Comparison Sorting Review nﬂ,ﬁm

CKEYEHS

Introduction to Algorithms g * Insertion sort;
Sorting in Linear Time DHIDSSIATE * Pro’s:
BUCKEYE e Easy to code
e Fast on small inputs (less than ~50 elements)
CSE 680 e Fast on nearly-sorted inputs
Prof. Roger Crawfis e Con’s:

e O(n?) worst case
e O(n?) average case
e O(n?) reverse-sorted

Comparison Sorting Review nmgm Comparison Sorting Review nﬂ,ﬁn -
e Merge sort: e Heap sort:

e Divide-and-conquer: e Uses the very useful heap data structure
e Split array in half e Complete binary tree
e Recursively sort sub-arrays e Heap property: parent key > children’s keys
e Linear-time merge step e Pro’s:

e Pro’s: ¢ O(n Ig n) worst case - asymptotically optimal for
e O(n Ig n) worst case - asymptotically optimal for comparison sorts

comparison sorts e Sorts in place
e Con’s: e Con’s:

e Doesn’t sort in place e Fair amount of shuffling memory around

Comparison Sorting Review gm

CEEYE

Non-Comparison Based Sortingnmgm

BEVUCKEYEHS

e Quick sort:

e Divide-and-conquer:
e Partition array into two sub-arrays, recursively sort
e All of first sub-array < all of second sub-array

e Pro’s:
e O(n Ig n) average case
e Sorts in place
e Fast in practice (why?)

e Con’s:
e O(n2) worst case

o Naive implementation: worst case on sorted input
o Good partitioning makes this very unlikely.

e Many times we have restrictions on our
keys
e Deck of cards: Ace->King and four suites
e Social Security Numbers
e Employee ID’s

e We will examine three algorithms which
under certain conditions can run in O(n)
time.
e Counting sort
e Radix sort
e Bucket sort

Counting Sort nmﬁm

BECEEYE

Counting Sort

e Depends on assumption about the
numbers being sorted
e Assume numbers are in the range 1.. k

e The algorithm:
e Input: A[1..n], where A[]] € {1, 2, 3, ..., k}
e Output: B[1..n], sorted (not sorted in place)
e Also: Array C[1..k] for auxiliary storage

CountingSort(A, B, k)

for i=1 to k
C[i]= O: This is called
[il a histogram.

for j=1 to n
00

CIALI] += 1;
for i=2 to k

C[i] = C[i] + C[i-1];
for j=n downto 1

BIC[ALI111 = ALil:

ClAOI]1 = 1;

© 00 ~NO O A~ WNDNEPR

=
o

Counting Sort Example

Counting Sort

1 23 4 56 7 8 1 2 3 4 5 6 7 8
al2]s]3]0]2]3] 03] o123 4s » (R s B
0123 4 s cl2lz]4]7]7TE] BERRE
c[ZTeTz[3T0]1] c[2l2]afs[aTe
(@) (b) (c)
1 2 3 4 56 7 8 1 23 4 5 6 7 8
d 0 B By O BE | 123455678
01 2 3 4 5 01 2 3 4 5 30,023__3l3-
c[([2[4Ts]7]e] c [MzT=sT20E)
(d) (e) (£
Figure 8.2 The opers "OUNTING-SORT on an input array A[1..8], where each element
of Aisa ative 1 er than k = 5. (a) The array A and the auxiliary array C after

line 4. (b c¢)—(¢) The output array B and the auxiliary array C after one,
two, and three iterations of the loop in lines 911, respectively. Only the lightly shaded elements of
array B have been filled in. (f) The final sorted output array B.

CountingSort(A, B, k)
for i=1 to k
C[il= O;
for j=1 to n
CIALI] += 1y
for i=2 to k
C[i] = C[i] + C[i-1];
for j=n downto 1
BICIALI11] = ALil:
CIALI1] -= 1;

Takes time O(k)

Takes time O(n)

© 00N U~ WNPRP

=
o

What is the running time?

Counting Sort nmﬁm

BECEEYE

Counting Sort

e Total time: O(n + k)
e Works well if k = O(n) or k = O(1)
e This algorithm / implementation is stable.

e A sorting algorithm is stable when numbers
with the same values appear in the output
array in the same order as they do in the
input array.

e Why don’t we always use counting sort?
e Depends on range k of elements.

e Could we use counting sort to sort 32 bit
integers? Why or why not?

Counting Sort Review ,,,,,ﬁm

B ¥NCEEYEHE

Assumption: input taken from small set of numbers of
size k

Basic idea:

e Count number of elements less than you for each element.

e This gives the position of that number — similar to selection
sort.

e Pro’s:
e Fast
e Asymptotically fast - O(n+k)
e Simple to code
e Con’s:
e Doesn't sortin place.
e Elements must beintegers: countable
e Requires O(n+k) extra storage.

