
CIS 781
3D Raster Graphics

Roger Crawfis
Ohio State University

Realism Through Synthesis

Real

Fake

Play Games …

Stalker screen shotNFL Fever screen shot

Design

Golf course LPGASubdivision planning

3D Nature Construction images

Goals of Computer Graphics

• Generate synthetic images that look real !
• Do it in a practical way and scientifically

sound.
• In real time, obviously. And make it look easy…

Major Topics

• Modeling: representing objects; building
those representations.

• Rendering: how to simulate the image-
forming process.

• Interaction: change / manipulate objects,
immersion

• Real-Time: render quickly (30 frames/sec)

The Quest for Visual Realism Modeling

❚ How to represent real environments
❙ geometry: curves, surfaces, volumes
❙ photometry: light, color, reflectance

❚ How to build these representations
❙ declaratively: write it down
❙ interactively: sculpt it
❙ programmatically: let it grow (fractals,

algebraic/geometric Methods, extraction)
❙ via 3D sensing: scan it in

❙ Get Primitives -lines, triangles, quads, patches !

Hardware, human Points
Primitives

Modeling - Declarative,
Scanning

Algebraic, Interactive

Primitives ?

Modeling - Procedural

Crawfis, 2001 3D Nature Construction

Mountains

Modeling - Procedural

Plants

Bryce, 2002

3D Nature Construction

Rendering

❚ What’s an image?
❙ distribution of light energy on 2D “film”

❚ How do we represent and store images
❙ sampled array of “pixels”: p[x,y]

❚ How to generate images from scenes
❙ input: 3D description of scene, camera
❙ project to camera’s viewpoint
❙ illumination

Examples

Other Examples Outline

• Review
– Transformations
– OpenGL

• Polygonal models and model construction
• Viewing

– Projections
– Clipping

Outline

• 3D polygonal rendering
– Rasterization
– Clipping
– Hidden surface determination

• Shadows
• Texture Mapping

Other Courses @ OSU

❚ cis581 – Intro to 3D Graphics, OpenGL

❚ Cis681 – Ray Tracing, Local Illumination, Anti-aliasing

❚ Cis782 – Global Illumination, Special Topics

❚ Cis 784 - Geometric Modeling

❚ Cis 694? – Scientific Visualization (Crawfis/Shen)

❚ Cis 694R – Animation (Parent)

Course Topics

• Texture Mapping
– Texture Parameterization:

• Mapping an image to a
model

– Determining the pixel
value during scan-
conversion

– Avoiding Aliasing in
Texture Mapping

Coleman 2001

Bryan 2000

Quote (CIS 681 and 782)

“Now when I paint, I am able to see the bits and the whole at
the same time, and colors and shapes pop out at me more
readily. For example, now, instead of seeing just an apple
inside a bowl, I see an apple catching the reflection from
the bowl and reciprocally the color of the apple
transferring onto the ceramic surface of the bowl. The
bowl must then have a reflective surface capturing other
parts of the still life and its shadow on the white cloth
below is not gray but is actually a bluish tinge with purple
edges, and so forth.”

- Owen Demers
[digital] Texturing & Painting, 2002

Lights and Shadows

Wreckless screen shot, 2001
3D Nature Construction

Quote

“I am interested in the effects on an object that speak of
human intervention. This is another factor that you must
take into consideration. How many times has the object
been painted? Written on? Treated? Bumped into?
Scraped? This is when things get exciting. I am curious
about: the wearing away of paint on steps from continual
use; scrapes made by a moving dolly along the baseboard
of a wall; acrylic paint peeling away from a previous coat
of an oil base paint; cigarette burns on tile or wood floors;
chewing gum – the black spots on city sidewalks; lover’s
names and initials scratched onto park benches…”

- Owen Demers
[digital] Texturing & Painting, 2002

Adding Detail

Medal of Honor screen snapshot
Stalker screen snapshot

Prestene Worn and tattered

Shadows

Essential Process

Umbra

Penumbra

Texture Mapping

• Why use textures?

Texture Mapping

• Modeling complexity

Essential Process

Primitives

Transform Texture Illuminate

Graphics Pipeline (OpenGL) The Problem of Visibility

Light Material Interaction - ?
Modeling

• Types:
– Polygon surfaces
– Curved surfaces

• Generating models:
– Interactive
– Procedural

Polygon Mesh

• Set of surface
polygons that
enclose an
object interior,
polygon mesh

• De facto:
triangles,
triangle mesh.

Representing Polygon Mesh

• Vertex coordinates
list, polygon table
and (maybe) edge
table

• Auxiliary:
– Per vertex normal
– Neighborhood

information,
arranged with regard
to vertices and edges

Arriving at a Mesh

• Use patches model as implicit or parametric
surfaces

• Beziér Patches : control polyhedron with 16
points and the resulting bicubic patch:

Example: The Utah Teapot
• 32 patches

single shaded patch

wireframe of the control points
Patch edges

Patch Representation vs. Polygon Mesh

• Polygons are simple and flexible building blocks.
• But, a parametric representation has advantages:

– Conciseness
• A parametric representation is exact and analytical.

– Deformation and shape change
• Deformations appear smooth, which is not generally

the case with a polygonal object.

Shape Construction Operations

• Extrude: add a height to a flat polygon
• Revolve: Rotate a polygon around a certain axis
• Sweep: sweep a shape along a certain curve (a

generalization of the above two)
• Loft: shape from contours (usually in parallel

slices)
• Set operations (intersection, union, difference),

CSG (constructive solid geometry)

Sweep (Revolve and Extrude)
Constructive Solid Geometry

(CSG)
• To combine the volumes occupied by overlapping 3D

shapes using set operations.

union
intersection difference

A CSG Tree Example Modeling Package: Alias Studio

P

P

F

Pin Hole Model

• Visibility Cone with apex at observer
• Reduce hole to a point - the cone becomes a ray
• Pin hole - focal point, eye point or center of

projection.

