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Overview

Review basic abstract data structures
Sets
Lists
TreesTrees
Graphs

Review basic concrete data structures
Linked-List and variants
Trees and variants

Examine key propertiesExamine key properties
Discuss usage for solving important problems 
(search, sort, selection).

Sets and Multisets

Common operations
Fixed Sets

Contains (search)
Is empty
SizeSize
Enumerate

Dynamic Sets add:
Add
Remo eRemove

Other operations (not so common)
Intersection
UnionUnion
Sub-set
Note, these can, and probably should, be implemented 
statically (outside of the class).

Set – Language Supportg g pp

.NET Framework Support.NET Framework Support 
(C#,VB,C++,…)

IEnumerable interface
ICollection interface

Java Framework Supportpp
Collection
Set

STD library (C++)
Set and Multiset classes and their iterators.



List

Common Queries
Enumerate
Number of items in the list
R t l t t i d iReturn element at index i.
Search for an item in the list (contains)

Common CommandsCommon Commands
Add element
Set element at index i.
Remove element?
Insert before index i?

List – Language Supportg g pp

Arrays – fixed size.Arrays fixed size.
.NET Framework Support (C#,VB,C++,…)

IList interface
List<T> class

Java Framework Supportpp
List interface
ArrayList<T> and Vector<T> classes

STD library (C++)
std::vector<T> class.

Concrete Implementationsp

SetSet
What might you use to implement a 
concrete set?concrete set?
What are the pro’s and con’s of each 
approach?approach?

List
Other than arrays could you implement aOther than arrays, could you implement a 
list with any other data structure?

Rooted Trees

A tree is a collection of nodes andA tree is a collection of nodes and 
directed edges, satisfying the following 
properties:p p

There is one specially designated node 
called the root, which has no edges 

i ti t itpointing to it.
Every node except the root has exactly one 
edge pointing to itedge pointing to it.
There is a unique path (of nodes and 
edges) from the root to each node.g )



Basic Tree Conceptsp

Node – user-defined data structure that that contains 
pointers to data and pointers to other nodes:

Root – Node from which all other nodes descend
Parent has child nodes arranged in subtreesParent – has child nodes arranged in subtrees.
Child – nodes in a tree have 0 or more children. 
Leaf – node without descendants
Degree – number of  direct children a 
tree/subtree has.

Height and Level of a Tree
A

g

Height – # of edges on 

B C

g g
the  longest path from the 
root to a leaf.

D E

Level – Root is at level 
0, its   direct children are 
t l l 1 tat level 1, etc.

Recursive definition for 
height: GFheight:

1+ max(height(TL), height(TR)) 

H

Rooted Trees

If an edge goes from node a to node b, then a is 
ll d h f b d b i ll d hild fcalled the parent of b, and b is called a child of a.

Children of the same parent are called siblings.
If there is a path from a to b, then a is called anIf there is a path from a to b, then a is called an 
ancestor of b, and b is called a descendent of a.
A node with all of its descendants is called a 
subtree.subtree.
If a node has no children, then it is called a leaf of 
the tree.
If a node has no parent (there will be exactly one ofIf a node has no parent (there will be exactly one of 
these), then it is the root of the tree.

Rooted Trees: Examplep

A is the root
A

A is the root
D, E, G, H, J & 
K are leaves
B is the parentB C

F

B is the parent
of D, E & F
D, E & F are 
siblings and

D E
F

G H

I

siblings and 
children of B
I, J & K are 
descendants ofsubtree

J K

descendants of 
B
A & B are 
ancestors of Iancestors of I



Binary Treesy

Intuitively, a binary tree is a tree in which each node has y y
no more than two children.

(These two binary
trees are distinct.)

Binary Search Treesy

A binary search tree is a binary tree in which each In other words can wey y
node, n, has a value satisfying the following 
properties:

n’s value is > all values in its left subtree T

In other words, can we 
put non-hierarchical 
data into a tree. We 

will study Binary 
n s value is > all values in its left subtree, TL,
n’s value is < all values in its right subtree, TR, and
TL and TR are both binary search trees.

Search Trees later.
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Binary Trees This term is 
ambiguous, some 
i di t th t h

y

A binary tree is full if it has no missing nodes.

indicate that each 
node is either full or 

empty.
y g

It is either empty.
Otherwise, the root’s subtrees are full binary trees 
of height h – 1.

If not empty, each node has 2 children, except the nodes at 
level h which have no childrenlevel h which have no children.
Contains a total of 2h+1-1 nodes (how many leaves?)

