
Introduction to AlgorithmsIntroduction to Algorithms
AnalysisAnalysisyy

CSE 680
Prof. Roger Crawfis

Run-time Analysisy

Depends onDepends on
input size
input quality (partially ordered)input quality (partially ordered)

Kinds of analysis
()Worst case (standard)

Average case (sometimes)
Best case (never)

What do we mean by Analysis?

Analysis is performed with respect to aAnalysis is performed with respect to a
computational model
We will usually use a generic uniprocessory g p
random-access machine (RAM)

All memory is equally expensive to access
No concurrent operations
All reasonable instructions take unit time

Except of course function callsExcept, of course, function calls
Constant word size

Unless we are explicitly manipulating bits

Example: Searchingp g

Assume we have a sorted array of integers,Assume we have a sorted array of integers,
X[1..N] and we are searching for “key”

Cost TimesCost Times
found = 0; C0 1
i = 0; C1 1
while (!found && i < N) { C2 0 <= L < Nwhile (!found && i < N) { C2 0 <= L < N

if (key == X[i]) C3 1 <= L <= N
found = 1; ? ?

i++; C5 1 <= L <= Ni++; C5 1 <= L <= N

}
T(n) = C0 + C1 + L*(C2 + C3 + C4), where 1 <= L <= N is the

number of times that the loop is iteratednumber of times that the loop is iterated.

Example: Searching

What’s the best case? Loop iterates just once =>
T(n) = C0 + C1 + C2 + C3 + C4

What’s the average (expected) case? Loop iterates N/2
ti >times =>

T(n) = C0 + C1 + N/2 * (C2 + C3 + C4)
Notice that this can be written as T(n) = a + b*n where a, b are
constantsconstants

What’s the worst case? Loop iterates N times =>
T(n) = C0 + C1 + N * (C2 + C3 + C4)T(n) C0 + C1 + N (C2 + C3 + C4)
Notice that this can be written as T(n) = a + b*n where a, b are
constants

Worst Case Analysisy

We will only look at WORST CASE running time of
l i h Wh ?an algorithm. Why?

Worst case is an upper bound on the running time. It
gives us a guarantee that the algorithm will never take
any longerany longer

For some algorithms, the worst case happens fairly
often As in this search example the searched item isoften. As in this search example, the searched item is
typically not in the array, so the loop will iterate N times

The “average case” is often roughly as bad as theThe average case is often roughly as bad as the
“worst case”. In our search algorithm, both the average
case and the worst case are linear functions of the input
size “n”

Insertion Sort

InsertionSort(A, n) {(,) {
for i = 2 to n {

key = A[i]
j = i - 1;j = i - 1;
while (j > 0) and (A[j] > key) {

A[j+1] = A[j]
j j 1j = j - 1

}
A[j+1] = keyj y

}
}

How many times will
this loop execute?

Insertion Sort

Statement Cost times
InsertionSort(A, n) {

for i = 2 to n { c1 n
key = A[i] c n 1key = A[i] c2 n-1
j = i - 1; c4 n-1
while (j > 0) and (A[j] > key) { c5

∑ =

n

j jt
2

()∑n t 1A[j+1] = A[j] c6

j = j - 1 c7

} 0

()∑ =
−

j jt
2

1

()∑ =
−

n

j jt
2

1

}
A[j+1] = key c8 n-1

} 0
}}

Analyzing Insertion Sorty g

() () () () () ()11111 8765421 −+−+−++−+−+= ∑∑∑ nctctctcncncncnT
n

j

n

j

n

j

What can T(n) be?

() ()
222

∑∑∑
=== j

j
j

j
j

j

()
Best case -- inner loop body never executed

ti = 1 T(n) is a linear function
Worst case -- inner loop body executed for
all previous elements

t = i T(n) is a quadratic functionti = i T(n) is a quadratic function
Average case

??????

So, Is Insertion Sort Good?

Criteria for selecting algorithmsCriteria for selecting algorithms
Correctness
Amount of work doneAmount of work done
Amount of space used
Simplicity clarity maintainabilitySimplicity, clarity, maintainability
Optimality

Asymptotic Notationy p

We will study the asymptotic efficiency of algorithms
To do so, we look at input sizes large enough to make
only the order of growth of the running time relevant
That is, we are concerned with how the running time of

l ith i ith th i f th i t i than algorithm increases with the size of the input in the
limit as the size of the input increases without bound.
Usually an algorithm that is asymptotically more efficient
will be the best choice for all but very small inputswill be the best choice for all but very small inputs.

Real-time systems, games, interactive applications need to
limit the input size to sustain their performance.

3 asymptotic notationsy p
Big O, Θ, Ω Notations

Big-Oh Notation: Asymptotic
Upper BoundUpper Bound

T(n) = f(n) = O(g(n))

Want g(n) to be
simple.