WORLD

OBJECT
EYE

Transformations

• Modeling transformations
• build complex models by positioning simple components

• Viewing transformations
• placing virtual camera in the world
• transformation from world coordinates

to eye coordinates
• Side note: animation: vary transformations

over time to create motion

Viewing Pipeline

• Object space: coordinate space where each component is defined
• World space: all components put together into the same 3D scene

via affine transformation. (camera, lighting defined in this space)
• Eye space: camera at the origin, view direction coincides with the

z axis. Hither and Yon planes perpendicular to the z axis
• Clipping space: do clipping here. All points are in homogeneous

coordinates, i.e., each point is represented by (x,y,z,w)
• 3D image space (Canonical view volume): a parallelpipied shape

defined by (-1:1,-1:1,0,1). Objects in this space are distorted
• Screen space: x and y screen pixel coordinates

Object
Space

World
Space

Eye
Space

Clipping
Space

Canonical
view volume

Screen
Space

Object Space and World Space:

Eye-Space:

eye

3.

Model->Eye Space

Clip and Image Spaces

• Clip Space
• Image Space

1. 2.

3. 4.

5. 6.

2D Transformation

• Translation

• Rotation

Homogeneous Coordinates

• Matrix/Vector format for translation:

Translation in Homogenous
Coordinates

• There exists an inverse mapping for each
function

• There exists an identity mapping

Why these properties are
important

• when these conditions are shown for any class of
functions it can be proven that such a class is closed
under composition

• i. e. any series of translations can be composed to a
single translation.

Rotation in Homogeneous Space

The two properties
still apply.

Putting Translation and Rotation
Together

• Order matters !!

Affine Transformation

• Property: preserving parallel lines
• The coordinates of three corresponding

points uniquely determine any Affine
Transform!!

Affine Transformations

• Translation
• Rotation
• Scaling
• Shearing

T

How to determine an Affine 2D
Transformation?

• We set up 6 linear equations in terms of our 6
unknowns. In this case, we know the 2D coordinates
before and after the mapping, and we wish to solve
for the 6 entries in the affine transform matrix

Affine Transformation in 3D

• Translation

• Rotate

• Scale

• Shear

More Rotation

• Which axis of rotation?

Global Deformations

• Taper
• Twist
• Bend

Global Deformations

• Tapering:
r = f(z)
x = r*x
y = r*y
z = z

Global Deformations

• Twisting:
θ = f(z)
x = x*cos θ - y*sin θ
y = x*sin θ + y*cos θ
z = z

Global Deformations

• Bending:
– More general, bend about some axis.

Viewing

• Placing objects in World space: affine
transformations

• World space to Eye space: ???
• Eye space to Clipping space: involves

projection and viewing frustum

Perspective Projection
and Pin Hole Camera

• Projection point sees anything on ray through pinhole F
• Point W projects along the ray through F to appear at I

(intersection of WF with image plane)

F

Image

World
I

W

Image Formation

F

Image

World

Projecting shapes
• project points onto image plane
• lines are projected by projecting their

end points only

Orthographic Projection

• focal point at infinity
• rays are parallel and orthogonal to the image plane

Image

World

F

Comparison

Simple Perspective Camera

• camera looks along z-axis
• focal point is the origin
• image plane is parallel to xy-plane at distance d

Y

Z
[0, d][0, 0]

[Y, Z]

[(d/Z)Y, d]

Similar Triangles

• Similar situation with x-coordinate
• Similar Triangles:

point [x,y,z] projects to [(d/z)x, (d/z)y, d]

Projection Matrix

Projection using homogeneous coordinates:
– transform [x, y, z] to [(d/z)x, (d/z)y, d]

d 0 0 0
0 d 0 0
0 0 d 0
0 0 1 0





















x
y
z
1





















= dx dy dz z[] ⇒ d
z

x d
z

y d

 


 

Divide by 4th coordinate
(the “w” coordinate)

Image Space

• 2-D image point:
• discard third coordinate
• apply viewport transformation to obtain physical

pixel coordinates

• Defines visible region of space, pyramid edges are clipping planes
• Frustum :truncated pyramid with near and far clipping planes

– Near (Hither) plane ? Don’t care about behind the camera
– Far (Yon) plane, define field of interest, allows z to be scaled to a

limited fixed-point value for z-buffering.

View Volume Difficulty

• It is difficult to do clipping directly in the
viewing frustum

Canonical View Volume

• Normalize the viewing frustum to a cube, canonical view
volume

• Converts perspective frustum to orthographic frustum –
perspective transformation

Perspective Transform

• The equations
alpha = yon/(yon-hither)

beta = yon*hither/(hither - yon)

s: size of window on the
image plane

z

z’

1
alpha

yon

hither

About Perspective Transform

• Some properties

About Perspective Transform

• Clipping can be performed against the
rectilinear box

• Planarity and linearity are preserved
• Angles and distances are not preserved
• Side effects: objects behind the observer are

mapped to the front.

Perspective + Projection Matrix

• AR: aspect ratio correction, ResX/ResY
• s= ResX,
• Theta: half view angle, tan(theta) = s/d

1 0 0 0
0 0 0
0 0 tan tan
0 0 tan 0

AR
P

α θ θ
β θ

 
 
 =
 
   

eye

coi

ρ

hither
yon

Camera Control and Viewing

• Focal length (d), image size/shape and clipping planes included
in perspective transformation

– ρρρρ - Angle or Field of view (FOV)
– AR - Aspect Ratio of view-port
– Hither, Yon - Nearest and farthest vision limits (WS).
– Lookat – COI
– Lookfrom – Eye point
– View angle – Field-of-view

Complete Perspective

• Specify near and far clipping planes -
transform z between znear and zfar on to a
fixed range

• Specify field-of-view (fov) angle
• OpenGL’s glFrustum and gluPerspective do

these

More Viewing Parameters

Camera, Eye or Observer:
lookfrom: location of focal point or camera
lookat: point to be centered in image

Camera orientation about the lookat-lookfrom axis

vup: a vector that is pointing straight up in
the image. This is like an orientation.

Implementation … Full Blown

• Translate by -lookfrom, bring focal point to origin
• Rotate lookat-lookfrom to the z-axis with matrix R:

• v = (lookat-lookfrom) (normalized) and z = [0,0,1]
• rotation axis: a = (vxz)/|vxz|
• rotation angle: cosθ = a•z and sinθ = |rxz|

• OpenGL: glRotate(θ, ax, ay, az)
• Rotate about z-axis to get vup parallel to the y-axis

Viewport mapping

• Change from the image coordinate system (x,y,z)
to the screen coordinate system (X,Y).

• Screen coordinates are always non-negative
integers.

• Let (vr,vt) be the upper-right corner and (vl,vb) be
the lower-left corner.

