- Modeling surface details with images.
- Texture parameterization
- Texture evaluation
- Anti-aliasing and textures.
- Modeling complexity
- Why use textures?

"I am interested in the effects on an object that speak of human intervention. This is another factor that you must take into consideration. How many times has the object been painted? Written on? Treated? Bumped into? Scraped? This is when things get exciting. I am curious about: the wearing away of paint on steps from continual use; scrapes made by a moving dolly along the baseboard of a wall; acrylic paint peeling away from a previous coat of an oil base paint; cigarette burns on tile or wood floors; chewing gum - the black spots on city sidewalks; lover's names and initials scratched onto park benches..."
- Owen Demers
[digital] Texturing \& Painting, 2002

Given an object and an image:

How does the image map to the vertices or set of points defining the object?

Texture Mapping

- Given an object and an image:
-How does the image map to the vertices or set of points defining the object?

- Problem \#2 Mapping from a pixel to a texel
- Problem \#1 Fitting a square peg in a round hole

What is an image?

- How would I rotate an image 45 degrees?
- How would I translate it 0.5 pixels?
- Given the (u,v), want:
$-\mathbf{F}(\mathrm{u}, \mathrm{v})==>$ a continuous reconstruction
$\cdot=\{R(u, v), G(u, v), B(u, v)\}$
- $=\{\mathrm{I}(\mathrm{u}, \mathrm{v})\}$
- $=\{$ index $(\mathrm{u}, \mathrm{v})\}$
- $=\{\operatorname{alpha}(\mathrm{u}, \mathrm{v})\}$
- $=\{$ normals($u, \mathrm{v})\}$
$\cdot=\{$ surface_height(u,v) $\}$
- = ...

What is a Texture?

- Procedural Image
- RGB Image
- Intensity image
- Opacity table

Periodic and everything else
Checkerboard
Scale: $s=10$
If ($u^{*} s$) \% 2=0 \&\& ($\left.v^{*} s\right) \% 2=0$ texture(u,v) $=0 ; / /$ black
Else
texture $(u, v)=1 ; / /$ white

RGB Textures

OHio Intensity Modulation Textures

- Multiply the objects color by that of the texture.

Camuto 1998

- A binary mask, really redefines the geometry.

- New Microsoft Extension for 8-bit textures.
- Also some cool new extensions to SGI's OpenGL to perform table look-ups after the texture samples have been computed.

Bump Mapping

- This modifies the surface normals.
- More on this later.
- Modifies the surface position in the direction of the surface normal.

- Kd, Ks
- BDRF's
- Brushed Aluminum
- Tweed
- Non-isotropic or anisotropic surface micro facets.
- Each pixel in a texture map is called a Texel
- Each Texel is associated with a 2D, (u,v), texture coordinate
- The range of u, v is $[0.0,1.0]$

(u, v) tuple

- For any (u,v) in the range of (0-1, 0-1), we can find the corresponding value in the texture using some interpolation

Two-Stage Mapping

1. Model the mapping: $(\mathrm{x}, \mathrm{y}, \mathrm{z})->(\mathrm{u}, \mathrm{v})$
2. Do the mapping

$T(u, v)$

For each scanline, y

```
For each pixel, x
    compute u(x,y) and v(x,y)
    copy texture(u,v) to image(x,y)
```

- Samples the warped texture at the appropriate image pixels.
- inverse mapping
- Problems:
- Finding the inverse mapping
- Use one of the analytical mappings that are invertable.
- Bi-linear or triangle inverse mapping
- May \ldots... parts of the texture map

For each v
For each u
compute $x(u, v)$ and $y(u, v)$
copy texture (u, v) to image (x, y)

- Places each texture sample to the mapped image pixel.
- forward mapping
- Problems:
- May not fill image
- Forward mapping needed

