
Texture Mapping

Roger Crawfis
Ohio State University

Outline

• Modeling surface details with images.
• Texture parameterization
• Texture evaluation
• Anti-aliasing and textures.

Texture Mapping

• Why use textures?

Texture Mapping

• Modeling complexity

Quote

“I am interested in the effects on an object that speak of
human intervention. This is another factor that you must
take into consideration. How many times has the object
been painted? Written on? Treated? Bumped into?
Scraped? This is when things get exciting. I am curious
about: the wearing away of paint on steps from continual
use; scrapes made by a moving dolly along the baseboard
of a wall; acrylic paint peeling away from a previous coat
of an oil base paint; cigarette burns on tile or wood floors;
chewing gum – the black spots on city sidewalks; lover’s
names and initials scratched onto park benches…”

- Owen Demers
[digital] Texturing & Painting, 2002

Texture Mapping

• Given an object and an image:
– How does the image map to the

vertices or set of points defining
the object?

Jason Bryan

Texture Mapping

Jason Bryan

Texture Mapping

Jason Bryan

Texture Mapping

Jason Bryan

Texture Mapping

Jason Bryan

Texture Mapping

• Given an object and an image:
– How does the image map to the vertices or set

of points defining the object?

Texture Mapping

• Given an object with an image mapped to it:
– How do we use the color information from the

texture image to determine a pixel’s color?

Texture Mapping

• Problem #1 Fitting a square peg in a round
hole

Texture Mapping

• Problem #2 Mapping from a pixel to a texel

What is an image?

• How would I rotate an image 45 degrees?
• How would I translate it 0.5 pixels?

What is a Texture?

• Given the (u,v), want:
–– FF(u,v) ==> a continuous reconstruction

• = { R(u,v), G(u,v), B(u,v) }
• = { I(u,v) }
• = { index(u,v) }
• = { alpha(u,v) }
• = { normals(u,v) }
• = { surface_height(u,v) }
• = ...

What is the source of your
Texture?

• Procedural Image
• RGB Image
• Intensity image
• Opacity table

Procedural Texture
Periodic and everything else

Checkerboard

Scale: s= 10

If (u * s) % 2=0 && (v * s)%2=0
texture(u,v) = 0; // black

Else

texture(u,v) = 1; // white

RGB Textures

• Places an image on the object

Camuto 1998

Intensity Modulation Textures

• Multiply the objects color by that of the
texture.

Opacity Textures

• A binary mask, really redefines the
geometry.

Color Index Textures

• New Microsoft Extension for 8-bit textures.
• Also some cool new extensions to SGI’s

OpenGL to perform table
look-ups after the texture
samples have been
computed.

Lao 1998

Bump Mapping

• This modifies the surface normals.
• More on this later.

Lao 1998

Displacement Mapping

• Modifies the surface position in the
direction of the surface normal.

Lao 1998

Reflection Properties

• Kd, Ks
• BDRF’s

– Brushed Aluminum
– Tweed
– Non-isotropic or anisotropic surface micro

facets.

Texture and Texel
• Each pixel in a texture map is called a Texel
• Each Texel is associated with a 2D, (u,v),

texture coordinate
• The range of u, v is [0.0,1.0]

(u,v) tuple

• For any (u,v) in the range of (0-1, 0-1), we
can find the corresponding value in the
texture using some interpolation

Two-Stage Mapping

1. Model the mapping: (x,y,z) -> (u,v)
2. Do the mapping

Image space scan

For each scanline, y
For each pixel, x

compute u(x,y) and v(x,y)
copy texture(u,v) to image(x,y)

• Samples the warped texture at the
appropriate image pixels.

• inverse mapping
Texture

Image space scan

• Problems:
– Finding the inverse mapping

• Use one of the analytical mappings that are
invertable.

• Bi-linear or triangle inverse mapping

– May miss parts of the texture map

Image

Texture space scan

For each v
For each u

compute x(u,v) and y(u,v)
copy texture(u,v) to image(x,y)

• Places each texture sample to the mapped
image pixel.

• forward mapping

Texture space scan

• Problems:
– May not fill image
– Forward mapping needed

ImageTexture

Continuous functions F(u,v)

• We are given a discrete set of values:
– F[i,j] for i=0,…,N, j=0,…,M

• Nearest neighbor:
–– FF(u,v) = F[round(N*u), round(M*v)]

• Linear Interpolation:
– i = floor(N*u), j = floor(M*v)
– interpolate from F[i,j], F[i+1,j], F[i,j+1],
F[i+1,j+1]

How do we get F(u,v)?

• Higher-order interpolation
–– FF(u,v) = ∑ i∑j F[i,j] h(u,v)
– h(u,v) is called the reconstruction kernel

• Guassian
• Sinc function
• splines

– Like linear interpolation, need to find
neighbors.