• X = x * (vr-vl)/2 + (vr+vl)/2
• Y = y * (vt-vb)/2 + (vt+vb)/2

True Or False

• In perspective transformation parallelism is
not preserved.
– Parallel lines converge
– Object size is reduced by increasing distance from center of
projection
– Non-uniform foreshortening of lines in the object as a
function of orientation and distance from center of projection
– Aid the depth perception of human vision, but shape is not
preserved

True Or False

• Affine transformation is a combination of
linear transformations

• The last column/row in the general 4x4
affine transformation matrix is [0 0 0 1]T.

• After affine transform, the homogeneous
coordinate w maintains unity.

Introduction to OpenGL

Roger Crawfis
This set of slides are from Jian Huang and are based upon the slides from
the Interactive OpenGL Programming course given by Dave Shreine, Ed

Angel and Vicki Shreiner on SIGGRAPH 2001.

OpenGL an GLUT Overview

• What is OpenGL & what can it do for
me?

• OpenGL in windowing systems
• Why GLUT
• GLUT program template

What Is OpenGL?

• Graphics rendering API
– high-quality color images composed of

geometric and image primitives
– window system independent
– operating system independent

OpenGL Architecture

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Frame
Buffer

Texture
Memory

CPU

Pixel
Operations

OpenGL as a Renderer

• Geometric primitives
– points, lines and polygons
– Image Primitives
– images and bitmaps

• separate pipeline for images and geometry
– linked through texture mapping

• Rendering depends on state
– colors, materials, light sources, etc.

Related APIs

• AGL, GLX, WGL
– glue between OpenGL and windowing systems

• GLU (OpenGL Utility Library)
– part of OpenGL
– NURBS, tessellators, quadric shapes, etc

• GLUT (OpenGL Utility Toolkit)
– portable windowing API
– not officially part of OpenGL

OpenGL and Related APIs Preliminaries

• Header Files
– #include <GL gl.h>
– #include <GL glu.h>
– #include <GL glut.h>

• Libraries
• Enumerated types
• OpenGL defines numerous types for

compatibility
– GLfloat, GLint, GLenum, etc.

GLUT Basics

• Application Structure
• Configure and open window
• Initialize OpenGL state
• Register input callback functions

– render
– resize
– input: keyboard, mouse, etc.

• Enter event processing loop

Sample Program

void main(int argc, char** argv)
{

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
glutCreateWindow(“Simple OpenGL Program”);

my_init(); // initiate OpenGL states, program variables
glutDisplayFunc(my_display); // register callback routines
glutReshapeFunc(my_resize);
glutKeyboardFunc(my_key_events);
glutIdleFunc(my_idle_func);
glutMainLoop(); // enter the event-driven loop

}

OpenGL Initialization

• Set up whatever state you’re going to use
void my_init(void)
{

glClearColor(0.0, 0.0, 0.0, 1.0);
glClearDepth(1.0);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING);
glEnable(GL_DEPTH_TEST);

}

GLUT Callback Functions

• Routine to call when something happens
– window resize or redraw
– user input
– animation

• “Register” callbacks with GLU
– glutDisplayFunc(my_display);
– glutIdleFunc(my_idle_func);
– glutKeyboardFunc(my_key_events);

Rendering Callback

• Do all of our drawing here
glutDisplayFunc(my_display);
void my_display(void)
{

glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_TRIANGLE);

glVertex3fv(v[0]);
glVertex3fv(v[1]);
glVertex3fv(v[2]);

glEnd();
glutSwapBuffers();

}

Idle Callbacks

• Used for animation, game AI and other
continuous updates
glutIdleFunc(my_idle_func);
void my_idle_func (void)
{

if(rotate) theta +=dt;
glutPostRedisplay();

}

User Input Callbacks

• Process user input
glutKeyboardFunc(my_key_events);
void my_key_events (char key, int x, int y)
{

switch(key) {
case ‘q’ : case ‘Q’ :

exit(EXIT_SUCCESS);
break;

case ‘r’ : case ‘R’ :
rotate = GL_TRUE;
break;

}

}

Elementary Rendering

• Geometric Primitives
• Managing OpenGL State
• OpenGL Buffers

OpenGL Geometric Primitives

• All geometric primitives are specified by
vertices

Simple Example

void drawRhombus(GLfloat color[])
{

glBegin(GL_QUADS);
glColor3fv(color);
glVertex2f(0.0, 0.0);
glVertex2f(1.0, 0.0);
glVertex2f(1.5, 1.118);
glVertex2f(0.5, 1.118);

glEnd();
}

OpenGL Command Formats
Specifying Geometric

Primitives

• Primitives are specified using
glBegin(primType);
glEnd();

• primType determines how vertices are combined
GLfloat red, greed, blue;
Glfloat coords[3];
glBegin(primType);

for (i =0; i <nVerts; i++) {
glColor3f(red, green, blue);
glVertex3fv(coords);

}
glEnd();

OpenGL Color Model

• Both RGBA (true color) and Color Index

Controlling Rendering

• Appearance
• From Wireframe to Texture mapped

OpenGL’s State Machine

• All rendering attributes are
encapsulated in the OpenGL State
– rendering styles
– shading
– lighting
– texture mapping

Manipulating OpenGL State

• Appearance is controlled by current state
for each (primitive to render) {

update OpenGL state
render primitive

}
• manipulating vertex attributes is most

common way to manipulate state
– glColor*() / glIndex*()
– glNormal*()
– glTexCoord*()

Controlling current state

• Setting State
glPointSize(size);
glLineStipple(repeat, pattern);
glShadeModel(GL_ SMOOTH);

• Enabling Features
glEnable(GL_ LIGHTING);
glDisable(GL_TEXTURE_2D);

Transformations in OpenGL

• Modeling
• Viewing

– orient camera
– projection

• Animation
• Map to screen

Coordinate Systems and
Transformations

• Steps in Forming an Image
– specify geometry (world coordinates)
– specify camera (camera coordinates)
– project (window coordinates)
– map to viewport (screen coordinates)

• Each step uses transformations
• Every transformation is equivalent to a

change in coordinate systems

3D Transformations

• A vertex is transformed by 4 x 4 matrices
• all affine operations are matrix multiplication
• matrices are stored column-major in OGL
• matrices are always post-multiplied

• OpenGL uses stacks of matrices, the programmer
must remember that the last matrix specified is the
first applied.