- We are given a discrete set of values:
$-\mathbf{F}[i, j]$ for $\mathrm{i}=0, \ldots, \mathrm{~N}, \mathrm{j}=0, \ldots, \mathrm{M}$
- Nearest neighbor:
$-\mathbf{F}(\mathrm{u}, \mathrm{v})=\mathbf{F}\left[\operatorname{round}\left(\mathrm{N}^{*} \mathrm{u}\right), \operatorname{round}\left(\mathrm{M}^{*} \mathrm{v}\right)\right]$
- Linear Interpolation:
$-\mathrm{i}=$ floor $\left(\mathrm{N}^{*} \mathrm{u}\right), \mathrm{j}=$ floor $\left(\mathrm{M}^{*} \mathrm{v}\right)$
- interpolate from $\mathbf{F}[i, j], \mathbf{F}[i+1, j], \mathbf{F}[i, j+1]$, $\mathbf{F}[i+1, j+1]$
- Definition:
- The process of assigning texture coordinates or a texture mapping to an object.
- The mapping can be applied:
- Per-pixel
- Per-vertex
- Higher-order interpolation
$-\mathbf{F}(\mathrm{u}, \mathrm{v})=\sum_{\mathrm{i}} \sum_{\mathrm{j}} \mathbf{F}[i, j] h(u, v)$
- $h(u, v)$ is called the reconstruction kernel
- Guassian
- Sinc function
- splines
- Like linear interpolation, need to find neighbors.
- Usually four to sixteen
- Mapping to a 3D Plane
- Simple Affine transformation
- rotate
- scale
- translate

- Mapping to a Cylinder
- Rotate, translate and scale in the uv-plane
- u -> theta
- v-> z
$-\mathrm{x}=\mathrm{V} \mathrm{r} \cos ($ theta $), \mathrm{y}=\mathrm{r} \sin ($ theta $)$

- Mapping to a Sphere

- Mapping to Sphere
- Impossible!!!!
- Severe distortion at the poles
- u -> theta
-v -> phi
$-\mathrm{x}=\mathrm{r} \sin ($ theta $) \cos (\mathrm{phi})$
$-y=r \sin ($ theta $) \sin (p h i)$
$-\mathrm{z}=\mathrm{r} \cos$ (theta)

Part of a sphere

$$
\begin{aligned}
(u, v) & =(0,0) \Leftrightarrow(\theta, \phi)=(0, \pi / 2) \\
(u, v) & =(1,0) \Leftrightarrow(\theta, \phi)=(\pi / 2, \pi / 2) \\
(u, v) & =(0,1) \Leftrightarrow(\theta, \phi)=(0, \pi / 4) \\
(u, v) & =(1,1) \Leftrightarrow(\theta, \phi)=(\pi / 2, \pi / 4)
\end{aligned},
$$

- Setup up surface, define correspondence, and voila!
- Can even solve for (θ, ϕ) and (u, v)

$$
\begin{aligned}
&-\mathrm{A}=\pi / 2, \mathrm{~B}=0, \mathrm{C}=-\pi / 4, \mathrm{D}=\pi / 2 \\
& \theta(u, v)=\frac{\pi}{2} u \phi(u, v)=\frac{\pi}{2}-\frac{\pi}{4} v \\
& u(\theta, \phi)=\frac{\theta}{\pi / 2} v(\theta, \phi)=\frac{\pi / 2-\phi}{\pi / 4}
\end{aligned}
$$

So looks like we have the texture space \Leftrightarrow object space part done!

- Let's take a closer look:

Started with squares and ended with curves $:$: It only gets worse for larger parts of the sphere

- Mapping to a Cube

u

- Map texture to:
- Plane
- Cylinder
- Sphere

Two-pass Mappings

- Box
- Map object to same.