T(n) f(n) O(g(n))
if f(n) <= c*g(n) for all n > n0, where c & n0 are constants > 0

c*g(n)
f(n)f(n)

n
n0

– Example: T(n) = 2n + 5 is O(n). Why?
2n+5 <= 3n for all n >= 5– 2n+5 <= 3n, for all n >= 5

– T(n) = 5*n2 + 3*n + 15 is O(n2). Why?
– 5*n2 + 3*n + 15 <= 6*n2 for all n >= 65 n + 3 n + 15 <= 6 n , for all n >= 6

Ω Notation: Asymptotic Lower Bound

T(n) = f(n) = Ω(g(n))T(n) f(n) Ω(g(n))
if f(n) >= c*g(n) for all n > n0, where c and n0 are constants > 0

f(n)

c*g(n)

– Example: T(n) = 2n + 5 is Ω(n). Why?
2n+5 >= 2n for all n > 0

n
n0

– 2n+5 >= 2n, for all n > 0
– T(n) = 5*n2 - 3*n is Ω(n2). Why?

– 5*n2 - 3*n >= 4*n2 for all n >= 45 n 3 n >= 4 n , for all n >= 4

Θ Notation: Asymptotic Tight Bound

T(n) = f(n) = Θ(g(n))T(n) f(n) Θ(g(n))
if c1*g(n) <= f(n) <= c2*g(n) for all n > n0, where c1, c2 and n0 are
constants > 0

f(n)
c2*g(n)

f(n)
c1*g(n)

– Example: T(n) = 2n + 5 is Θ(n). Why?
n0 n

2n <= 2n+5 <= 3n, for all n >= 5
– T(n) = 5*n2 - 3*n is Θ(n2). Why?

4* 2 5* 2 3* 5* 2 f ll 4– 4*n2 <= 5*n2 - 3*n <= 5*n2, for all n >= 4

Big-Oh, Theta, Omega

Tips to guide your intuition:p g y
Think of O(f(N)) as “greater than or equal to” f(N)

Upper bound: “grows slower than or same rate as” f(N)

Think of Ω(f(N)) as “less than or equal to” f(N)
Lower bound: “grows faster than or same rate as” f(N)Lower bound: grows faster than or same rate as f(N)

Think of Θ(f(N)) as “equal to” f(N)
“Tight” bound: same growth rate

(True for large N and ignoring constant factors)(True for large N and ignoring constant factors)

Common Functions
Name Big-Oh Comment
Constant O(1) Can’t beat it!Constant O(1) Can t beat it!

Log log O(loglogN) Extrapolation search

Logarithmic O(logN) Typical time for good searching
l h

Logarithmic O(logN)
algorithms

Linear O(N) This is about the fastest that an
algorithm can run given that we need
O(n) just to read the input

N logN O(NlogN) Most sorting algorithms

Quadratic O(N2) Acceptable when the data size is
small (N<1000)()

Cubic O(N3) Acceptable when the data size is
small (N<1000)

Exponential O(2N) Only good for really small input sizes
(20)

Exponent al O()
(n<=20)

Asymptotic Complexityy p p y

25050

f(n) = nf(n) = n
f(n) = log(n)
f(n) = n log(n)
f(n) = n 2̂f(n) n 2
f(n) = n 3̂
f(n) = 2 n̂

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Asymptotic Complexityy p p y

500500

f(n) = nf(n) = n
f(n) = log(n)
f(n) = n log(n)
f(n) = n 2̂f(n) n 2
f(n) = n 3̂
f(n) = 2 n̂

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Asymptotic Complexityy p p y

1000000

f(n) = nf(n) = n
f(n) = log(n)
f(n) = n log(n)
f(n) = n 2̂f(n) n 2
f(n) = n 3̂
f(n) = 2 n̂

0
1 3 5 7 9 11 13 15 17 191 3 5 7 9 11 13 15 17 19

Asymptotic Complexityy p p y

5000

4000

5000

f(n) = n

3000

f(n) = n
f(n) = log(n)
f(n) = n log(n)
f(n) = n 2̂

1000

2000
f(n) n 2
f(n) = n 3̂
f(n) = 2 n̂

0

1000

1 3 5 7 9 11 13 15 17 191 3 5 7 9 11 13 15 17 19

Asymptotic Complexityy p p y

10000000

100000

1000000

0000000

Guess
the

curves!

10000

100000

100

1000

1

10

1 4 16 64 256 1024 4096 16384 655361 4 16 64 256 1024 4096 16384 65536

Math Review

S(N) = 1 + 2 + 3 + 4 + … N =)1(+
=∑ NNi

N

S(N) 1 2 3 4 … N

Sum of Squares:

21
∑

=i

36
)12(*)1(* 3

1

2 NnNNi
N

i
≈

++
=∑

=

Geometric Series:
A > 1)1(1 1

Θ=
−

=
+

∑ AA
NN

i

A < 1
1

11 −
=

+

∑ A
AA

NN
i

)(
10 −=

∑ Ai

10 −=
∑ Ai

Math Review

Linear Geometric Series:Linear Geometric Series:

2

)1(
32

0)1(
)1(...32

−
+−−

=++++=
+

=
∑ x

xnxxnnxxxxix
nn

n
n

i

i

Harmonic Series:

0)(i

)1()(ln1...
3
1

2
111 On

ni
H

n

n +=++++==∑ 321 nii=

Math Review

Logarithms:Logarithms:

BABA
ABAB

loglog)*log(
log*log

+=
=

BA
B
A

BABA

loglog)log(

loglog)log(

−=

+=

Math Review

Summations with general bounds:g

∑ ∑∑
−

−=
b

i

a

i

b

ai
ififif

0

1

0
)()()(

Linearity of Summations:

= == i iai 0 0

y

∑ ∑∑
= ==

−=−
n

i

n

i

n

i
iiii

1 1

2

1

2 64)64(
i ii 1 11

Review: Induction

• SupposeSuppose
S(k) is true for fixed constant k

o Often k = 0o O te 0
S(n) S(n+1) for all n >= k

• Then S(n) is true for all n >= kThen S(n) is true for all n > k

David Luebke 26 9/29/2009

Proof By Inductiony

• Claim:S(n) is true for all n >= kClaim:S(n) is true for all n k
• Basis:

Show formula is true when n = kShow formula is true when n = k
• Inductive hypothesis:

Assume formula is true for an arbitrary n
• Step:

Show that formula is then true for n+1

David Luebke 27 9/29/2009

Induction Example:
Gaussian Closed FormGaussian Closed Form

• Prove 1 + 2 + 3 + … + n = n(n+1) / 2Prove 1 2 3 … n n(n 1) / 2
Basis:

o If n = 0, then 0 = 0(0+1) / 2o 0, t e 0 0(0) /
Inductive hypothesis:

o Assume 1 + 2 + 3 + … + n = n(n+1) / 2()
Step (show true for n+1):

1 + 2 + … + n + n+1 = (1 + 2 + …+ n) + (n+1)() ()
= n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2
= (n+1)(n+2)/2 = (n+1)(n+1 + 1) / 2

David Luebke 28 9/29/2009

Induction Example:
Geometric Closed FormGeometric Closed Form

• Prove a0 + a1 + … + an = (an+1 - 1)/(a - 1) forProve a a … a (a 1)/(a 1) for
all a ≠ 1

Basis: show that a0 = (a0+1 - 1)/(a - 1)Basis: show that a (a 1)/(a 1)
a0 = 1 = (a1 - 1)/(a - 1)

Inductive hypothesis:Inductive hypothesis:
o Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1)

Step (show true for n+1):p ()
a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)/(a - 1)

David Luebke 29 9/29/2009

Induction

• We’ve been using weak inductiong
• Strong induction also holds

Basis: show S(0)()
Hypothesis: assume S(k) holds for arbitrary k <= n
Step: Show S(n+1) follows

• Another variation:
Basis: show S(0), S(1)
Hypothesis: assume S(n) and S(n+1) are true
Step: show S(n+2) follows

David Luebke 30 9/29/2009

Sample “for” loopsp p

function func(n)function func(n)
1. x ← 0;
2 f i 1 t d2. for i ← 1 to n do
3. for j ← 1 to n do
4. x ← x + (i - j);
5 return(x);5. return(x);

Sample “for” loopsp p

function func(n)function func(n)
1. x ← 0;
2 f i 1 t d2. for i ← 1 to n do
3. for j ← 1 to i do
4. x ← x + (i - j);
5 return(x);5. return(x);

Sample “for” loopsp p

function func(n)function func(n)
1. x ← 0;
2 f i 1 t d2. for i ← 1 to n do
3. for j ← i to n do
4. x ← x + (i - j);
5 return(x);5. return(x);

Sample “for” loopsp p

function func(n)function func(n)
1. x ← 0;
2 f i 1 t d2. for i ← 1 to n do
3. for j ← 1 to do⎣ ⎦n

4. x ← x + (i - j);
5 return(x);5. return(x);

Sample “for” loopsp p

function func(n)function func(n)
1. x ← 0;
2 f i 1 t d2. for i ← 1 to n do
3. for j ← 1 to do⎣ ⎦i

4. x ← x + (i - j);
5 return(x);5. return(x);

Sample “while” loopsp p

function func(n)function func(n)
1. x ← 0;

i 02. i ← 0;
3. while i < n do
4. x ← x + 1;
5 i ← i + 1;5. i ← i + 1;
6. return(x);

Sample “while” loopsp p

function func(n)function func(n)
1. x ← 0;

i 32. i ← 3;
3. while i < n do
4. x ← x + 1;
5 i ← i + 1;5. i ← i + 1;
6. return(x);

Sample “while” loopsp p

function func(n)function func(n)
1. x ← 0;

i 02. i ← 0;
3. while i < n do
4. x ← x + 1;
5 i ← i + 3;5. i ← i + 3;
6. return(x);

Sample “while” loopsp p

function func(n)function func(n)
1. x ← 0;

i 12. i ← 1;
3. while i < n do
4. x ← x + 1;
5 i ← i * 2;5. i ← i 2;
6. return(x);

Sample “while” loopsp p

function func(n)function func(n)
1. x ← 0;

i 12. i ← 1;
3. while i < n do
4. x ← x + 1;
5 i ← i * 3;5. i ← i 3;
6. return(x);