Specifying Transformations

• Programmer has two styles of specifying
transformations
– specify matrices glLoadMatrix, glMultMatrix
– specify operations glRotate, glOrtho

• Programmer does not have to remember the
exact matrices

• Check Appendix of the Red Book

Programming Transformations

• Prior to rendering, view, locate, and orient:
– eye/camera position
– 3D geometry

• Manage the matrices
– including matrix stack

• Combine (composite) transformations
• Transformation matrices are part of the state, they must be

defined prior to any vertices to which they are to apply.
• OpenGL provides matrix stacks for each type of supported

matrix (ModelView, projection, texture) to store matrices.

Transformation Pipeline Matrix Operations

• Specify Current Matrix Stack
– glMatrixMode(GL_MODELVIEW or GL_PROJECTION)

• Other Matrix or Stack Operation
– glLoadIdentity() glPushMatrix() glPopMatrix()

• Viewport
– usually same as window size
– viewport aspect ratio should be same as

projection transformation or resulting image may
be distorted

– glViewport(x, y, width, height)

Projection Transformation

• Perspective projection
– gluPerspective(fovy, aspect, zNear, zFar)
– glFrustum(left, right, bottom, top, zNear, zFar)

(very rarely used)
• Orthographic parallel projection

– glOrtho(left, right, bottom, top, zNear, zFar)
– gluOrtho2D(left, right, bottom, top)
– calls glOrtho with z values near zero

• Warning: for gluPerspective() or
glFrustum(), don’t use zero for zNear!

Applying Projection

• Transformations
• Typical use (orthographic projection)

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom, top, zNear, zFar);

Viewing Transformations

• Position the camea/eye in the scene
• To “fly through” a scene
• change viewing transformation and redraw

scene
gluLookAt(eye x ,eye y ,eye z ,

aim x ,aim y ,aim z ,
up x ,up y ,up z)

• up vector determines unique orientation
• careful of degenerate positions

Modeling Transformations

• Move object
– glTranslate{fd}(x, y, z)

• Rotate object aro nd arbitrary axis
– glRotate{fd}(angle, x, y, z)
– angle is in degrees

• Dilate (stretch or shrink) object
– glScale{fd}(x, y, z)

Projection is left handed

• Projection transformation (gluPerspective,
glOrtho) are left handed
– think of zNear and zFar as distance from view

point
• Everything else is right handed, including the

vertexes to be rendered

Common Transformation
Usage

• Example of resize() routine
– restate projection & viewing

transformations
• Usually called when window resized
• Registered a callback for glutReshapeFunc()

resize(): Perspective & LookAt
void resize(int w, int h)
{

glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(65.0, (GLfloat) w / h,

1.0, 100.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0, 0.0, 5.0,

0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

}

Hierarchical Modeling

• A node represents:
– rotation(s)
– geometric primitive(s)
– Transformations

The root can be anywhere
(hip)
Control for each joint angle,
plus global position and
orientation

hiphip

torsotorso

headheadl. arm2l. arm2

l. arm1l. arm1 r. arm1r. arm1

r. arm2r. arm2

l. leg1l. leg1

l. leg2l. leg2

r. leg1r. leg1

r. leg 2r. leg 2shouldershoulder

neckneck

Relevant OpenGL Routines

• glPushMatrix(), glPopMatrix()
– push and pop the stack. push leaves a copy of the current matrix on top

of the stack
• glLoadIdentity(), glLoadMatrixd(M)

– load the Identity matrix, or an arbitrary matrix, onto top of the stack
• glMultMatrixd(M)

– multiply the matrix C on top of stack by M. C = CM
• glOrtho (x0,y0,x1,y1,z0,z1)

– set up parallel projection matrix
• glRotatef(theta,x,y,z), glRotated(…)

– axis/angle rotate. “f” and “d” take floats and doubles, respectively
• glTranslatef(x,y,z), glScalef(x,y,z)

– translate, scale. (also exist in “d” versions.)

BB
q

p

AA
r

Trans -rTrans -r

Rot vRot v

Trans qTrans q

AA

Trans -pTrans -p

Rot uRot u

Trans TTrans T

BB

OpenGL Example

glLoadIdentity();
glOrtho(…);
glPushMatrix();

glTranslatef(Tx,Ty,0);
glRotatef(u,0,0,1);
glTranslatef(-px,-py,0);
glPushMatrix();

glTranslatef(qx,qy,0);
glRotatef(v,0,0,1);
glTranslatef(-rx,-ry,0);
Draw(A);

glPopMatrix();
Draw(B);

glPopMatrix();

Hierarchy methods

• Object Oriented
• Push matrix stack

– Implies depth-first traversal
• Do type-specific transform
• Recurse on its children, and pops.

Interactive Applications

• How do we add interactive control?
• Many different paradigms

– Examiner => Object in hand
– Fly-thru => In a virtual vehicle pod
– Walk-thru => Constrained to stay on ground.
– Move-to / re-center => Pick a location to fly to.

• Collision detection?
– Can we pass thru objects like ghosts?

Interactive Applications

• What do we use to control the motion?
– Mouse

• One-button, two-button, three-button
• What button does what?
• Only when mouse is clicked down, released up, or

continuously as the mouse moves?

– Keyboard
• Arrow keys?

Input Devices
• Interactive user control devices

– Mouse
– 3D pointer - Polhemus, Microscribe, …
– Spaceball
– Hand-held wand
– Data Glove
– Gesture
– Custom

A Virtual Trackball

• A rather standard and easy-to-use interface.
• Examiner type of interaction.
• Consider a hemi-sphere over the image-

plane.
• Each point in the

image is projected
onto the hemi-sphere.

A Virtual Trackball

• Points inside the projection of the hemi-sphere are
mapped up to the surface.
– Determine distance from point (mouse position) to the

image-plane center.
– Scale such that points on

the silhouette of the sphere
have unit length.

– Add the z-coordinate to
normalize the vector.

A Virtual Trackball

• Do this for all points.
• Keep track of the last trackball (mouse) location and the

current location.
• This is the direction we want the scene to move in.
• Take the direction

perpendicular to this and use
it as the axis of rotation.

• Use the distance between the
two points to determine the
rotation angle (or amount).

