Introduction to Algorithms ﬁ
DHIDSSSTATE

Analysis

CSE 680
Prof. Roger Crawfis

BUCKETYTE 3

Run-time Analysis I,.,.ﬁm

BEVUCKEYEHS

e Depends on

e input size

e input quality (partially ordered)
e Kinds of analysis

e Worst case (standard)
e Average case (sometimes)
e Best case (never)

What do we mean by Analysis?nmgAT

BECEEYE

e Analysis is performed with respect to a
computational model

e \We will usually use a generic uniprocessor
random-access machine (RAM)
e All memory is equally expensive to access
e No concurrent operations
e All reasonable instructions take unit time
e Except, of course, function calls
e Constant word size
e Unless we are explicitly manipulating bits

Example: Searching nﬂ,ﬁm

L]
BEUCKETYEHB,

e Assume we have a sorted array of integers,
X[1..N] and we are searching for “key”

Cost Times
found = 0; Cco 1
i =0 C1 1
while (found && i < N) { C2 0<=L<N
if (key == X][i]) C3 1<=L<=N
found = 1; ? ?
i++; C5 1<=L<=N

}
T(n) = CO0 + C1+L*(C2+ C3 + C4), where 1 <=L <= N is the
number of times that the loop is iterated.

Example: Searching umgm

B ¥NCEEYEHE

e What's the best case? Loop iterates just once =>
e T(N)=CO+C1+C2+C3+C4

e What's the average (expected) case? Loop iterates N/2
times =>
e T(N)=CO0+C1+N/2*(C2+C3+C4)
e Notice that this can be written as T(n) = a + b*n where a, b are
constants

e What's the worst case? Loop iterates N times =>
e T(N)=CO+C1+N*(C2+C3+C4)
e Notice that this can be written as T(n) = a + b*n where a, b are
constants

Worst Case Analysis nﬂ,ﬁm

CKEYEHS

e We will only look at WORST CASE running time of
an algorithm. Why?

e Worst case is an upper bound on the running time. It
gives us a guarantee that the algorithm will never take
any longer

e For some algorithms, the worst case happens fairly
often. As in this search example, the searched item is
typically not in the array, so the loop will iterate N times

e The “average case” is often roughly as bad as the
“worst case”. In our search algorithm, both the average
case and the worst case are linear functions of the input

@9

size “n

Insertion Sort

InsertionSort(A, n) {

key = A[i]

J=1i-1;

while (J > 0) and (A[J] > key) {
AD+1]1 = ALl
i=3-1

¥

A[j+1] = key

¥ How many times will
3} this loop execute?

Insertion Sort

Statement Cost _times
InsertionSort(A, n) {
for i =2 ton { ¢ n
key = A[i] c, n-1
j=1-1; Cy n-1
while (J > 0) and (A[J] > key) { Cs P
AL+1] = AL Co Y-
Jj=3-1 c; >L-1)
3 0
A[J+1] = key Ce n-1
b 0

Analyzing Insertion Sort ,,,,,ﬁm

B ¥NCEEYEHE

T(n)=cn+c,(n-1)+c,(n-1)+ cszn:tj +cszn:(tj —1)+ c7zn:(tj —1)+ c(n-1)

i=2 i=2 i=2

e What can T(n) be?

e Best case -- inner loop body never executed
e t;=1=> T(n) is a linear function
e Worst case -- inner loop body executed for
all previous elements
e t, =i =>» T(n) is a quadratic function
e Average case
e 777

So, Is Insertion Sort Good? nﬂ,ﬁm

BEVUCKEYEHS

e Criteria for selecting algorithms
e Correctness
e Amount of work done
e Amount of space used
e Simplicity, clarity, maintainability
e Optimality

Asymptotic Notation nmgm

BECEEYE

e We will study the asymptotic efficiency of algorithms
e To do so, we look at input sizes large enough to make
only the order of growth of the running time relevant

e That is, we are concerned with how the running time of
an algorithm increases with the size of the input in the
limit as the size of the input increases without bound.

e Usually an algorithm that is asymptotically more efficient
will be the best choice for all but very small inputs.

o Real-time systems, games, interactive applications need to
limit the input size to sustain their performance.

e 3 asymptotic notations
e Big O, 0, Q Notations

Big-Oh Notation: Asymptotic

Upper Bound -

Want g(n) to be 5
simple.

