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Comparison Sorting Reviewp g

Insertion sort:Insertion sort:
Pro’s:

Easy to codeEasy to code
Fast on small inputs (less than ~50 elements)
Fast on nearly-sorted inputsy p

Con’s:
O(n2) worst case( )
O(n2) average case
O(n2) reverse-sorted case

Comparison Sorting Reviewp g

Merge sort:Merge sort:
Divide-and-conquer:

Split array in halfp y
Recursively sort sub-arrays
Linear-time merge step

P ’Pro’s:
O(n lg n) worst case - asymptotically optimal for 
comparison sortsco pa so so s

Con’s:
Doesn’t sort in place

Comparison Sorting Reviewp g

Heap sort:Heap sort:
Uses the very useful heap data structure

Complete binary treep y
Heap property: parent key > children’s keys

Pro’s:
O(n lg n) worst case - asymptotically optimal for 
comparison sorts
Sorts in placeSo s p ace

Con’s:
Fair amount of shuffling memory around



Comparison Sorting Reviewp g

Quick sort:
Divide-and-conquer:

Partition array into two sub-arrays, recursively sort
All of first sub-array < all of second sub-arrayAll of first sub-array < all of second sub-array

Pro’s:
O(n lg n) average case
S t i lSorts in place
Fast in practice (why?)

Con’s:
O(n2) worst case

Naïve implementation: worst case on sorted input
Good partitioning makes this very unlikely.

Non-Comparison Based Sorting

Many times we have restrictions on our y
keys

Deck of cards: Ace->King and four suites
Social Security NumbersSocial Security Numbers
Employee ID’s

We will examine three algorithms whichWe will examine three algorithms which 
under certain conditions can run in O(n) 
time.

C ti tCounting sort
Radix sort
Bucket sort

Counting Sortg

Depends on assumption about theDepends on assumption about the 
numbers being sorted

Assume numbers are in the range 1 kAssume numbers are in the range 1.. k
The algorithm:

I t A[1 ] h A[j] {1 2 3 k}Input: A[1..n], where A[j] ∈ {1, 2, 3, …, k}
Output: B[1..n], sorted (not sorted in place)
Also: Array C[1..k] for auxiliary storage

Counting Sortg

1 CountingSort(A, B, k)
2 for i=1 to k
3 C[i]= 0;
4 for j=1 to n

This is called 
a histogram.4 for j 1 to n

5 C[A[j]] += 1;
6 for i=2 to k
7 C[i] C[i] C[i 1]7 C[i] = C[i] + C[i-1];
8 for j=n downto 1
9 B[C[A[j]]] = A[j];
10 C[A[j]] -= 1;



Counting Sort Exampleg p Counting Sortg

1 CountingSort(A, B, k)
2 for i=1 to k
3 C[i]= 0;
4 for j=1 to n

Takes time O(k)

4 for j 1 to n
5 C[A[j]] += 1;
6 for i=2 to k
7 C[i] C[i] C[i 1] Takes time O(n)7 C[i] = C[i] + C[i-1];
8 for j=n downto 1
9 B[C[A[j]]] = A[j];
10 C[A[j]] -= 1;

What is the running time?g

Counting Sortg

Total time: O(n + k)Total time: O(n + k)
Works well if k = O(n) or k = O(1)

This algorithm / implementation is stableThis algorithm / implementation is stable.
A sorting algorithm is stable when numbers 
with the same values appear in the outputwith the same values appear in the output 
array in the same order as they do in the 
input arrayinput array.

Counting Sortg

Why don’t we always use counting sort?Why don t we always use counting sort?
Depends on range k of elements.

Could we use counting sort to sort 32 bit 
i t ? Wh h t?integers?  Why or why not?



Counting Sort Reviewg

Assumption: input taken from small set of numbers of 
i ksize k

Basic idea: 
Count number of elements less than you for each element.
This gi es the position of that n mber similar to selectionThis gives the position of that number – similar to selection 
sort.

Pro’s:
FastFast
Asymptotically fast  - O(n+k)
Simple to code

Con’s:Co s
Doesn’t sort in place.
Elements must be integers.
Requires O(n+k) extra storage.

countable

Radix Sort

How did IBM get rich originally?How did IBM get rich originally?
Answer: punched card readers for 
census tabulation in early 1900’scensus tabulation in early 1900 s.  

