E.

Heapsort

Based off slides by: David Matuszek
http://www.cis.upenn.edu/~matuszek/cit594-2008/

Presented by: Matt Boggus

-

* Previous sorting algorithms
|

= Insertion Sort
= O(n?) time
= Merge Sort

= O(n) space

Heap data structure

Binary tree

Balanced

Left-justified

(Max) Heap property: no node has a value greater
than the value in its parent

* Balanced binary trees
|

= Recall:
= The depth of a node is its distance from the root
= The depth of a tree is the depth of the deepest node

= A binary tree of depth n is balanced if all the nodes at
depths 0 through n-2 have two children

O\ O\ / O\
n- ;.] g/og O/O\O O/O\j O/O\O O/O\O O/O
SO BSOS & S6 o S8 oE D

Balanced Balanced Not balanced

{ Left-justified binary trees

= A balanced binary tree of depth n is left-
justified if;
= it has 2" nodes at depth n (the tree is “full”), or

= it has 2K nodes at depth k, for all k < n, and all
the leaves at depth n are as far left as possible

/O\ /O\
o/o\o o/o\o o/o\o o/o\o
SO 68 SO 68 &
Left-justified Not left-justified

{ Building up to heap sort

= How to build a heap

= How to maintain a heap

= How to use a heap to sort data

{ The heap property

= A node has the heap property if the value in the
node is as large as or larger than the values in its

children

@\@
(12 (& @
Blue node has Blue node has Blue node does not

heap property heap property have heap property

= All leaf nodes automatically have the heap property

= A binary tree is a heap if all nodes in it have the
heap property

{ siftUp

= Given a node that does not have the heap property, you can
give it the heap property by exchanging its value with the
value of the larger child

@@ -

Blue node does not Blue node has
have heap property heap property

= This is sometimes called sifting up

{ Constructing a heap |

= A tree consisting of a single node is automatically
a heap
= We construct a heap by adding nodes one at a time:

= Add the node just to the right of the rightmost node in
the deepest level

= If the deepest level is full, start a new level
= Examples:

Add a new Add a new
i)g node here node here

{ Constructing a heap II

= Each time we add a node, we may destroy the heap
property of its parent node

= To fix this, we sift up

= But each time we sift up, the value of the topmost node
in the sift may increase, and this may destroy the heap
property of its parent node

= We repeat the sifting up process, moving up in the tree,
until either

= We reach nodes whose values don’t need to be swapped
(because the parent is still larger than both children), or

= We reach the root

10

{ Constructing a heap |11

|
& R
oECRS
® ® @
@@"@
/
@5’ ®

11

{ Other children are not affected

- -
ONO) Qs (&) 12 &)
\
< N

= The node containing 8 is not affected because its parent gets larger, not
smaller

= The node containing 5 is not affected because its parent gets larger, not
smaller

= The node containing 8 is still not affected because, although its parent got
smaller, its parent is still greater than it was originally

12

{ A sample heap

= Here’s a sample binary tree after it has been heapified

(25)

(22)

o B om ®

® ww &®&» W

= Notice that heapified does not mean sorted

= Heapifying does not change the shape of the binary tree;
this binary tree is balanced and left-justified because it
started out that way

{ Removing the root (animated)

= Notice that the largest number is now in the root
= Suppose we discard the root:

(1D
(22)

(19) 14)
A @@@ ©

= How can we fix the binary tree so it is once again balanced
and left-justified?

= Solution: remove the rightmost leaf at the deepest level and
use it for the new root

14

{ The reHeap method |

= Our tree is balanced and left-justified, but no longer a heap
= However, only the root lacks the heap property

/—\’
Sl (17
@ (1) ®
A @@@ ©)

= We can siftUp() the root

= After doing this, one and only one of its children may have
lost the heap property

15

{ The reHeap method ||

= Now the left child of the root (still the number 11) lacks

the heap property
(22)
W (17)
(19) k (14) D)
@ & ©

= We can siftUp() this node

= After doing this, one and only one of its children may have
lost the heap property

16

{ The reHeap method 111

= Now the right child of the left child of the root (still the
number 11) lacks the heap property'

“@

= We can siftup() this node

= After doing this, one and only one of its children may have
lost the heap property —but it doesn’t, because it’s a leaf

17

{ The reHeap method 1V
|

= Our tree is once again a heap, because every node in it has
the heap property

(22) (17)

o o mo@ ®

@® W w &

= Once again, the largest (or a largest) value is in the root
= We can repeat this process until the tree becomes empty

= This produces a sequence of values in order largest to smallest
18

{. Sorting

= What do heaps have to do with sorting an array?

= Here’s the neat part:

= Because the binary tree is balanced and left justified, it can be
represented as an array
= Danger Will Robinson: This representation works well only with
balanced, left-justified binary trees
= All our operations on binary trees can be represented as
operations on arrays
= Tosort:
heapify the array;
while the array isn’t empty {
remove and replace the root;
reheap the new root node;

}

19

{ Key properties

= Determining location of root and “last node” take
constant time

= Remove n elements, re-heap each time

20

{ Analysis

= To reheap the root node, we have to follow one path
from the root to a leaf node (and we might stop before
we reach a leaf)

= The binary tree is perfectly balanced

= Therefore, this path is O(log n) long
= And we only do O(1) operations at each node
= Therefore, reheaping takes O(log n) times

= Since we reheap inside a while loop that we do n times,
the total time for the while loop is n*O(log n), or
O(n log n)

21

{ Analysis

= Construct the heap O(n log n)

= Remove and re-heap O(n log n)

= Total time O(n log n) + O(n log n)

22

{ The End

= Continue to priority queues?

23

{ Priority Queue

= Queue — only access element in front
= Queue elements sorted by order of importance

= Implement as a heap where nodes store priority values

24

J Extract Max
|

= Remove root
= Swap with last node

= Re-heapify

25

J Increase Key

= Change node value

= Re-heapify

26

J Insert

= Add new node, priority is minimum possible value

= Increase priority

27

J The End

-