Binary Treesy

A binary tree of height h is complete if it is full down to y g p
level h – 1, and level h is filled from left to right.

All nodes at level h – 2 and above have 2 children each,
If a node at level h 1 has children all nodes to its leftIf a node at level h – 1 has children, all nodes to its left 
at the same level have 2 children each, and
If a node at level h – 1 has 1 child, it is a left child.



Binary Treesy

A binary tree is balanced if the difference in height 
b d ’ l f d i h b i 1between any node’s left and right subtree is ≤ 1.

Note that:
A full binary tree is also complete.
A complete binary tree is not always fullA complete binary tree is not always full.
Full and complete binary trees are also balanced.
Balanced binary trees are not always full or complete.

Complete & Balanced Treesp

Complete and Balanced

Not Balanced, Why?

Binary Tree: Pointer-Based 
RepresentationRepresentation

struct TreeNode; // Binary Tree nodes are struct’s
d f i T I T // i i T N d i ’typedef string  TreeItemType; // items in TreeNodes are string’s

class BinaryTree
{
private:private:

TreeNode *root; // pointer to root of Binary Tree
};
struct TreeNode // node in a Binary Tree:y
{ //  place in Implementation file

TreeItemType item;
TreeNode *leftChild; // pointer to TreeNode’s left 
childchild
TreeNode *rightChild; // pointer to TreeNode’s right child

};

Binary Tree: Table-Based 
RepresentationRepresentation

Basic Idea:
Instead of using pointers to the left and 
right child of a node, use indices into an 
array of nodes representing the binary treearray of nodes representing the binary tree.
Also, use variable free as an index to the 
first position in the array that is available forfirst position in the array that is available for 
a new entry.  Use either the left or right 
child indices to indicate additional, available 
positionspositions.
Together, the list of available positions in 
the array is called the free list.y



Binary Tree: Table-Based 
RepresentationRepresentation

Index Item Left
Child

Right
Child

root
Child Child

0 Jane 1 2

1 Bob 3 4

0

free Jane
2 Tom 5 -1

3 Alan -1 -1

4 Ell 1 1

6

TomBob4 Ellen -1 -1

5 Nancy -1 -1

6 ? -1 7

TomBob

7 ? -1 8

8 ? -1 9

Alan NancyEllen

9 . . . . . . . . .

Binary Tree: Table-Based 
RepresentationRepresentation

Index Item Left
Child

Right
Child

root * Mary Added under Nancy.
Child Child

0 Jane 1 2

1 Bob 3 4

0

free Jane
2 Tom 5 -1

3 Alan -1 -1

4 Ell 1 1

7

TomBob4 Ellen -1 -1

5 Nancy 6 -1

6 Mary -1 -1

TomBob

6 Mary 1 1
7 ? -1 8

8 ? -1 9

Alan NancyEllen

9 . . . . . . . . . Mary

Binary Tree: Table-Based 
RepresentationRepresentation

Index Item Left
Child

Right
Child

root * Ellen deleted.
Child Child

0 Jane 1 2

1 Bob 3 -1

0

free Jane
2 Tom 5 -1

3 Alan -1 -1

4 ? 1 7

4

TomBob4 ? -1 7
5 Nancy 6 -1

6 Mary -1 -1

TomBob

6 Mary 1 1

7 ? -1 8

8 ? -1 9

Alan Nancy

9 . . . . . . . . . Mary

Binary Tree: Table-Based 
RepresentationRepresentation

const  int MaxNodes = 100; // maximum size of a Binary Tree
t d f t i T It T // it i T N d t i ’typedef string  TreeItemType; // items in TreeNodes are string’s
struct TreeNode // node in a Binary Tree
{

TreeItemType item;TreeItemType item;
int leftChild; // index of TreeNode’s left child
int rightChild; // index of TreeNode’s right child

};
l Bi Tclass BinaryTree

{
private:

TreeNode node[MaxNodes];
int root; // index of root of Binary Tree
int free; // index of free list, linked by rightChild

};



Level Ordering

1

g

1

2 3

4 75 6

Let i, 1 < i < n, be the number assigned to an element of a 
complete binary tree.complete binary tree.

Array-Based Representation

1

y p

1

2 3

4 65 7

61 2 3

Array-Based Representationy p Array-Based Representationy p

Array-based representations allow forArray based representations allow for 
efficient traversal. Consider the node at 
index iindex i.

Left Child is at index 2i+1.
Right Child is at index 2i+2Right Child is at index 2i+2.
Parent is at floor( (i-1)/2 ).



