Introduction to Algorithms ﬁ
1035 STAT

Data Structures DHID3S ST

CSE 680
Prof. Roger Crawfis

Overview nungm

BEVUCKEYEHS

e Review basic abstract data structures
e Sets
e Lists
e Trees
e Graphs

e Review basic concrete data structures
e Linked-List and variants
e Trees and variants

e Examine key properties

e Discuss usage for solving important problems
(search, sort, selection).

Sets and Multisets nmﬁm

BECEEYE

e Common operations
e Fixed Sets
e Contains (search)
e |s empty
o Size
e Enumerate
e Dynamic Sets add:
e Add
o Remove
e Other operations (not so common)
e Intersection
e Union
e Sub-set
e Note, these can, and probably should, be implemented
statically (outside of the class).

Set — Language Support nmﬁn.

BEUCKETYEHB,

e NET Framework Support
(C#,VB,C++,...)
e IEnumerable interface
e ICollection interface
e Java Framework Support
e Collection
e Set
e STD library (C++)
e Set and Multiset classes and their iterators.

List umgms

B ¥NCEEYEHE

e Common Queries

e Enumerate

e Number of items in the list

e Return element at index |.

e Search for an item in the list (contains)
e Common Commands

e Add element

e Set element at index i.

e Remove element?

e Insert before index i?

List — Language Support nmgm

CKEYEHS

e Arrays — fixed size.
e .NET Framework Support (C#,VB,C++,...)
e |IList interface
e List<T> class
e Java Framework Support
e List interface
e ArrayList<T> and Vector<T> classes
e STD library (C++)
e std::vector<T> class.

Concrete Implementations nmﬂm

BECEEYE

Rooted Trees nmﬁa 5

BEUCKETYEHB,

e Set

e What might you use to implement a
concrete set?

e What are the pro’s and con’s of each
approach?

e List

e Other than arrays, could you implement a
list with any other data structure?

e A tree is a collection of nodes and
directed edges, satisfying the following
properties:

e There is one specially designated node
called the root, which has no edges
pointing to it.

e Every node except the root has exactly one
edge pointing to it.

e There is a unique path (of nodes and
edges) from the root to each node.

Basic Tree Concepts 0 ﬁm

CEEYE

e Node — user-defined data structure that that contains
pointers to data and pointers to other nodes:
e Root — Node from which all other nodes descend
Parent — has child nodes arranged in subtrees.
Child — nodes in a tree have 0 or more children.
Leaf — node without descendants

Degree — number of direct children a
tree/subtree has.

Root

{Pa:rent
ChﬂdC{ Lesf

Node

Figure: Tree data structure

Height and Level of a Tree nﬂ,ﬁm

BEVUCKEYEHS

e Height — # of edgeson °
the longest path from the / \
©

root to a leaf.
e Level —Rootisat level \

0O, its direct children are

at level 1, etc. Q @
e Recursive definition for

height:
1+ max(height(T), height(T)) @ e

Rooted Trees nmgm

BECEEYE

e If an edge goes from node a to node b, then a is
called the parent of b, and b is called a child of a.

e Children of the same parent are called siblings.

e If there is a path from a to b, then a is called an
ancestor of b, and b is called a descendent of a.

e A node with all of its descendants is called a
subtree.

e |f a node has no children, then it is called a leaf of
the tree.

e If a node has no parent (there will be exactly one of
these), then it is the root of the tree.

Rooted Trees: Example ,,,,,ﬁn

L]
BEUCKETYEHB,

e A is the root
A eD,E,G,H,J&

A K are leaves
e B is the parent
B C
of D,E&F
oD, E&F are
o Foo) o siblings and

D E G H children of B
| bir el,J&Kare
subtree descendants of
O O B
3 K oA & B are

ancestors of |

Binary Trees

® Intuitively, a binary tree is a tree in which each node has
no more than two children.

(These two binary m />
trees are distinct.)

" In other words, can we
node, n, has a value ~ put non-hierarchical
propert|es data into a tree. We

,) will study Binary
e n's value is > all valug Search Trees later.

