
does not imply the next one will

hash(obj) == 3

L] Iy [T[T T11
+1 +2 +3

cluster

Quadratic Probing nmﬁg_

BEUCKETYEHB,

e For example, suppose an element was
to be inserted in bin 23 in a hash table
with 31 bins

e The sequence in which the bins would
be checked is:

23,24,27, 1,8, 17,28, 10,25, 11, 30, 20, 12, 6,2, 0

Quadratic Probing

e Even if two bins are initially close, the
sequence in which subsequent bins are
checked varies greatly

e Again, with M = 31 bins, compare the
first 16 bins which are checked starting
with 22 and 23:

22,23,26, 0, 7,16,27, 9,24,10,29,19, 11, 5, 1,
23,24,27, 1, 8,17,28,10, 25, 11, 30,20,12, 6, 2, O

Quadratic Probing

e Thus, quadratic probing solves the
problem of primary clustering

e Unfortunately, there is a second problem
which must be dealt with

e Suppose we have M = 8 bins:
12=1,22=4,32=1

e In this case, we are checking bin h+ 1
twice having checked only one other bin

Quadratic Probing nmgm

Quadratic Probing nmﬁg_

BECEEYE

e Unfortunately, there is no guarantee that
h+i2mod M
will cycle through 0, 1, ..., M — 1
e Solution:

e require that M be prime

e in this case, h+iZmod M fori=0, .., (M-
1)/2 will cycle through exactly (M + 1)/2
values before repeating

BEUCKETYEHB,

e Example with M =11:
0,1,4,9,16=5,25=3,36=3

e \With M = 13:
0,1,4,9,16=3,25=12,36=10,49=10
o WithM=17:
0,1,4,9,16,25=8,36=2,49=15,64=13,81=
13

Quadratic Probing

Secondary Clustering

e Thus, quadratic probing avoids primary
clustering

e Unfortunately, we are not guaranteed
that we will use all the bins

e In reality, if the hash function is

reasonable, this is not a significant
problem until A approaches 1

e The phenomenon of primary clustering
will not occur with quadratic probing

e However, if multiple items all hash to the
same initial bin, the same sequence of
numbers will be followed

e This is termed secondary clustering

e The effect is less significant than that of
primary clustering

Double Hashing nmgm

BECEEYE

e Use two hash functions

e If M is prime, eventually will examine every
position in the table

e double_hash_insert(K)
if(table is full) error
probe = h1(K)
offset = h2(K)
while (table[probe] occupied)
probe = (probe + offset) mod M
table[probe] = K

Double Hashing nmﬁm

BEUCKETYE

e Many of same (dis)advantages as linear
probing

e Distributes keys more uniformly than
linear probing does

e Notes:
e h2(x) should never return zero.
e M should be prime.

Double Hashing Example ,,,,,ﬁm

B ¥NCEEYEHE

e h1(K) = Kmod 13

e h2(K)=8-Kmod 8
e we want h2 to be an offset to add
e 1841224459323173

44 41| 73 18 32|53 |31| 22
o1 2 3 4 5 6 7 8 9 10 11 12

Open Addressing Summary nmgm

CKEYEHS

e |In general, the hash function contains two
arguments now:

e Key value
e Probe number
h(k,p), p=01,.m-1
e Probe sequences
<h(k,0), h(k,1), ..., h(k,m-1)>
e Should be a permutation of <0,1,...,m-1>
e There are m! possible permutations

e Good hash functions should be able to produce
all m! probe sequences

Open Addressing Summary nmgm

BECEEYE

e None of the methods discussed can
generate more than m2 different probing
sequences.

e Linear Probing:

e Clearly, only m probe sequences.

e Quadratic Probing:

e The initial key determines a fixed probe
sequence, so only m distinct probe sequences.

e Double Hashing

e Each possible pair (h,(k),h,(k)) yields a distinct
probe, so m?2 permutations.