Array-Based Representationy p

Drawback of array-based trees: Example

1

Drawback of array-based trees: Example 
has only 3 nodes, but uses 2h+1-1 array cells    
to store it 1

3

to store it
Generally use Array-
based only if data 3based only if data 
set exhibits 
complete binary

7

1 3 7

complete binary 
tree behavior

1 3 7

Traversing a Binary Treeg y

Depth-first TraversalDepth first Traversal
Preorder

InorderInorder

Postorder

Breadth First TraversalBreadth-First Traversal
Level order

Preorder Traversal

Basic Idea:Basic Idea:
1) Visit the root.

2) Recursively invoke preorder on the left 
subtree.

3) Recursively invoke preorder on the right 
subtree.

Preorder Traversal

601

7020
2 7

4010 43

30 505 6

Preorder Result: 60 20 10 40 30 50 70Preorder Result:  60, 20, 10, 40, 30, 50, 70



Inorder Traversal

Basic Idea:Basic Idea:
1) Recursively invoke inorder on the left 

subtreesubtree.

2) Visit the root.

3) Recursively invoke inorder on the right 
subtree.

Inorder Traversal

606

7020
2 7

4010 41

30 503 5

Inorder Result: 10 20 30 40 50 60 70Inorder Result:  10, 20, 30, 40, 50, 60, 70

Postorder Traversal

Basic Idea:Basic Idea:
1) Recursively invoke postorder on the left 

subtreesubtree.

2) Recursively invoke postorder on the right 
subtree.

3) Visit the root.)

Postorder Traversal

607

7020
5 6

4010 41

30 502 3

Postorder Result: 10 30 50 40 20 70 60Postorder Result:  10, 30, 50, 40, 20, 70, 60



Level order traversal

• Visit the tree in left-to-right, by level, order:Visit the tree in left to right, by level, order: 
• Visit the root node and put its children in a queue 

(left to right).  

f

• Dequeue, visit, and put dequeued node’s children 
into the queue.  

R t til th
c j

h k

• Repeat until the queue 
is empty. 

a d h k

ifcjadhki

Pointer-Based, Preorder Traversal 
in C++in C++

// FunctionType is a pointer to a function with argumentyp p g
//  (TreeItemType &) that returns void.

typedef  void  (*FunctionType) (TreeItemType  &treeItem);

// Public member function
void  BinaryTree::preorderTraverse( FunctionType  visit )
{{

preorder( root,  visit );
}

Pointer-Based, Preorder Traversal 
in C++in C++

// Private member function
void  BinaryTree::preorder( TreeNode  *treePtr,  

FunctionType  visit )
{{

if( treePtr != NULL )
{

visit( treePtr -> item );visit( treePtr -> item );
preorder( treePtr -> leftChild,  visit );
preorder( treePtr -> rightChild,  visit );

}
}

Pointer-Based, Preorder Traversal 
in C++in C++

Suppose that we define the function
void  printItem( TreeItemType &treeItem )
{  cout << treeItem << endl;
}

Then,
// create myTree

BinaryTree myTree;BinaryTree myTree;
// load data into myTree

. . .
// print TreeItems encountered in preorder traversal// print TreeItems encountered in preorder traversal 
of myTree

myTree.preorderTraverse( &printItem );



Nonrecursive Traversal of a 
Binary TreeBinary Tree

Basic Idea for a Nonrecursive, Inorder Traversal:
1) Push a pointer to the root of the binary tree onto a 

stack.
2) Follow leftChild pointers, pushing each one onto the2) Follow leftChild pointers, pushing each one onto the 

stack, until a NULL leftChild pointer is found.
3) Process (visit) the item in this node.
4) Get the node’s rightChild pointer:4) Get the node s rightChild pointer:

If it is not NULL, then push it onto the stack, and return 
to step 2 with the leftChild pointer of this rightChild.
If it is NULL then pop a node pointer from the stackIf it is NULL, then pop a node pointer from the stack, 
and return to step 3.  If the stack is empty (so nothing 
could be popped), then stop — the traversal is done.

N-ary Treesy

We can encode an n-ary tree as a binary tree,We can encode an n ary tree as a binary tree, 
by have a list of linked-list of children. Hence 
still  two pointers, one to the first child and one 
to the next sibling.
Kinda rotates the tree.

Other Binary Tree Propertiesy p

The number of edges in a tree is n-1.
Th b f d i f ll bi i 2h 1 1 hThe number of nodes n in a full binary tree is: n = 2h + 1 − 1 where 
h is the height of the tree. 
The number of nodes n in a complete binary tree is:

minimum: n = 2hminimum: n  2
maximum: n = 2h + 1 − 1 where h is the height of the tree. 