John

Brend Peter
55
J o 29 8 \

Amy Mary Tom
50 13

This term is

Blnary TreeS ambiguous, some

indicate that each
node is either full or

® A binary tree is ?l@lit ha
@1t is either empty.

@ Otherwise, the root’s subtrees are full binary trees
of height h — 1.

@ If not empty, each node has 2 children, except the nodes at
level h which have no children.

® Contains a total of 2M1-1 nodes (how many leaves?)

BVAN

Binary Trees

® A binary tree of height h is complete if it is full down to
level h— 1, and level h is filled from left to right.

® All nodes at level h — 2 and above have 2 children each,

@ If a node at level h — 1 has children, all nodes to its left
at the same level have 2 children each, and

® If a node at level h — 1 has 1 child, it is a left child.

/ A/Q/@\

Binary Trees

e A binary tree is balanced if the difference in height
between any node’s left and right subtree is < 1.

e Note that:
e A full binary tree is also complete.
e A complete binary tree is not always full.
e Full and complete binary trees are also balanced.
e Balanced binary trees are not always full or complete.

Complete & Balanced Trees nﬂ,ﬁm

BEVUCKEYEHS

Complete and Balanced

Not Balanced, Why?

Binary Tree: Pointer-Based g
DHIIS STATE

Representation PITP S

Binary Tree: Table-Based ﬁ
Representation DRINS STATE

struct TreeNode; /I Binary Tree nodes are struct’s
typedef string TreeltemType;// items in TreeNodes are string’s

class BinaryTree

{
private:
TreeNode *root; /I pointer to root of Binary Tree
|3
struct TreeNode /I node in a Binary Tree:

/I place in Implementation file
TreeltemType item,;
TreeNode *leftChild;
child
TreeNode *rightChild; /I pointer to TreeNode’s right child

|3

/I pointer to TreeNode’'s left

Basic Idea:

e Instead of using pointers to the left and
right child of a node, use indices into an
array of nodes representing the binary tree.

e Also, use variable free as an index to the
first position in the array that is available for
a new entry. Use either the left or right
child indices to indicate additional, available
positions.

e Together, the list of available positions in
the array is called the free list.

Binary Tree: Table-Based

ﬂlﬂgﬂE

B ¥NCEEYEHE

Representation
Index | Item |Left |Right
Child | Child

0 |Jane 1 2
1 |Bob 3 4
2 |Tom 5 -1
3 |Alan -1 -1
4 Ellen -1 -1
5 |Nancy| -1 -1
6 ? -1
7 ? -1
8 ? -1
9

Binary Tree: Table-Based g
Representation DHIDASTATE
Index| Item |Left |Right | — root = pfar, Added under Nancy.
Child | Child 0

0 |Jane 1 2

1 |Bob 3 4

2 |Tom 5 -1

3 |Alan -1 -1

4 |Ellen -1 -1

5 |Nancy| 6 -1

6 |Mary| -1 | -1

7 ? -1

8 ? -1

9

Binary Tree: Table-Based

Representation
Index | Item |Left |Right
Child | Child

0 [Jane | 1 2
1 [Bob 3 -1
2 |Tom 5 -1
3 [Alan | -1 |
4 ? -1 7
5 |Nancy| 6 -1
6 |May| -1 -1
7 ? -1
8 ? -1
9

Binary Tree: Ta

Representation

ble-Based

const int MaxNodes = 100; /I maximum size of a Binary Tree
typedef string TreeltemType; //items in TreeNodes are string’s

struct TreeNode

TreeltemType item;
int leftChild;
int rightChild;

|3

class BinaryTree

{

private:

/I node in a Binary Tree

/I index of TreeNode’s left child
/l index of TreeNode's right child

TreeNode node[MaxNodes];

int root;
int free;

b

/l'index of root of Binary Tree
/I index of free list, linked by rightChild

Level Ordering

Leti, 1 <i <n, bethe number assigned to an element of a
complete binary tree.

Array-Based Repres,entation,m,ﬂM

BECEEYE

Array-Based Repres,entation,,,,,ﬁ‘li :

BEUCKETYEHB,

e Array-based representations allow for
efficient traversal. Consider the node at
index I.

e Left Child is at index 2i+1.
e Right Child is at index 2i+2.
e Parentis at floor((i-1)/2).