- Pre-distort the texture by mapping it onto a simple surface like a plane, cylinder, sphere, or box
- Map the result of that onto the surface
- Texture \rightarrow Intermediate is S mapping
- Intermediate \rightarrow Object is O mapping
$(\mathrm{u}, \mathrm{v}) \xrightarrow{\mathrm{S}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) \xrightarrow{\mathrm{T}}\left(\mathrm{x}_{0}, \mathrm{y}_{\mathrm{o}}, \mathrm{z}_{\mathrm{o}}\right)$
Texture space \longrightarrow Intermediate space \longrightarrow Object space
- Cylindrical Mapping

$$
s=\frac{\theta-\theta_{A}}{\theta_{B}-\theta_{A}} \quad t=\frac{z-z_{A}}{z_{B}-z_{A}}
$$

O Mapping

- A method to relate the surface to the cylinder

- Bier and Sloan defined 4 main ways

- Plane/ISN (projector)
- Works well for planar objects
- Cylinder/ISN (shrink-wrap)
- Works well for solids of revolution
- Box/ISN
- Sphere/Centroid
- Box/Centroid

- Plane/ISN

Texture Parameterization

- Plane/ISN
- Draw vector from point (vertex or object space pixel point) in the direction of the texture plane.
- The vector will intersect the plane at some point depending on the coordinate system

- Cylinder/ISN

- Distortions on horizontal planes
- Draw vector from point to cylinder
- Vector connects point to cylinder axis

Watt

- Sphere/ISN
- Small distortion everywhere.
- Draw vector from sphere center through point on the surface and intersect it with the sphere.

Watt

- What is this ISN?
- Intermediate surface normal.
- Needed to handle concave objects properly.
- Sudden flip in texture coordinates when the object crosses the axis.

- Flip direction of vector such that it points in the same half-space as the outward surface normal.

- Given: a triangle with texture coordinates at each vertex.
- Find the texture coordinates at each point within the triangle.

- Given: a triangle with texture coordinates at each vertex.
- Find the texture coordinates at each point within the triangle.

Triangle Mapping

- Triangles define linear mappings.
- $\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}$
- $v(x, y, z)=E x+F y+G z+H$
- Plug in the each point and corresponding texture coordinate.
- Three equations and three unknowns
- Need to handle special cases: $u==u(x, y)$ or $\mathrm{v}==\mathrm{v}(\mathrm{x})$, etc.
- The equation: $f(x, y)=\mathrm{A} x+\mathrm{B} y+\mathrm{C}$ defines a linear function in 2D.
- Knowing the values of $f()$ at three locations gives us enough information to solve for A, B and C.
- Provided the triangle lies in the xy-plane.

- We need to find two 3D functions: $u(x, y, z)$ and $v(x, y, z)$.
- However, there is a relationship between x , y and z, so they are not independent.
- The plane equation of the triangle yields:

$$
z=A x+B y+D
$$

- A linear function in 3 D is defined as

$$
-f(x, y, z)=A x+B y+C z+D
$$

- Note, four points uniquely determine this equation, hence a tetrahedron has a unique linear function through it.
- Taking a slice plane through this gives us a linear function on the plane.

Triangle Interpolation

- We get a similar set of equations for $v(x, y, z)$.
- Note, that if the points lie in a plane parallel to the $x z$ or $y z$-planes, then z is undefined.
- We should then solve the plane equation for y or x, respectively.
- For robustness, solve the plane equation for the term with the highest coefficient.
- Given: four texture coordinates on four vertices of a quadrilateral.
- Determine the texture coordinates throughout the quadrilateral.
- Given a quadrilateral with texture coordinates at each vertex
- The exact mapping, M, is unknown

ohio Inverse Bilinear Interpolation

- Given:
- $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{u}_{0}, \mathrm{~V}_{0}\right)$
$-\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{u}_{1}, \mathrm{v}_{1}\right)$
$-\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{u}_{2}, \mathrm{~V}_{2}\right)$
$-\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{u}_{3}, \mathrm{~V}_{3}\right)$
- (xs,ys,zs) - The screen coords. w/depth
- T^{-1}
- Calculate (xt,yt,zt) from T-1*(xs,ys,zs)