A Virtual Trackball

• Rotation axis:

Where, v1 and v2 are the
mouse points mapped
to the sphere.

v1

v2

1 2u v v= ⊗

A Virtual Trackball

• Use glRotatef(angle, ux, uy, uz)
• Slight problem: We want the rotation to be

the last operation performed.
• Easily fixed:

– Read out the current GL_MODELVIEW matrix
– Load the identity matrix
– Rotate
– Multiply by the saved GL_MODELVIEW matrix

Virtual Reality

Roger Crawfis

Virtual reality technology

• many definitions of virtual reality (VR), for example:
•

"the creation of the effect of immersion in a computer-
generated three-dimensional environment in which objects
have spatial presence" [Bryson & Feiner, 1994]

• "things as opposed to pictures of things”
• interaction, not content
• many variations, desktop VR, fish tank VR, augmented

reality

Related terminology

• virtual environment
• virtual world
• artificial reality
• augmented reality
• telepresence
• Teleoperation
• Collaborative Spaces

Performance requirements

• wide-field stereoscopic display fill's the user's field of view
• head-tracking supports the illusion that the user is looking

around in an environment
• 3D computer graphics fills the environment with objects
• 3D interaction gives users the feeling that they are

interacting with real objects
• overall frame rate must be > 10 frames/sec
• end-to-end delays must be < 0.1 sec for interactive control

The problem with VR is…

• that it is apparently simple
• NOT the unusual hardware
• many components must work together in

real-time
• many criteria must be met
• unclear how to use the interface
• human factors issues not well understood

The evolution of VR

• 1960 Morton Heilig files patent to the US Patent Office

"Stereoscopic TV Apparatus for Individual Use"
My invention generally speaking comprises the following elements: a
hollow casing, a pair of optical units, a pair of television tube units, a
pair of earphones and a pair of air discharge nozzles, all coacting to
cause the user to comfortably see the images, hear the sound effects
and to be sensitive to the air discharge of the said nozzles.

• 1960-70 Sutherland's head-mounted display
• 1984 NASA Ames VIVED project
• 1986-90 NASA Ames VIEW lab and VPI
• 1990-onwards VR community fully formed and flourishing…

Degrees of immersion

Highforce trackinghead coupled

6D tracking + gloveswide field of view

6D tracking + buttonshead tracking

6D input deviceStereo

2D Mousehigh resolution

lowkeyboardcolour

IMMERSIONINTERACTIONDISPLAY

Virtual Environments

• Immersive
• Interactive
• User Centered

VRVR

InteractiveInteractive

GraphicsGraphics UserUser
InterfaceInterface

StereoStereo

Typical configuration

tracker
electronics

glove
electronics glove

main computer
- computation

speech
- synthesis
- recognition

graphics

sound

tracker
source

microphone
headphones

HMD

Patrick Olivier

Displays

• primary technology underlying immersion
• many aspects: colour, resolution, field of view…
• display paradigms:

– stereo via two displays
– stereo via one display images synchronised (eyewear)
– CAVE: immersion via surrounding large screens
– head tracking (fish tank VR)
– head tracking head-mounted

Virtual Environments
• Display Technologies

– HMD’s - Head Mounted Displays
– Large theater - Imax, Omnimax
– Stereo displays
– HUD’s - Head’s Up Displays

• windshields
• goggles

– CAVE - Surround video projections

Tracking paradigms

• usually a sensor determines position and
orientation relative to source (calibration renders
position of source irrelevant)

• sensor detects a signal from the source in such a
way that the position and orientation can be
determined

• either the source or the sensor can be fixed
• numerous technologies: electromagnetic,

ultrasonic, mechanical, video, inertial

What to track?

• head position and orientation
• any significant body part
• any articulations

Other tracking technologies
• passive stereo vision systems
• marker systems (used in motion capture)
• structured light methods (light stripe)
• inertial tracking (using accelerometers)
• eye tracking (commonly optical - corneal reflection)

Virtual Environments
• Interactive user navigation devices

– Head tracker
– Treadmill
– Bicycle
– Wheelchair
– Boom
– Video detection

• Anyone seen the new
game at GameWorks?

Virtual Environments
• Interactive user control devices

– Mouse
– 3D pointer - Polhemus, Microscribe, …
– Spaceball
– Hand-held wand
– Data Glove
– Gesture
– Custom

Fakespace BOOM 3C
Video Output
Full Color Stereo - or Monoscopic.
Resolution
Up to 1280 x 1024 pixels per eye.
Optics
User intercangeable modules offer from
40 to 110 degrees horizontal FOV
Tracking
Opto-mechanical
Accuracy
0.015" at 30"
Latency
200ns
Sampling Frequency
>70Hz
Range
6' diameter horizontal circle (center 1
foot unavailable) 2.5' vertical.

Human factors of virtual reality

• Limits on motion frequencies:
– head (5 Hz)
– hand (10 Hz)
– full body (5 Hz)
– eye (100 Hz)

Human factors of virtual reality

• Limits on Vision (optical resolution):
– angular size of the smallest object that can be

resolved:
• essentially the angular size of a colour pixel
• measure as a linear size in minutes of arc
• full moon is 30 minutes of arc across its diameter
• human visual system can resolve 0.5 minutes of arc

in the central visual field
• 2-3 minutes of arc in the peripheral visual field

Cues to support the sense of
immersion

• immersion: want to be in an environment that contains
“things” and not looking at pictures

• spatial presence of virtual objects due to:
– spatial constancy

• 10 frames/sec minimum requirement
• if your head moves and the scene doesn’t it isn’t VR
• object behaviour (e.g. application of consistent physical laws)

– depth perception
• stereo
• head motion parallax
• many other depth cues

• wide field of view
– environment seems to fill field of view (60º minimum threshold)

Motion parallax Aspects of head-motion parallax

• due to change in visual scene as the head moves
• performed in a VR system by tracking the user’s

head and rendering the virtual scene from a
moving point of view

• head-motion parallax is a monocular depth cue:
– beyond 1m monocular cues dominate
– within 1m binocular disparity and motion parallax is

crucial
– need 12 frames/sec for motion parallax

Stereopsis

• fusion of images from two eyes
• projected rays of same points in world different for each eye
• points in the world are visible to one eye and not another

Aspects of stereopsis

• People have different fusion capabilities (it
is believed that as many as 20% have little
capability)

• Effective out to 3-6m but critical < 1m
• Far-field, not that critical.

Virtual Environments

• Draw at 120Hz
• Track user position/orientation at 120Hz
• Provide Haptic feedback at > 200Hz
• User tracking > 10Hz

Augmented Reality
• Merged real imagery and computer

generated imagery.
– Video capture into visualization system
– See-thru glasses

University of North Carolina, Chapel Hill

Augmented Reality
U

ni
ve

rs
ity

 o
f

N
or

th
 C

ar
ol

in
a,

 C
ha

pe
l H

ill

Augmented Reality

U
ni

ve
rs

ity
 o

f
N

or
th

 C
ar

ol
in

a,
 C

ha
pe

l H
ill

Augmented Reality

• Also useful for non-medical
– Mechanics drawing super-imposed over the

actual machinery.
– Guided tours.