Traversing a Binary Tree

e Drawback of array-based trees. Example
has only 3 nodes, but uses 2"1-1 array cells
to store it

O
e Generally use Array- \@
based only if data
set exhibits
complete binar
tree behavior

e Depth-first Traversal
e Preorder
e Inorder
e Postorder
e Breadth-First Traversal

e Level order

Preorder Traversal nmgm

BECEEYE

Preorder Traversal

ﬂﬂlﬁh E

BEUCKETYEHB,

Basic ldea:
1) Visit the root.

2) Recursively invoke preorder on the left
Subtree.

3) Recursively invoke preorder on the right
Subtree.

e
aN

Preorder Result: 60, 20, 10, 40, 30, 50, 70

Inorder Traversal

Inorder Traversal

Basic Idea:

1) Recursively invoke inorder on the /left
Subtree.

2) Visit the root.

3) Recursively invoke inorder on the right
Subtree.

Inorder Result: 10, 20, 30, 40, 50, 60, 70

Postorder Traversal nmgm

BECEEYE

Postorder Traversal nmﬁm,

Basic Idea:

1) Recursively invoke postorder on the /eft
Subtree.

2) Recursively invoke postorder on the right
Subtree.

3) Visit the root.

e
o<

Postorder Result: 10, 30, 50, 40, 20, 70, 60

Level order traversal ,,,,,ﬁm

B ¥NCEEYEHE

Pointer-Based, Preorder Traversal g
in C++ DHIDASTATE

* Visit the tree in left-to-right, by level, order:

* Visit the root node and put its children in a queue
(left to right).

* Dequeue, visit, and put dequeued node’s children
into the queue.

* Repeat until the queue

\
is empty. @/@\@)

fcjadhki \@

/I FunctionType is a pointer to a function with argument
/I (TreeltemType &) that returns void.

typedef void (*FunctionType) (TreeltemType &treeltem);

/I Public member function
void BinaryTree::preorderTraverse(FunctionType visit)

{

preorder(root, visit);

}

Pointer-Based, Preorder Traversal

in C++

Pointer-Based, Preorder Traversal ﬁ
in C++ DHIUSESIATE

/I Private member function

void BinaryTree::preorder(TreeNode *treePtr,
FunctionType visit)

{ if(treePtr 1= NULL)
{ visit(treePtr -> item);
preorder(treePtr -> leftChild, visit);
preorder(treePtr -> rightChild, visit);
}
}

Suppose that we define the function

void printltem(TreeltemType &treeltem)
{ cout << treeltem << endl;

}

Then,
/] create myTree
BinaryTree myTree;

/l load data into myTree

/I print Treeltems encountered in preorder traversal
of myTree
myTree.preorderTraverse(&printlitem);

Nonrecursive Traversal of a g
OHGSSTAT

Binary Tree OHIISTATE

Basic Idea for a Nonrecursive, Inorder Traversal:

1) Push a pointer to the root of the binary tree onto a
stack.

2) Follow leftChild pointers, pushing each one onto the
stack, until a NULL leftChild pointer is found.

3) Process (visit) the item in this node.

4) Get the node’s rightChild pointer:

e Ifitis not NULL, then push it onto the stack, and return
to step 2 with the leftChild pointer of this rightChild.

e Ifitis NULL, then pop a node pointer from the stack,
and return to step 3. If the stack is empty (so nothing
could be popped), then stop — the traversal is done.

N-ary Trees

e We can encode an n-ary tree as a binary tree,
by have a list of linked-list of children. Hence
still two pointers, one to the first child and one
to the next sibling.

e Kinda rotates the tree.