0O
e T(n) = f(n) = O(g(n))
e if f(n) <= c*g(n) for all n > n0, where ¢ & n0 are constants > 0

c*g(n)
f(n)

n
n0

- Example: T(n) = 2n + 5 is O(n). Why?
- 2n+5<=3n, foralln»>=5
- T(n) = 5*n? + 3*n + 15 is O(n?). Why?
- 5*n2+ 3*n+15<= 6*n2, foralln>= 6

Q2 Notation: Asymptotic Lower Bound OIS CIATE

B ¥NCEEYEHE

©® Notation: Asymptotic Tight Bound mngm

BEVUCKEYEHS

® T(n) = f(n) = Q(g(n))
e if f(n) >=c*g(n) for all n > n0, where ¢ and n0 are constants > 0
‘ f(n)

c*g(n)

n
n0

- Example: T(n) = 2n + 5 is Q(n). Why?
- 2n+5>=2n, foralln>0

- T(n) = 5*n? - 3*n is Q(n?). Why?
- 5*n2 - 3*n >=4*n2, foralln>= 4

e T(n) = f(n) = ©(g(n))

e if c1*g(n) <= f(n) <= c2*g(n) for all n > nO, where c1, ¢c2 and n0 are
constants > 0 c2*g(n)

f(n)

/ c1*g(n)

n

n0
- Example: T(n) = 2n + 5 is ©(n). Why?
2n <= 2n+5 <= 3n, foralln>=5
- T(n) =5*n2 - 3*n is ©(n?). Why?
- 4*n2 <= 5*n2 - 3*n <=5*n?, foralln>=4

Big-Oh, Theta, Omega nmgm

BECEEYE

Tips to guide your intuition:
e Think of O(f(N)) as “greater than or equal to” f(N)

e Upper bound: “grows slower than or same rate as” f(N)

e Think of Q(f(N)) as “less than or equal to” f(N)

e Lower bound: “grows faster than or same rate as” f(N)

e Think of O(f(N)) as “equal to” f(N)

e “Tight” bound: same growth rate

(True for large N and ignoring constant factors)

Common Functions nﬂlﬁh
BEUCKETYE -l
Name Big-Oh Comment
Constant O(l) Can't beat it!
Log |09 O(IoglogN) Extrapolation search
i i Typical time for good searching
s Logarithmic | O(logN) ltrithm \
8 || Linear O(N) This is about the fastest that an
a algorithm can run given that we need o
3 O(n) just to read the input %
S [IN logN O(NlogN) | Most sorting algorithms >g
9 3
- Quadratic |O(N?) Acceptable when the data size is =
small (N<1000) =+
Cubic O(N3) Acceptable when the data size is 3
small (N<1000) J
EXPOHCH'HG' O(ZN) Only good for really small input sizes

(n<=20)

Asymptotic Complexity

gmgm

FCEEYE

Asymptotic Complexity

nmgm

BEVUCKEYEHS

250

0 ;=
12345678 91011121314151617 181920

—e—f(n)=n
—=—f(n) = log(n)
f(n) = n log(n)
f(n) = n"2
—x—f(n)=n"3
—e—f(n) = 2™

500

—o—o¢

—o

P4
T

1 2 3 45678 91011121314151617181920

—e—f(n)=n
—=—f(n) = log(n)
f(n) = n log(n)
f(n) = n"2
—x—f(n) =n"3
—e—f(n) =2

Asymptotic Complexity

it

IIGKE\"E

1000

—e—f(n)=n
—=—f(n) = log(n)
f(n) = n log(n)
f(n) = n"2
—x—f(n)=n"3
—e—f(n) = 2™

Asymptotic Complexity

ymﬁm

CKETYEHBH

5000

4000 -

3000

2000 -

1000

T R e e o e o o e B e
1 3 5 7 9 11 13 15 17 19

—e—f(n)=n
—=—f(n) = log(n)
f(n) = n log(n)
f(n) = n"2
—x—f(n) =n"3
—e—f(n) =2

Asymptotic Complexity

Math Review

10000000

1000000 +

100000 +

10000 -

1000 -

100 -

10

1 &

1 4 16 64 256 1024 4096 16384 65536

e S(N)=1+2+3+4+ ... N = Zi:—

e Sum of Squares:
iiz _N*(N+D*@2n+1) N°

6 3
° Geometric Series:
N+1
=0
N N+1
aoA -l A<1
0 A-1

Math Review gm

IIGKE\"E

e Linear Geometric Series:
~(n=Dx™ —nx" + X

(x-1)°

Z|x =X+2x2+3C3 +...+nx" =

e Harmonic Series:

H = 1 1+;+;+ +—_(Inn)+O(1)

n
1

Math Review

e Logarithms:
log A®> =B*log A
log(A*B) =log A+logB

Iog(g) =logA-logB

Math Review

e Summations with general bounds:
> =Y F0)-3 1)

e Linearity of Summations:

i(4i2—6i):4ii2—6ii

Review: Induction

® Suppose

= S(k) is true for fixed constant k
0Oftenk=0

= S(n) 2 S(n+1) for all n >=k
® Then S(n) is true for all n >=k

David Luebke 26 9/29/2009

Proof By Induction

® Claim:S(n) is true for all n >=k
* Basis:
= Show formula is true when n = k
* Inductive hypothesis:
= Assume formula is true for an arbitrary n
* Step:
= Show that formula is then true for n+1

9/29/2009

Induction Example:
Gaussian Closed Form

®* Provel+2+3+...+n=n(n+l)/2

= Basis:
olfn=0,then0=0(0+1)/2

= Inductive hypothesis:
0Assumel+2+3+...+n=n(n+tl)/2

= Step (show true for n+1):
1+2+...+n+n+tl=(1+2+..+n)+(n+l)
=n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2
=(n+1)(n+2)/2=(n+1)(n+1 +1)/2

David Luebke 28 9/29/2009

Induction Example:
Geometric Closed Form

®* Provea’+al+ ... +a"=(a"-1)/(a- 1) for
alla=1
= Basis: show that a® = (a1 - 1)/(a - 1)

a’=1=(t-1)/@-1)

= Inductive hypothesis:
oAssumea’+al+ ... +a"=(a"-1)/(a-1)

= Step (show true for n+1):
a+al+. .. +aml=a+al+. . +a+aml
=(@m"*-1)/(a-1) +a™l=(@*1-1)/(a-1)

9/29/2009

Induction

* \We’ve been using weak induction
® Strong induction also holds
= Basis: show S(0)
= Hypothesis: assume S(k) holds for arbitrary k <=n
= Step: Show S(n+1) follows
* Another variation:
= Basis: show S(0), S(1)
= Hypothesis: assume S(n) and S(n+1) are true
= Step: show S(n+2) follows

9/29/2009

ﬂlﬂgﬂ

BECEEYE

Sample “for” loops

function func(n)

1. X« 0;

2. fori—1tondo

3. forj—1tondo
4. X<«—X+(i-]);
5. return(x);

Sample “for” loops

ﬂﬂlﬁh

BEUCKETYEHB,

function func(n)

1. X< 0;

2. fori—1tondo

3. forj—1toido
4. X<— X+ (i-]);
5. return(x);

Sample “for” loops

function func(n)

1. X< 0;

2. fori—1tondo

3. forj—itondo
4. X— X+ (i-j)
5. return(x);

Sample “for” loops

function func(n)

1. X« 0;

2. fori—1tondo

3. forj—1tolinldo
4. X x+ (i)
5. return(x);

Sample “for” loops

function func(n)

1. X« 0;

2. fori—1tondo

3. forj<—1tolildo
4. X— X+ (i-j)
5. return(x);

Sample “while” loops

function func(n)
1. X < 0;

2. i< 0;

3. whilei<ndo
4, X—X+1;
5 i—i+1;

6. return(x);

Sample “while” loops

function func(n)
1. X« 0;

2. i« 3;

3. whilei<ndo
4. X<—X+1;
5. i<—i+1;

6. return(x);

Sample “while” loops

function func(n)
1. X« 0;

2. i« 0;

3. whilei<ndo
4, X< X+1;
5 i—1i+3;

6. return(x);

Sample “while” loops

function func(n)
X — 0;

i—1;
whilei<ndo
X—Xx+1;
—i *2;

return(x);

o a kW bd =

Sample “while” loops

function func(n)
1. X < 0;

2. i 1;

3. whilei<ndo
4, X< X+1;

5 —i *3;

6

. return(x);