Augmented Reality

• Complex Instructional Manuals

Haptics
• Force feedback is needed at very fast rates.
• Gloves

– force resistant
– nerve stimulated

Rapid Prototyping

• Build real models of the visualizations
• Stereo Lithography

– Laser etching
• Laminated Object Manufacturing

– Laminated paper layer, then cut with laser

Laminated Object Manufacturing Laminated Object Manufacturing

• Molecular Docking

NASA’s Virtual Wind Tunnel The CAVE Architecture

• Four projection screens
• Four graphics rendering engines
• Stereo glasses
• Head-tracking of one user
• Hand held wand for input

The CAVE Architecture

FrontFront

FloorFloor RightRight

The CAVE

The CAVE The CAVE

The CAVE Architecture

• Several people can view at once
• The projections are only correct for one

person.
• Laser’s synch the stereo displays with

Liquid Crystal shutter glasses on each
viewer.

The CAVE Architecture

• Benefits
– Eye movement problems are avoided!!!
– User’s orientation does not matter.
– Can see and examine real people and objects

within the room

The CAVE Architecture

• Problems
– The light intensity on each projector varies
– Precise alignment of the projectors is necessary

for a smooth seam.
– Viewing does not change for the other viewers.
– Expensive.

Single Projector Systems

• ImmersaDesk
• Responsive

Workbench

Responsive Workbench Making VR Work

• To ensure latency, many of the visualization
techniques need to be streamlined or pre-
computed.

• Examples, pre-computed iso-contours,
precomputed stream lines and particle
traces.

Reading in Open Inventor files

• See:
• http://www.cis.ohio-state.edu/~wenger/cis681/OSUInventorScene.html
• Download OSUInventor.C and OSUInventor.h:

– /usr/class/cis681/wenger/Src/OSUInventor
• Download the sample read file sample_read_iv.C and Makefile:

– /usr/class/cis681/wenger/Src/sample_read_iv

OpenGL - GLU

• GLUquadric* gluNewQuadricgluNewQuadricgluNewQuadricgluNewQuadric(void)
• Sphere – gluSphere(quadric, radius, nslices, nstacks);

• Cylinder – Tapered cylinder
• Disk
• PartialDisk

General Polygons

• Allow for concave, self intersecting polygons:
• EXAMPLE:EXAMPLE:EXAMPLE:EXAMPLE: A quadrilateral with a triangular hole in it can be described

as follows:
GLUtesselator* tobj gluNewTessgluNewTessgluNewTessgluNewTess()
gluTessBeginPolygon(tobj, NULL);

gluTessBeginContour(tobj);
gluTessVertex(tobj, v1, v1);
gluTessVertex(tobj, v2, v2);
gluTessVertex(tobj, v3, v3);
gluTessVertex(tobj, v4, v4);

gluTessEndContour(tobj);
gluTessBeginContour(tobj);

gluTessVertex(tobj, v5, v5);
gluTessVertex(tobj, v6, v6);
gluTessVertex(tobj, v7, v7);

gluTessEndContour(tobj);
gluTessEndPolygon(tobj);

GLUT Geometric Primitives

• Sphere
– glutSolidSphere(radius, slices, stacks)
– glutWireSphere (radius, slices, stacks)

• Cube – glutSolidCube(size), …
• Cone – glutSolidCone(base, height, slices, stacks), …
• Torus – glutSolidTorus(inner, outer, nsides, rings), …
• Tetrahedron – glutSolidTetrahedron(), … (4-sided) (√√√√3)
• Octahedron – glutSolidOctahedron(), … (8-sided)
• Icosahedron– glutSolidOctahedron(), … (12-sided)
• Dodecahendron – glutSolidOctahedron(), … (20-sided) (√√√√3)
• Teapot – glutSolidTeapot(size)

Clipping

CIS 781
Roger Crawfis

Why do clipping?

• Clipping is a visibility
preprocess. In real-world
scene clipping can remove
a substantial percentage of
the environment from
consideration.

• Clipping offers an
important optimization

• Also need to avoid setting
pixel values outside of the
range.

What is clipping, two views

• Clipping spatially partitions geometric primitives,
according to their containment within some
region. Clipping can be used to:
– Distinguish whether geometric primitives are inside or

outside of a viewing frustum or picking frustum
– Detect intersections between primitives

• Clipping subdivides geometric primitives. Several
other potential applications.
– Binning geometric primitives into spatial data structures
– computing analytical shadows.

Xmin Xmax

Ymin

Ymax

Point ClippingPoint ClippingPoint ClippingPoint Clipping

(x, y)
is inside iff

Xmin x Xmax≤ ≤ AND Ymin y Ymax≤ ≤

y < ymax y > ymin

x > xmin x < xmax

= ∩∩∩∩interior

xmin xmax

ymin

ymax

Line Clipping - Half Plane Tests

Modify endpoints to lie in rectangle
“Interior” of rectangle?
Answer: intersection of 4 half-planes
3D ? (intersection of 6 half-planes)

Line Clipping

Is end-point inside a clip region? - half-plane test
If outside, calculate intersection between line and
the clipping rectangle and make this the new end
point

• Both endpoints inside:
trivial accept

• One inside: find
intersection and clip

• Both outside: either clip or
reject (tricky case)

Cohen-Sutherland Algorithm
(Outcode clipping)

• Classifies each vertex of a
primitive, by generating an
outcode. An outcode
identifies the appropriate half
space location of each vertex
relative to all of the clipping
planes. Outcodes are usually
stored as bit vectors.

Cohen-Sutherland Algorithm
(Outcode clipping)

if (outcode1 == '0000' and outcode2 == ‘0000’) then
line segment is inside

else
if ((outcode1 AND outcode2) == 0000) then

line segment potentially crosses clip region
else

line is entirely outside of clip
region

endif
endif

The Maybe cases?