A
/_//\\ B/
BCDEFG
/NN TN
H 1] K L
AN Yoo N e
N O P K/‘-.
NN
L G
/
Q M

Other Binary Tree Properties,,,mﬂMF

BECEEYE

e The number of edges in a tree is n-1.
e The number of nodes n in a full binary tree is: n = 20 *7 — 1 where
his the height of the tree.
e The number of nodes n in a complete binary tree is:
e minimum: n = 2h
e maximum: n =2"+7 - 1 where h is the height of the tree.
e The number of nodes n in a full or perfect binary tree is:
e n=2L - 1where L is the number of leaf nodes in the tree.
e The number of leaf nodes n in a full or perfect binary tree is:
e n = 2"where his the height of the tree.
e The number of leaf nodes in a Complete Binary Tree with n
nodes is UpperBound(n / 2).
e For any non-empty binary tree with n, leaf nodes and n, nodes of
degree 2, ny=n, +

e Graph G=(V, E)

e V = set of vertices

e E =set of edges c (VxV)
e Types of graphs

e Undirected: edge (u, v) = (v, u); for all v, (v, v) ¢ E (No
self loops.)

e Directed: (u, v) is edge from u to v, denoted as u — v.
Self loops are allowed.

e Weighted: each edge has an associated weight, given
by a weight function w : E — R.

e Dense: |E| = |V|2
e Sparse: |E| << |V|2

® |E| = O(VP)

e If (u, v) € E, then vertex v is adjacent to vertex u.
e Adjacency relationship is:

e Symmetric if G is undirected.

e Not necessarily so if G is directed.
e If G is connected:

e There is a path between every pair of vertices.

e |[E|>|V]-1.

e Furthermore, if |[E] = |V] — 1, then G is a tree.

e Other definitions in Appendix B (B.4 and B.5) as
needed.

Representation of Graphs nﬂ,ﬁm

CKEYEHS

e Two standard ways.
e Adjacency Lists.

@—®
N
@
e Adjacency Matrix.

@—®"
N/
I

1

10

21

‘ 31
4 41

o o0 o 9

o R OoRr|N
RO R PRw

Adjacency Lists nmgm

BECEEYE

e Consists of an array Adj of |V] lists.
e One list per vertex.
e For ue V, Adjlu] consists of all vertices adjacent to u.

e® [EDE
" b :__m If weighted, store weights also in
—@ c Z_M adjacency lsts.
d
&9 J[JEEEEE
RO s O E ST
OmC), el 71 g—[al 310 /]
d e [3=[c]

Storage Requirement ,,,,,ﬁa_

BEUCKETYEHB,

e For directed graphs:
e Sum of lengths of all adj. lists is

2out-degree(v) = |E]
veV
No. of edges leaving v

e Total storage: O(|V] + |E|)

e For undirected graphs:
e Sum of lengths of all adj. lists is

2. degree(v) = 2|E|
veV QLK No. of edges incident on v. Edge (u,v) is

incident on vertices u and v.

e Total storage: O(|V| + |E|)

Pros and Cons: adj list 0 gm

CEEYE

Adjacency Matrix I,...ﬁm

BEVUCKEYEHS

e Pros

e Space-efficient, when a graph is sparse.

e Can be modified to support many graph variants.
e Cons

e Determining if an edge (u, v) € G is not efficient.
e Have to search in u's adjacency list. ©(degree(u)) time.
e O(V) in the worst case.

e |V]| x|V] matrix A.
e Number vertices from 1 to |V] in some arbitrary manner.
e Ais then given by:

o 1 if (i, j)eE
Il:": -
Al 11=a, {O otherwise
: 2 1234 2 1234
9’@ 10 1 1 1 @"@ 10111
200 010 21010
@‘ 30001 @‘@ 31101
3 4 40000 4 41010

A = AT for undirected graphs.

Space and Time nmgm

BECEEYE

e Space: O(V?).
e Not memory efficient for large graphs.

e Time: to list all vertices adjacent to u: O(V).

e Time: to determine if (u, v) € E: O(1).

e Can store weights instead of bits for weighted
graph.