The number of nodes n in a full or perfect binary tree is:
n = 2L − 1 where L is the number of leaf nodes in the tree. 

The number of leaf nodes n in a full or perfect binary tree is:
n = 2h where h is the height of the tree. 

The number of leaf nodes in a Complete Binary Tree with n
nodes is UpperBound(n / 2)nodes is UpperBound(n / 2). 
For any non-empty binary tree with n0 leaf nodes and n2 nodes of 
degree 2, n0 = n2 + 1.

Graphsp

Graph G = (V, E)
V = set of vertices
E = set of edges ⊆ (V×V)

Types of graphsTypes of graphs
Undirected: edge (u, v) = (v, u); for all v, (v, v) ∉ E (No 
self loops.)
Directed: (u, v) is edge from u to v, denoted as u → v. ( , ) g ,
Self loops are allowed.
Weighted: each edge has an associated weight, given 
by a weight function w : E → R.

2Dense: |E| ≈ |V|2.
Sparse: |E| << |V|2.

|E| = O(|V|2)| | (| | )



Graphsp

If (u, v) ∈ E, then vertex v is adjacent to vertex u.( , ) , j
Adjacency relationship is:

Symmetric if G is undirected.
Not necessarily so if G is directedNot necessarily so if G is directed.

If G is connected:
There is a path between every pair of vertices.
|E| ≥ |V| – 1.
Furthermore, if |E| = |V| – 1, then G is a tree.

Other definitions in Appendix B (B.4 and B.5) as 
needed.

Representation of Graphsp p

Two standard ways.y
Adjacency Lists.

a b a

b

b

a

d c

c

dc

b
c
d

a

d

c

a b

a c
Adjacency Matrix.

a b
1 2 1   2   3   4

1  0   1   1   1

dc
3 4

2  1   0   1   0
3  1   1   0   1
4  1   0   1   0

Adjacency Listsj y

Consists of an array Adj of |V| lists.
One list per vertex.
For u ∈ V, Adj[u] consists of all vertices adjacent to u.

a b b d ca

dc

b a

b
c

b

c

d

d c

If weighted, store weights also in 
adjacency listsdc c

d

a b

adjacency lists.

a b d c

dc

a

b
c

a

d

c

a b

d a c

Storage Requirementg q

For directed graphs:g p
Sum of lengths of all adj. lists is
∑out-degree(v) = |E|
v∈Vv∈V

Total storage: Θ(|V| + |E|)
For undirected graphs:

No. of edges leaving v

For undirected graphs:
Sum of lengths of all adj. lists is
∑degree(v) = 2|E|
v V No of edges incident on v Edge (u v) isv∈V

Total storage: Θ(|V| + |E|)

No. of edges incident on v. Edge (u,v) is 
incident on vertices u and v.



Pros and Cons: adj list j

ProsPros
Space-efficient, when a graph is sparse.
Can be modified to support many graph variants.pp y g p

Cons
Determining if an edge (u, v) ∈G is not efficient.

Have to search in u’s adjacency list. Θ(degree(u)) time.
Θ(V) in the worst case.

Adjacency Matrixj y

|V| × |V| matrix A.
Number vertices from 1 to |V| in some arbitrary manner.
A is then given by:

⎨
⎧ ∈),( if1

][
Eji

jiA
⎩
⎨==

otherwise0
],[ ajiA ij

b
1 2 1 2 3 4 a b

1 2 1 2 3 4a

dc

b 1   2   3   4
1  0   1   1   1
2  0   0   1   0
3  0   0   0   1

a

dc

b 1   2   3   4
1  0   1   1   1
2  1   0   1   0
3  1   1   0   1dc

3 4 4  0   0   0   0
dc

3 4 4  1   0   1   0

A = AT for undirected graphs.

Space and Timep

Space: Θ(V2).Space: Θ(V ).
Not memory efficient for large graphs.

Time: to list all vertices adjacent to u: Θ(V).Time: to list all vertices adjacent to u: Θ(V).
Time: to determine if (u, v) ∈ E: Θ(1).
Can store weights instead of bits for weightedCan store weights instead of bits for weighted 
graph.