• Usually four to sixteen

Texture Parameterization

• Definition:
– The process of assigning texture coordinates or

a texture mapping to an object.
• The mapping can be applied:

– Per-pixel
– Per-vertex

Texture Parameterization

• Mapping to a 3D Plane
– Simple Affine transformation

• rotate
• scale
• translate

z

y

x

u

v

Texture Parameterization

• Mapping to a Cylinder
– Rotate, translate and scale in the uv-plane
– u -> theta
– v -> z
– x = r cos(theta), y = r sin(theta)

u

v

Texture Parameterization

• Mapping to Sphere
– Impossible!!!!
– Severe distortion at the poles
– u -> theta
– v -> phi
– x = r sin(theta) cos(phi)
– y = r sin(theta) sin(phi)
– z = r cos(theta)

Texture Parameterization

• Mapping to a Sphere

u

v

Example (Rogers)

• Setup up surface, define correspondence, and voila!

x(θ,φ) = sin θ sin φ

y(θ,φ) = cos φ

z(θ,φ) = cos θ sin φ

0 ≤ θ ≤ π/2
π/4 ≤ φ ≤ π/2

Part of a sphere

(u,v) = (0,0) ⇔ (θ,φ) = (0, π/2)
(u,v) = (1,0) ⇔ (θ,φ) = (π/2, π/2)
(u,v) = (0,1) ⇔ (θ,φ) = (0, π/4)
(u,v) = (1,1) ⇔ (θ,φ) = (π/2, π/4)

Example Continued

• Can even solve for (θ,φ) and (u,v)
– A= π/2, B=0, C=-π/4, D=π/2

4

2

2

),(),(

42
),(

2
),(

π

π

π

φφθθφθ

ππφπθ

−
==

−==

vu

vvuuvu

So looks like we have the texture space ⇔ object space part done!

All Is Not Good

• Let’s take a closer look:

Started with squares and ended with curves
It only gets worse for larger parts of the sphere

Texture Parameterization

• Mapping to a Cube

u

v common
seam

Two-pass Mappings

• Map texture to:
– Plane
– Cylinder
– Sphere
– Box

• Map object to same.

u

v

u-axis

S and O Mapping

• Pre-distort the texture by mapping it onto a
simple surface like a plane, cylinder, sphere,
or box

• Map the result of that onto the surface
• Texture → Intermediate is S mapping
• Intermediate → Object is O mapping

(u,v) (xi,yi) (xo,yo,zo)
S T

Texture space Intermediate space Object space

S Mapping Example

• Cylindrical Mapping

AB

A

AB

A

zz
zzts
−
−

=
−
−

=
θθ
θθ

O Mapping

• A method to relate the surface to the cylinder

or or

O Mappings Cont’d

• Bier and Sloan defined 4 main ways
Reflected ray

Object normal

Object centroid

Intermediate surface
normal

Texture Parameterization

• Plane/ISN (projector)
– Works well for planar objects

• Cylinder/ISN (shrink-wrap)
– Works well for solids of revolution

• Box/ISN
• Sphere/Centroid
• Box/Centroid

Works well for roughly
spherical shapes

Texture Parameterization

• Plane/ISN

Texture Parameterization

• Plane/ISN
– Resembles a slide

projector
– Distortions on surfaces

perpendicular to the
plane.

Watt

Texture Parameterization

• Plane/ISN
– Draw vector from point (vertex or object space

pixel point) in the direction of the texture plane.

– The vector will intersect
the plane at some point
depending on the
coordinate system

Texture Parameterization

• Cylinder/ISN
– Distortions on

horizontal planes
– Draw vector from

point to cylinder
– Vector connects point

to cylinder axis

Watt

Texture Parameterization

• Sphere/ISN
– Small distortion

everywhere.
– Draw vector from

sphere center through
point on the surface
and intersect it with the
sphere.

Watt

Texture Parameterization

• What is this ISN?
– Intermediate surface

normal.
– Needed to handle

concave objects
properly.

– Sudden flip in texture
coordinates when the
object crosses the axis.

Texture Parameterization

• Flip direction of
vector such that it
points in the same
half-space as the
outward surface
normal.

Triangle Mapping

• Given: a triangle with texture coordinates at
each vertex.

• Find the texture coordinates at each point
within the triangle.

U=0,v=0

U=1,v=1

U=1,v=0

Triangle Mapping

• Given: a triangle with texture coordinates at
each vertex.

• Find the texture coordinates at each point
within the triangle.

U=0,v=0

U=0,v=1

U=1,v=0

Triangle Mapping

• Triangles define linear mappings.
• u(x,y,z) = Ax + By + Cz + D
• v(x,y,z) = Ex + Fy + Gz + H
• Plug in the each point and corresponding

texture coordinate.
• Three equations and three unknowns
• Need to handle special cases: u==u(x,y) or

v==v(x), etc.

Triangle Interpolation

• The equation: f(x,y) = Ax+By+C defines a linear
function in 2D.

• Knowing the values of f() at three
locations gives us
enough information
to solve for A, B
and C.

• Provided the triangle
lies in the xy-plane.

Triangle Interpolation

• We need to find two 3D functions: u(x,y,z)
and v(x,y,z).

• However, there is a relationship between x,
y and z, so they are not independent.