Some graph operations nﬂ,ﬁn

L]
BEUCKETYEHB,

adjacency matrix adjacency lists
insertEdge 0(1) O(e)
isEdge 0(1) O(e)
#successors? O(V) O(e)
#predecessors? O(V) O(E)

C# Interfaces

using System;
using System.Collections.Generic;
using System.Security.Permissions;
[assembly: CLSCompliant(true)]
namespace OhioState.Collections.Graph {
/Il <summary>
/I |lEdge provides a standard interface to specify an edge and any
/Il data associated with an edge within a graph.
I </summary>
Il <typeparam name="N">The type of the nodes in the
graph.</typeparam>
/Il <typeparam name="E">The type of the data on an
edge.</typeparam>
public interface IEdge<N,E> {
/Il <summary>
/I Get the Node label that this edge emanates from.
Il </summary>
N From { get; }
/Il <summary>
/Il Get the Node label that this edge terminates at.
Il </summary>
N To { get; }
/Il <summary>
/Il Get the edge label for this edge.
Il </summary>
E Value { get; }

/Il <summary>

/Il The Graph interface

Il </summary>

/Il <typeparam name="N">The type associated at each node.
Called a node or node label</typeparam>

/Il <typeparam name="E">The type associated at each edge. Also
called the edge label.</typeparam>

public interface IGraph<N,E> {
/Il <summary>
/I/ Iterator for the nodes in the graoh.
Il </summary>
|Enumerable<N> Nodes { get; }
/Il <summary>
/Il lterator for the children or neighbors of the specified node.
Il </summary>

/Il <param name="node">The node.</param>

/Il <returns>An enumerator of nodes.</returns>
IEnumerable<N> Neighbors(N node);

/Il <summary>

/Il lterator over the parents or immediate ancestors of a node.
Il </summary>

/Il <remarks>May not be supported by all graphs.</remarks>
/Il <param name="node">The node.</param>

/Il <returns>An enumerator of nodes.</returns>
|Enumerable<N> Parents(N node);

C# Interfaces

NIl <summary>

/1] Iterator over the emanating edges from a node.

/Il </[summary>

/Il <param name="node">The node.</param>

/I <returns>An enumerator of nodes.</returns>
|Enumerable<|Edge<N, E>> OutEdges(N node);

Il <summary>

/1] Iterator over the in-coming edges of a node.

Il </[summary>

/Il <remarks>May not be supported by all graphs.</remarks>
/Il <param name="node">The node.</param>

/Il <returns>An enumerator of edges.</returns>
|Enumerable<IEdge<N, E>> InEdges(N node);

Il <summary>

/1] Iterator for the edges in the graph, yielding IEdge's
[l </[summary>

|Enumerable<IEdge<N, E>> Edges { get; }

/Il <summary>

/Il Tests whether an edge exists between two nodes.
Il </[summary>

/Il <param name="fromNode">The node that the edge
emanates from.</param>

/Il <param name="toNode">The node that the edge terminates
at.</param>

/Il <returns>True if the edge exists in the graph. False
otherwise.</returns>

bool ContainsEdge(N fromNode, N toNode);

/Il <summary>

/Il Gets the label on an edge.

I <Isummary>

/Il <param name="fromNode">The node that the edge
emanates from.</param>

/Il <param name="toNode">The node that the edge terminates
at.</param>

/Il <returns>The edge.</returns>

E GetEdgeLabel(N fromNode, N toNode);

/Il <summary>

/Il Exception safe routine to get the label on an edge.

Il </summary>

/Il <param name="fromNode">The node that the edge
emanates from.</param>

/Il <param name="toNode">The node that the edge terminates
at.</param>

Il <param name="edge">The resulting edge if the method was
successful. A default

/Il value for the type if the edge could not be found.</param>
/Il <returns>True if the edge was found. False
otherwise.</returns>

bool TryGetEdge(N fromNode, N toNode, out E edge);

C# Interfaces

using System;
namespace OhioState.Collections.Graph {
/Il <summary>
/Il Graph interface for graphs with finite size.
Il </[summary>

/Il <typeparam name="N">The type associated at each node. Called a node or node

label</typeparam>

/Il <typeparam name="E">The type associated at each edge. Also called the edge label.</typeparam>

1l <seealso cref="IGraph{N, E}"/>

public interface IFiniteGraph<N, E> : IGraph<N, E>

/Il <summary>

/Il Get the number of edges in the graph.
Il </[summary>

int NumberOfEdges { get; }

/Il <summary>

/Il Get the number of nodes in the graph.
/Il </[summary>

int NumberOfNodes { get; }

{