Some graph operationsg p p

adjacency matrix adjacency lists
insertEdge O(1) O(e)g

isEdge

( )

O(1) O(e)

#successors?

d

O(V) O(e)

O(E)#predecessors? O(V) O(E)



C# Interfaces
using System; 
using System.Collections.Generic; 
using System.Security.Permissions; 

/// <summary>
/// The Graph interface

[assembly: CLSCompliant(true)] 
namespace OhioState.Collections.Graph { 

/// <summary>
/// IEdge provides a standard interface to specify an edge and any
/// data associated with an edge within a graph.
/// </s mmar >

/// </summary>
/// <typeparam name="N">The type associated at each node. 

Called a node or node label</typeparam>
/// <typeparam name="E">The type associated at each edge. Also 

called the edge label.</typeparam>
public interface IGraph<N,E> {/// </summary>

/// <typeparam name="N">The type of the nodes in the 
graph.</typeparam>

/// <typeparam name="E">The type of the data on an 
edge.</typeparam>

public interface IEdge<N,E> { 

public interface IGraph N,E  {
/// <summary>
/// Iterator for the nodes in the graoh.
/// </summary>
IEnumerable<N> Nodes { get; }
/// <summary>

/// <summary>
/// Get the Node label that this edge emanates from.
/// </summary>
N From { get; } 
/// <summary>
/// Get the Node label that this edge terminates at

/// Iterator for the children or neighbors of the specified node.
/// </summary>
/// <param name="node">The node.</param>
/// <returns>An enumerator of nodes.</returns>
IEnumerable<N> Neighbors(N node);
/// <summary>/// Get the Node label that this edge terminates at.

/// </summary>
N To { get; }
/// <summary>
/// Get the edge label for this edge.
/// </summary>

/// <summary>
/// Iterator over the parents or immediate ancestors of a node.
/// </summary>
/// <remarks>May not be supported by all graphs.</remarks>
/// <param name="node">The node.</param>
/// <returns>An enumerator of nodes.</returns>y

E Value { get; }
}

IEnumerable<N> Parents(N node);

C# Interfaces
/// <summary>
/// Iterator over the emanating edges from a node.
/// /

/// </summary>
/// <param name="fromNode">The node that the edge 
emanates from </param>/// </summary>

/// <param name="node">The node.</param>
/// <returns>An enumerator of nodes.</returns>
IEnumerable<IEdge<N, E>> OutEdges(N node);
/// <summary>
/// Iterator over the in-coming edges of a node.
/// </summary>

emanates from.</param>
/// <param name="toNode">The node that the edge terminates 
at.</param>
/// <returns>The edge.</returns>
E GetEdgeLabel(N fromNode, N toNode); 
/// <summary>
/// Exception safe routine to get the label on an edge./// </summary>

/// <remarks>May not be supported by all graphs.</remarks>
/// <param name="node">The node.</param>
/// <returns>An enumerator of edges.</returns>
IEnumerable<IEdge<N, E>> InEdges(N node);
/// <summary>
/// Iterator for the edges in the graph, yielding IEdge's

/// </summary>
/// <param name="fromNode">The node that the edge 
emanates from.</param>
/// <param name="toNode">The node that the edge terminates 
at.</param>
/// <param name="edge">The resulting edge if the method was 
successful. A default

/// </summary>
IEnumerable<IEdge<N, E>> Edges { get; }
/// <summary>
/// Tests whether an edge exists between two nodes.
/// </summary>
/// <param name="fromNode">The node that the edge 
emanates from </param>

/// value for the type if the edge could not be found.</param>
/// <returns>True if the edge was found. False 
otherwise.</returns>
bool TryGetEdge(N fromNode, N toNode, out E edge);

}
} 

emanates from. /param
/// <param name="toNode">The node that the edge terminates 
at.</param>
/// <returns>True if the edge exists in the graph. False 
otherwise.</returns>
bool ContainsEdge(N fromNode, N toNode);
/// <summary>
/// Gets the label on an edge/// Gets the label on an edge.

C# Interfaces
using System;

namespace OhioState.Collections.Graph {namespace OhioState.Collections.Graph {
/// <summary>
/// Graph interface for graphs with finite size.
/// </summary>
/// <typeparam name="N">The type associated at each node. Called a node or node 

label</typeparam>yp p
/// <typeparam name="E">The type associated at each edge. Also called the edge label.</typeparam>
/// <seealso cref="IGraph{N, E}"/>
public interface IFiniteGraph<N, E> : IGraph<N, E> {

/// <summary>
/// Get the number of edges in the graph.g g p
/// </summary>
int NumberOfEdges { get; }
/// <summary>
/// Get the number of nodes in the graph.
/// </summary>/// /summary
int NumberOfNodes { get; }

}
} 