• The plane equation of the triangle yields:
z = Ax + By + D

Triangle Interpolation

• A linear function in 3D is defined as
– f(x,y,z) = Ax + By + Cz + D

• Note, four points uniquely determine this
equation, hence a tetrahedron has a unique
linear function through it.

• Taking a slice plane through this gives us a
linear function on the plane.

Triangle Interpolation

• Plugging in z from the plane equation.
f(x,y,z) = Ax + By + C(Ex+Fy+G) + D

= A’x + B’y + D’
• For u, we are given:

CByAxu
CByAxu
CByAxu

++=
++=
++=

222

111

000

Triangle Interpolation

• We get a similar set of equations for
v(x,y,z).

• Note, that if the points lie in a plane parallel
to the xz or yz-planes, then z is undefined.

• We should then solve the plane equation for
y or x, respectively.

• For robustness, solve the plane equation for
the term with the highest coefficient.

Quadrilateral Mapping

• Given: four texture coordinates on four
vertices of a quadrilateral.

• Determine the texture coordinates
throughout the quadrilateral.

Inverse Bilinear Interpolation

• Given a quadrilateral with texture
coordinates at each vertex

• The exact mapping, M, is unknown

u

v

x

y

z
xs

ys
T-1M-1

P0

P1

P2

P3

Inverse Bilinear Interpolation

• Given:
– (x0,y0,u0,v0)
– (x1,y1,u1,v1)
– (x2,y2,u2,v2)
– (x3,y3,u3,v3)
– (xs,ys,zs) - The screen coords. w/depth
– T-1

• Calculate (xt,yt,zt) from T-1*(xs,ys,zs)

Inverse Bilinear Interpolation

Barycentric Coordinates:
x(s,t) = x0(1-s)(1-t) + x1(s)(1-t) + x2(s)(t) + x3(1-s)(t) = xt
y(s,t) = y0(1-s)(1-t) + y1(s)(1-t) + y2(s)(t) + y3(1-s)(t) = yt
z(s,t) = z0(1-s)(1-t) + z1(s)(1-t) + z2(s)(t) + z3(1-s)(t) = zt
u(s,t) = u0(1-s)(1-t) + u1(s)(1-t) + u2(s)(t) + u3(1-s)(t)
v(s,t) = v0(1-s)(1-t) + v1(s)(1-t) + v2(s)(t) + v3(1-s)(t)

Solve for s and t using two of the first three equations.
This leads to a quadratic equation, where we want the root

between zero and one.

Degenerate Solutions

• When mapping a square texture to a
rectangle, the solutions will be linear.
– The quadratic will simplify to a linear equation.
– s(x,y) = s(x), or s(y).
– You need to check for these conditions.

Bilinear Interpolation

• Linearly interpolate each edge
• Linearly interpolate (u1,v1),(u2,v2) for each scan

line

Uh oh!

• We failed to take into account perspective
foreshortening

• Linearly interpolating doesn’t follow the object

What Should We Do?

• If we march in equal steps in screen space
(in a line say) then how to do move in
texture space?

• Must take into account perspective division

Interpolating Without Explicit
Inverse Transform

• Scan-conversion and color/z/normal
interpolation take place in screen space

• What about texture coordinates?
– Do it in clip space, or homogenous coordinates

In Clip space

• Two end points of a line segment (scan line)

• Interpolate for a point Q in-between

In Screen Space

• From the two end points of a line segment
(scan line), interpolate for a point Q in-
between:

• Where:
• Easy to show: in most occasions, t and ts are

different

From ts to t

• Change of variable: choose
– a and b such that 1 – ts = a/(a + b), ts = b/(a + b)
– A and B such that (1 – t)= A/(A + B), t = B/(A

+ B).
• Easy to get

• Easy to verify: A = aw2 and B = bw1 is a
solution

Texture Coordinates

• All such interpolation happens in
homogeneous space.

• Use A and B to linearly interpolate texture
coordinates

• The homogeneous texture coordinate is:
(u,v,1)

Homogeneous Texture
Coordinates

• ul = A/(A+B) u1
l + B/(A+B)u2

l

• wl = A/(A+B) w1
l + B/(A+B)w2

l = 1
• u = ul/wl = ul = (Au1

l + Bu2
l)/(A + B)

• u = (au1
l + Bu2

l)/(A + B)
• u = (au1

l/w1
l + bu2

l/w2
l)/(a 1/w1

l + b 1/w2
l)

Homogeneous Texture
Coordinates

• The homogeneous texture coordinates
suitable for linear interpolation in screen
space are computed simply by
– Dividing the texture coordinates by screen w
– Linearly interpolating (u/w,v/w,1/w)
– Dividing the quantities u/w and v/w by 1/w at

each pixel to recover the texture coordinates

OpenGL functions

• During initialization read in or create the
texture image and place it into the OpenGL
state.

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB,
imageWidth, imageHeight, 0, GL_RGB,
GL_UNSIGNED_BYTE, imageData);

• Before rendering your textured object, enable
texture mapping and tell the system to use
this particular texture.

glBindTexture (GL_TEXTURE_2D, 13);