In particular, a card sorter that could sort 
cards into different binscards into different bins

Each column can be punched in 12 places
Decimal digits use 10 placesDecimal digits use 10 places

Problem: only one column can be sorted on 
at a timeat a time

Radix Sort

Intuitively you might sort on the mostIntuitively, you might sort on the most 
significant digit, then the second msd, etc.
Problem: lots of intermediate piles of cardsProblem: lots of intermediate piles of cards 
(read: scratch arrays) to keep track of
Key idea: sort the least significant digit firstKey idea: sort the least significant digit first

RadixSort(A, d)
for i=1 to dfor i=1 to d

StableSort(A) on digit i

Radix Sort Examplep



Radix Sort Correctness

Sketch of an inductive proof of correctnessSketch of an inductive proof of correctness 
(induction on the number of passes):

Assume lower-order digits {j: j<i }are sorted
Show that sorting next digit i leaves array 
correctly sorted 

If two digits at position i are different orderingIf two digits at position i are different, ordering 
numbers by that digit is correct (lower-order digits 
irrelevant)
If they are the same numbers are already sorted onIf they are the same, numbers are already sorted on 
the lower-order digits.  Since we use a stable sort, 
the numbers stay in the right order

Radix Sort

What sort is used to sort on digits?What sort is used to sort on digits?
Counting sort is obvious choice: 

Sort n numbers on digits that range from 1 kSort n numbers on digits that range from 1..k
Time: O(n + k)

Each pass over n numbers with d digitsEach pass over n numbers with d digits 
takes time O(n+k), so total time O(dn+dk)

When d is constant and k=O(n) takes O(n)When d is constant and k=O(n), takes O(n) 
time

Radix Sort

Problem: sort 1 million 64-bit numbersProblem: sort 1 million 64 bit numbers
Treat as four-digit radix 216 numbers
Can sort in just four passes with radix sort!Can sort in just four passes with radix sort!

Performs well compared to typical 
O( l ) i tO(n lg n) comparison sort 

Approx lg(1,000,000) ≅ 20 comparisons per 
b b i t dnumber being sorted

Radix Sort Review

Assumption: input has d digits ranging from 0 to k
Basic idea: 

Sort elements by digit starting with least significant
Use a stable sort (like counting sort) for each stage

P ’Pro’s:
Fast
Asymptotically fast (i.e., O(n) when d is constant and k=O(n))
Simple to codeSimple to code
A good choice

Con’s:
Doesn’t sort in placeDoesn t sort in place
Not a good choice for floating point numbers or arbitrary 
strings.



Bucket Sort

Assumption:  input elements distributed uniformly over some known 
range, e.g., [0,1), so all elements in A are greater than or equal to 0 but less 
than 1 . (Appendix C.2 has definition of uniform distribution)

Bucket-Sort(A)
1. n = length[A]
2. for i = 1 to n 
3 d i t A[i] i t li t B[fl f A[i]]3. do insert A[i] into list B[floor of nA[i]] 
4. for i = 0 to n-1
5. do sort list i with Insertion-Sort  
6 Concatenate lists B[0] B[1] B[n 1]6. Concatenate lists B[0], B[1],…,B[n-1]

Bucket Sort

Bucket-Sort(A, x, y)( y)
1. divide interval [x, y) into n equal-sized subintervals (buckets)
2. distribute the n input keys into the buckets
3. sort the numbers in each bucket (e.g., with insertion sort)
4. scan the (sorted) buckets in order and produce output array

Running time of bucket sort: O(n) expected timeRunning time of bucket sort: O(n) expected time
Step 1:  O(1) for each interval = O(n) time total.
Step 2:  O(n) time.
Step 3:  The expected number of elements in each bucket is O(1)

( b k f f l t ti 8 4) t t l i O( )(see book  for formal argument, section 8.4), so total is O(n)
Step 4: O(n) time to scan the n buckets containing a total of n input

elements

Bucket Sort Examplep Bucket Sort Review

Assumption: input is uniformly distributed across a range
Basic idea: 

Partition the range into a fixed number of buckets.
Toss each element into its appropriate bucket.
S t h b k tSort each bucket.

Pro’s:
Fast
As mptoticall fast (i e O(n) hen distrib tion is niform)Asymptotically fast (i.e., O(n) when distribution is uniform)
Simple to code
Good for a rough sort.

Con’s:Con s:
Doesn’t sort in place



Summary of Linear Sorting
Non-Comparison Based Sorts

Running Time

y g

Counting Sort O(n + k) O(n + k) O(n + k) no

worst-case average-case best-case in place
Running Time

Radix Sort O(d(n + k'))    O(d(n + k'))    O(d(n + k'))    no
Bucket Sort              O(n)          no

Counting sort assumes input elements are in range [0 1 2 k] andCounting sort assumes input elements are in range [0,1,2,..,k] and 
uses array indexing to count the number of occurrences of each 
value.

Radix sort assumes each integer consists of d digits and each digit isRadix sort assumes each integer consists of d digits, and each digit is 
in range [1,2,..,k'].

Bucket sort requires advance knowledge of input distribution (sorts n
b if l di t ib t d i i O( ) ti )numbers uniformly distributed in range in O(n) time).