Radix Sort

e How did IBM get rich originally?

e Answer: punched card readers for
census tabulation in early 1900’s.
e In particular, a card sorter that could sort
cards into different bins
e Each column can be punched in 12 places
e Decimal digits use 10 places
e Problem: only one column can be sorted on
at atime

Radix Sort

e Intuitively, you might sort on the most
significant digit, then the second msd, etc.
e Problem: lots of intermediate piles of cards

(read: scratch arrays) to keep track of
e Key idea: sort the least significant digit first
RadixSort(A, d)
for 1=1 to d
StableSort(A) on digit 1

Radix Sort Example nﬂlﬁm

L]
BEUCKETYEHB,

329 720 720 329
457 355 329 355
657 436 436 436
839 it 457 wondiie 839 weiin 457
436 657 355 657
720 329 457 720
355 839 657 839

Figure 8.3 The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is
the input. The remaining columns show the list after successive sorts on increasingly significant digit
positions. Shading indicates the digit position sorted on to preduce each list from the previous one.

Radix Sort Correctness gmﬁm

e Sketch of an inductive proof of correctness
(induction on the number of passes):

e Assume lower-order digits {j: j<i }are sorted

e Show that sorting next digit i leaves array
correctly sorted

e If two digits at position i are different, ordering
numbers by that digit is correct (lower-order digits
irrelevant)

e If they are the same, numbers are already sorted on
the lower-order digits. Since we use a stable sort,
the numbers stay in the right order

Radix Sort

e \What sort is used to sort on digits?

e Counting sort is obvious choice:
e Sort n numbers on digits that range from 1..k
e Time: O(n + k)

e Each pass over n numbers with d digits
takes time O(n+k), so total time O(dn+dk)

e When d is constant and k=0O(n), takes O(n)
time

Radix Sort

e Problem: sort 1 million 64-bit numbers
e Treat as four-digit radix 26 numbers
e Can sort in just four passes with radix sort!
e Performs well compared to typical
O(n Ig n) comparison sort

e Approx Ig(1,000,000) = 20 comparisons per
number being sorted

Radix Sort Review n"[ﬁh £

BEUCKETYEHB,

Assumption: input has d digits ranging from 0 to k
Basic idea:
e Sort elements by digit starting with least significant
e Use a stable sort (like counting sort) for each stage
e Pro’s:
e Fast
e Asymptotically fast (i.e., O(n) when d is constant and k=0(n))
e Simple to code
e A good choice
e Con’s:
e Doesn't sortin place

¢ Not a good choice for floating point numbers or arbitrary
strings.

Bucket Sort

Assumption: input elements distributed uniformly over some known
range, e.g., [0,1), so all elements in A are greater than or equal to 0 but less
than 1. (Appendix C.2 has definition of uniform distribution)

Bucket-Sort(A)
1. n = length[A]

2.fori=1ton

3. do insert A[i] into list B[floor of nA[i]
4.fori=0ton-1

5. do sort list i with Insertion-Sort

6. Concatenate lists B[0], B[1],...,B[n-1]

Bucket Sort

Bucket-Sort(A, X, y)

1. divide interval [x, y) into n equal-sized subintervals (buckets)
2. distribute the n input keys into the buckets

3. sort the numbers in each bucket (e.g., with insertion sort)

4. scan the (sorted) buckets in order and produce output array

Running time of bucket sort: O(n) expected time

Step 1: O(1) for each interval = O(n) time total.

Step 2: O(n) time.

Step 3: The expected number of elements in each bucket is O(1)
(see book for formal argument, section 8.4), so total is O(n)

Step 4: O(n) time to scan the n buckets containing a total of n input
elements

Bucket Sort Example

Bucket Sort Review

A B
1178 0\s
W -mE
139 [JR]
4 1,26 3 | —+—>[39]/]
slwl 4[]
6 [94| s /]
d FTI I 1 Pl
N T I I B e 1
o |23 s |/
u:ﬁ s 5 »1.94]/]
(a) (b)
Figure8.4 The operation of BUCKET-SORT. (a) The input array A[1.. 10]. (b) The array B[0..9]
of sorted lists (buckets) after line 5 of the algorithm. Bucket i holds values in the half-open
interval [i/10, (i + 1)/10). The sorted output consists of a concatenation in order of the lists

B[O], B[1]...., B[9].

Assumption: input is uniformly distributed across a range
Basic idea:
e Partition the range into a fixed number of buckets.
e Toss each element into its appropriate bucket.
e Sort each bucket.
e Pro’s:
e Fast
e Asymptotically fast (i.e., O(n) when distribution is uniform)
e Simple to code
e Good for a rough sort.
e Con’s:
e Doesn't sort in place

Summary of Linear Sorting ﬁm

CEEYE

Non-Comparison Based Sorts

Running Time

worst-case average-case best-case in place
Counting Sort O(n + k) O(n + k) Oo(n + k) no
Radix Sort O(d(n +k")) O(d(n +k") Oo(d(n + k) no
Bucket Sort O(n) no

Counting sort assumes input elements are in range [0,1,2,..,k] and
uses array indexing to count the number of occurrences of each
value.

Radix sort assumes each integer consists of d digits, and each digit is
in range [1,2,..,K".

Bucket sort requires advance knowledge of input distribution (sorts n
numbers uniformly distributed in range in O(n) time).