If neither trivial accept nor reject:
Pick an outside endpoint (with nonzero
outcode)
Pick an edge that is crossed (nonzero bit of
outcode)
Find line's intersection with that edge
Replace outside endpoint with intersection
point
Repeat until trivial accept or reject

The Maybe case

The Maybe Case The Maybe Case

Difficulty

• This clipping will handle most cases.
However, there is one case in general that
cannot be handled this way.
– Parts of a primitive lie both in front of and

behind the viewpoint. This complication is
caused by our projection stage.

– It has the nasty habit of mapping objects in
behind the viewpoint to positions in front of it.

One Plane At a Time Clipping

• (a.k.a. Sutherland-Hodgeman Clipping)
• The Sutherland-Hodgeman triangle clipping

algorithm uses a divide-and-conquer strategy.
• Clip a triangle against a single plane. Each of the

clipping planes are applied in succession to every
triangle.

• There is minimal storage requirements for this
algorithm, and it is well suited for pipelining.

• It is often used in hardware implementations.

• Clip a polygon (input: vertex list) against a single
clip edges

• Output the vertex list(s) for the resulting clipped
polygon(s)

• Clip against all four planes
– Generalizes to 3D (6 planes)
– Generalizes to clip against any convex

polygon/polyhedron
• Used in viewing transforms

Sutherland-Hodgman
Polygon Clipping Algorithm

Sutherland-Hodgman
Polygon Clipping Algorithm

SHclippedge(var: ilist, olist: list; ilen, olen, edge : integer)

s = ilist[ilen]; olen = 0;

for i = 1 to ilen do

d := ilist[i];

if (inside(d, edge) then

if (inside(s, edge) then -- case 1 just add d

addlist(d, olist); olen := olen + 1;

else -- case 4 add new intersection pt. and d

n := intersect(s, d, edge);

addlist(n, olist); addlist(d, olist); olen = olen + 2;

else if (inside(s, edge) then -- case 2 add new intersection pt.

n := intersect(s, d, edge); addlist(n, olist); olen ++; s = d;

end_for;

Sutherland-Hodgman

Clip input polygon ilist to
the edge, edge, and ouput
the new polygon.

Sutherland-Hodgman

SHclip(var: ilist, olist: list; ilen, olen : integer)

{

SHclippedge(ilist, tmplist1, ilen, tlen1, RIGHT);

SHclippedge(tmplist1, tmplist2, tlen1, tlen2, BOTTOM);

SHclippedge(tmplist2, tmplist1, tlen2, tlen1, LEFT);

SHclippedge(tmplist1, olist, tlen1, olen, TOP);

}

Pictorial Example Sutherland-Hodgman

• Advantages:
– Elegant (few special cases)
– Robust (handles boundary and edge conditions well)
– Well suited to hardware
– Canonical clipping makes fixed-point implementations

manageable
• Disadvantages:

– Only works for convex clipping volumes
– Often generates more than the minimum number of

triangles needed
– Requires a divide per edge

Interpolating Parameters 3D Clipping (Planes)

x

y

z

image plane

near
far

4D Polygon Clip

Use Sutherland Hodgman algorithm

Use arrays for input and output lists

There are six planes of course !

OpenGL uses -1<=x<=1, -1<=y<=1, -1<=z<=1
We use: -1<=x<=1, -1<=y<=1, -1<=z <=0
Must clip in homogeneous coordinates:

w>0: -w<=x<=w, -w<=y<=w, -w<=z<=0
w<0: -w>=x>=w, -w>=y>=w, -w>=z>=0

Consider each case separately
What issues arise ?

4D Clipping

4D Clipping

• Point A is inside, Point B is outside. Clip edge AB
x = Ax + t(Bx – Ax)
y = Ay + t(By – Ay)
z = Az + t(Bz – Az)
w = Aw + t(Bw – Aw)

• Clip boundary: x/w = 1 i.e. (x–w=0);
w-x = Aw – Ax + t(Bw – Aw – Bx + Ax) = 0

Solve for t.

Why Homogeneous Clipping

• Efficiency/Uniformity: A single clip procedure is
typically provided in hardware, optimized for
canonical view volume.

• The perspective projection canonical view volume
can be transformed into a parallel-projection view
volume, so the same clipping procedure can be
used.

• But for this, clipping must be done in homogenous
coordinates (and not in 3D). Some transformations
can result in negative W : 3D clipping would not
work.

Difficulty (revisit)

• Clipping will handle most cases. However,
there is one case in general that cannot be
handled this way.
– Parts of a primitive lie both in front of and

behind the viewpoint. This complication is
caused by our projection stage.

– It has the nasty habit of mapping objects in
behind the viewpoint to positions in front of it.

• Solution: clip in homogeneous coordinate

P1 and P2 map to same physical point !

Solution:

Clip against both regions

Negate points with negative W

4D Clipping Issues

P2=[-1,-2,-3,-4]

W=1

P1=[1,2,3,4]

W=-X W=X

P1

W=1 Inf-Inf

4D Clipping Issues

Line straddles both regions

After projection one gets two line segments

How to do this? Only before the perspective division

Additional Clipping Planes

• At least 6 more clipping planes available
• Good for cross-sections
• Modelview matrix moves clipping plane
• clipped
• glEnable(GL_CLIP_PLANEi)

• glClipPlane(GL_CLIP_PLANEi, GLdouble*
coeff)

0<+++ DCzByAx

Reversing Coordinate Projection

• Screen space back to world space
• glGetIntegerv(GL_VIEWPORT, GLint viewport[4])

• glGetDoublev(GL_MODELVIEW_MATRIX, GLdouble mvmatrix[16]
)

• glGetDoublev(GL_PROJECTION_MATRIX,
GLdouble projmatrix[16])

• gluUnProject(GLdouble winx, winy, winz,
mvmatrix[16], projmatrix[16],
GLint viewport[4],
GLdouble *objx, *objy, *objz)

• gluProject goes from world to screen space

Shaders

• Local illumination quite complex
– Reflectance models
– Procedural texture
– Solid texture
– Bump maps
– Displacement maps
– Environment maps

• Need ability to collect into a single
shading description called a shader

• Shaders also describe
– lights, e.g. spotlights
– atmosphere, e.g. fog

Shading v. Modeling

• Shaders generate more than color
– Displacement maps can move geometry
– Opacity maps can create holes in geometry

• Frequency of features
– Low frequency modeling operations
– High frequency shading operations