Choosing A Hash Function nﬂ,ﬁh

L]
BEUCKETYEHB,

e Clearly choosing the hash function well
is crucial.
e What will a worst-case hash function do?
e What will be the time to search in this case?
e What are desirable features of the hash
function?
e Should distribute keys uniformly into slots
e Should not depend on patterns in the data

From Keys to Indices

e A hash function is usually the composition of
two maps:
e hash code map: key - integer
e compression map: integer 2 [0, N — 1]

e An essential requirement of the hash function
is to map equal keys to equal indices

e A “good” hash function minimizes the
probability of collisions

Java Hash

e Java provides a hashCode() method for
the Object class, which typically returns
the 32-bit memory address of the object.

e This default hash code would work
poorly for Integer and String objects

e The hashCode() method should be
suitably redefined by classes.

Popular Hash-Code Maps nmgm

BECEEYE

Popular Hash-Code Maps nmﬁn.

BEUCKETYEHB,

e Integer cast: for numeric types with 32
bits or less, we can reinterpret the bits of
the number as an int

e Component sum: for numeric types with
more than 32 bits (e.g., long and
double), we can add the 32-bit
components.

e Polynomial accumulation: for strings of
a natural language, combine the
character values (ASCII or Unicode) a
a4 ...a,q by viewing them as the
coefficients of a polynomial: a ,+a , x +
et X g @

Popular Hash-Code Maps umgms

B ¥NCEEYEHE

e The polynomial is computed with Horner’s
rule, ignoring overflows, at a fixed value x:
Qytx@+x@+..x@+tXxa,). ..))

e The choice x = 33, 37, 39, or 41 gives at
most 6 collisions on a vocabulary of 50,000
English words

e Why is the component-sum hash code
bad for strings?

Random Hashing I,.,.ﬁm

CKEYEHS

e Random hashing

e Uses a simple random number generation
technique

e Scatters the items “randomly” throughout
the hash table

Popular Compression Maps nmgm

BECEEYE

e Division: h(k) = |k| mod N
e the choice N =2 k is bad because not all the bits are
taken into account

e the table size N is usually chosen as a prime
number

e certain patterns in the hash codes are propagated
e Multiply, Add, and Divide (MAD):

e h(k) =|ak + bl mod N

e eliminates patterns provided a mod N =0

e same formula used in linear congruential (pseudo)
random number generators

The Division Method m"ﬁa £

BEUCKETYEHB,

e h(k) =k mod m
e In words: hash k into a table with m slots using
the slot given by the remainder of k divided by
m

e \What happens to elements with adjacent
values of k?

o) V\F/)?at happens if m is a power of 2 (say
2°P)?
e What if m is a power of 10?

e Upshot: pick table size m = prime number
not too close to a power of 2 (or 10)

The Multiplication Method

The Multiplication Method

e Foraconstant A, 0 <A< 1:
o h(k) =L m (kA - LkA) |
;_—Y—J

What does this term represent?

e Foraconstant A, 0 <A< 1:

e h(k) =L m (KA -LkA)) |
\ﬂ_/
Fractional part of kA

e Choose m = 2P
e Choose A not too close to O or 1
e Knuth: Good choice for A = (N5 - 1)/2

Analysis of Chaining

Analysis of Chaining

e Assume simple uniform hashing: each
key in table is equally likely to be hashed
to any slot.

e Given n keys and m slots in the table:
the load factor « = n/m = average # keys
per slot.

e What will be the average cost of an
unsuccessful search for a key?

e O(1+a)

Analysis of Chaining .,,,,ﬁm

e What will be the average cost of an
unsuccessful search for a key?

e O(1+q)

Analysis of Chaining m"gm

UEKEYES

e What will be the average cost of a
successful search?

e O(1+ a2)=0(1 + @)

Analysis of Chaining nmgm

BECEEYE

Analysis of Open Addressingm,ﬁm

BEUCKETYEHB,

e So the cost of searching = O(1 + «)

e If the number of keys n is proportional to
the number of slots in the table, what is
o?

e A: «=0(1)

e In other words, we can make the expected

cost of searching constant if we make «
constant

e Consider the load factor, o, and assume each key is
uniformly hashed.

e Probability that we hit an occupied cell is then a.

e Probability that we the next probe hits an occupied
cell is also a.

e Will terminate if an unoccupied cell is hit: o(1-).

e From Theorem 11.6, the expected number of probes
in an unsuccessful search is at most 1/(1- o).

e Theorem 11.8: Expected number of probes in a
successful search is at most:

1 (1 j
—In
a -«