Barycentric Coordinates:

$$
\begin{aligned}
& x(s, t)=x_{0}(1-s)(1-t)+x_{1}(s)(1-t)+x_{2}(s)(t)+x_{3}(1-s)(t)=x t \\
& y(s, t)=y_{0}(1-s)(1-t)+y_{1}(s)(1-t)+y_{2}(s)(t)+y_{3}(1-s)(t)=y t \\
& z(s, t)=z_{0}(1-s)(1-t)+z_{1}(s)(1-t)+z_{2}(s)(t)+z_{3}(1-s)(t)=z t \\
& u(s, t)=u_{0}(1-s)(1-t)+u_{1}(s)(1-t)+u_{2}(s)(t)+u_{3}(1-s)(t) \\
& v(s, t)=v_{0}(1-s)(1-t)+v_{1}(s)(1-t)+v_{2}(s)(t)+v_{3}(1-s)(t)
\end{aligned}
$$

Solve for s and t using two of the first three equations.
This leads to a quadratic equation, where we want the root between zero and one.

- When mapping a square texture to a rectangle, the solutions will be linear.
- The quadratic will simplify to a linear equation.
$-\mathrm{s}(\mathrm{x}, \mathrm{y})=\mathrm{s}(\mathrm{x})$, or $\mathrm{s}(\mathrm{y})$.
- You need to check for these conditions.

- Linearly interpolate each edge
- Linearly interpolate (u1,v1),(u2,v2) for each scan line
 What Should We Do?
- If we march in equal steps in screen space (in a line say) then how to do move in texture space?
- Must take into account perspective division
- We failed to take into account perspective foreshortening
- Linearly interpolating doesn't follow the object
- Scan-conversion and color/z/normal interpolation take place in screen space
- What about texture coordinates?
- Do it in clip space, or homogenous coordinates
- From the two end points of a line segment (scan line), interpolate for a point Q inbetween:

$$
\mathbf{Q}^{s}=\left(1-t^{s}\right) \mathbf{Q}_{1}^{s}+t^{s} \mathbf{Q}_{2}^{s}
$$

- Where: $\mathbf{Q}_{1}^{s}=\mathbf{Q}_{1} / w_{1}$ and $\mathbf{Q}_{2}^{s}=\mathbf{Q}_{2} / w_{2}$.
- Easy to show: in most occasions, t and t^{s} are different
- Two end points of a line segment (scan line)

$$
\mathbf{Q}_{1}=\left(x_{1}, y_{1}, z_{1}, w_{1}\right) \quad \mathbf{Q}_{2}=\left(x_{2}, y_{2}, z_{2}, w_{2}\right)
$$

- Interpolate for a point Q in-between

$$
\mathbf{Q}=(1-t) \mathbf{Q}_{1}+t \mathbf{Q}_{2}
$$

- All such interpolation happens in homogeneous space.
- Use A and B to linearly interpolate texture coordinates
- The homogeneous texture coordinate is: (u,v,1)
- $u^{\prime}=A /(A+B) u_{1}{ }^{\prime}+B /(A+B) u_{2}{ }^{\prime}$
- $w^{\prime}=A /(A+B) w_{1}{ }^{\prime}+B /(A+B) w_{2}{ }^{\prime}=1$
- $u=u^{\prime} / w^{\prime}=u^{\prime}=\left(A u_{1}^{\prime}+B u_{2}{ }^{\prime}\right) /(A+B)$
- $u=\left(a u_{1}{ }^{\prime}+B u_{2}{ }^{\prime}\right) /(A+B)$
- $u=\left(a u_{1}{ }^{\prime} / w_{1}{ }^{\prime}+b u_{2}{ }^{\prime} / w_{2}{ }^{\prime}\right) /\left(a^{1 /} / w_{1}{ }^{\prime}+b^{1 /} / w_{2}^{\prime}\right)$

Homogeneous Texture Coordinates

Open GL functions

- During initialization read in or create the texture image and place it into the OpenGL state.
gITexImage2D (GL_TEXTURE_2D, 0, GL_RGB,
imageWidth, imageHeight, O, GL_RGB,
GL_UNSIGNED_BYTE, imageData);
- Before rendering your textured object, enable texture mapping and tell the system to use this particular texture.
gIBindTexture (GL_TEXTURE_2D, 13);