Shade Trees

• Cook, SIGGRAPH 84
• Hierarchical

organization of shading
• Breaks a shading

expression into simple
components

• Visual programming
• Modular
• Drag-n-drop shading

components

*

+ copper
color

*
ka Ca

*
ks specular

normal viewer roughness

Texture v.
Bump Mapping

• Texture
mapping
simulates detail
with a color
that varies
across a surface

• Bump mapping
simulates detail
with a surface
normal that
varies across a
surface

+
* *

tex(s,t)

NL

kskd

H

+
* *

tex(s,t)

bump()L

kskd

H

N B

⋅ ⋅

⋅ ⋅

Problems with Shade Trees

• Shaders can get very complex
• Sometimes need higher-level constructs

than simple expression trees
– Variables
– Iteration

• Need to compile a program instead of
evaluate an expression

Renderman Shading Language

• Hanrahan & Lawson, SIGGRAPH 90
• High level little language
• Special purpose variables useful for shading

– P – surface position
– N – surface normal

• Special purpose functions useful for shading
– smoothstep(x0,x1,a) – smoothly interpolates from x0 to

x1 as a varies from 0 to 1
– specular(N,V,m) – computes specular reflection given

normal N, view direction V and roughness m.

Types

• Colors
– Multiplication is componentwise
– e.g. Cd*(La + Ld) + Cs*Ls + Ct*Lt

• Points
– Built in dot (L.N) and cross (N^L) products
– Transform to other coordinate systems: “raster,”

“screen,” “camera,” “world,” and “object”
• Variables

– Uniform – independent of position
– Varying – changes across surface

Lighting

• Constructs
– illuminate() – point source with cone spread
– solar() – directional source

• Variables
– L – direction of light (independent)
– Cl – color of light (dependent)

• Types
– ambient – non-directional (but can vary with position)
– point – equal in all directions
– spot – focused around a given direction
– shadowed – modulated by texture/shadow map
– distant –directional source
– environment map – distant source modulated by texture

Local Illumination

• Construct
– illuminance()

• Variables
– L – incoming light direction
– Cl – incoming light color
– C – output color

• Example (hair diffuse)
color C = 0;
illuminance(P,N,Pi/2) {

L = normalize(L);
C += Kd * Cd * Cl * length(L^T);

}

Texture Functions

• texture() returns float/color based on texture
coordinates

• bump() returns normal perturbation based
on texture coordinates

• environment() returns float/color based on a
direction passed to it

• shadow() returns a float indicating the
percentage a point’s position is shadowed

Renderman
Example

Surface dent(float Ks=.4, Kd=.5, Ka=.1, roughness=.25, dent=.4) {
float turbulence;
point Nf, V;
float I, freq;
/* Transform to solid texture coordinate system */
V = transform(“shader”,P);
/* Sum 6 octaves of noise to form turbulence */
turbulence = 0; freq = 1.0;
for (i = 0; i < 6; i += 1) {

turbulence += 1/freq + abs(0.5*noise(4*freq*V));
freq *= 2;

}
/* sharpen turbulence */
turbulence *= turbulence * turbulence;
turbulence *= dent;
/* Displace surface and compute normal */
P -= turbulence * normalize(N);
Nf = faceforward(normalize(calculatenormal(P)),I);
V = normalize(-I);
/* Perform shading calculations */
Oi = 1 – smoothstep(0.03,0.05,turbulence);
Ci = Oi*Cs*(Ka*ambient() + Ks*specular(Nf,V,roughness));

}

Try It
Yourself

• Photorealistic Renderman
– Based on REYES polygon renderer
– Uses shadow maps

• Blue Moon Rendering Tools
– Free
– Uses ray tracer
– No displacement maps
– http://www.exluna.com/products/bmrt/

Deferred Shading

• Makes procedural shading more efficient
• Why apply shader to entire surface if only small

portion is actually visible
• Separate rendering into two passes

– Pass 1: Render geometry using Z-buffer
• But rather than storing color in frame buffer
• Store shading parameters instead

– Pass 2: Shade frame buffer
• Apply shading procedure to frame buffer
• Replaces shading parameters with color

• Problem: Fat framebuffer

OpenGL Architecture

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Frame
Buffer

Texture
Memory

CPU

Pixel
Operations

Per-Fragment Operations

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Frame
Buffer

Texture
Memory

CPU

Pixel
Operations

Getting to the Framebuffer

BlendingBlendingDepth
Test

Depth
Test DitheringDithering Logical

Operations
Logical

Operations

Scissor
Test

Scissor
Test

Stencil
Test

Stencil
Test

Alpha
Test

Alpha
Test

Fr
ag

m
en

t

Fr
am

eb
uf

fe
r

Scissor Box

• Additional Clipping Test
• glScissor(x, y, w, h)

– any fragments outside of box are clipped
– useful for updating a small section of a

viewport
• affects glClear() operations

Alpha Test

• Reject pixels based on their alpha value
• glAlphaFunc(func, value)

• glEnable(GL_ALPHA_TEST)

– use alpha as a mask in textures

Stencil Buffer

• Used to control drawing based on values in
the stencil buffer
– Fragments that fail the stencil test are not drawn
– Example: create a mask in stencil buffer and

draw only objects not in mask area

Stencil Testing

• Now broadly supports by both major APIs
– OpenGL
– DirectX 6

• RIVA TNT and other consumer cards now
supporting full 8-bit stencil

• Opportunity to achieve new cool effects and
improve scene quality

What is Stenciling?
• Per-pixel test, similar to depth buffering.
• Tests against value from stencil buffer;

rejects fragment if stencil test fails.
• Distinct stencil operations performed when

– Stencil test fails
– Depth test fails
– Depth test passes

• Provides fine grain control of pixel update

OpenGL API

• glEnable/glDisable(GL_STENCIL_TEST);
• glStencilFunc(function, reference, mask);
• glStencilOp(stencil_fail,

depth_fail, depth_pass);
• glStencilMask(mask);
• glClear(… | GL_STENCIL_BUFFER_BIT);

Controlling Stencil Buffer

• glStencilFunc(func, ref, mask)
– compare value in buffer with ref using func
– only applied for bits in mask which are 1
– func is one of standard comparison functions

• glStencilOp(fail, zfail, zpass)
– Allows changes in stencil buffer based on passing or

failing stencil and depth tests: GL_KEEP, GL_INCR

Request a Stencil Buffer

• If using stencil, request sufficient bits of stencil
• Implementations may support from zero to 32 bits

of stencil
• 8, 4, or 1 bit are common possibilities
• Easy for GLUT programs:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB |
GLUT_DEPTH | GLUT_STENCIL);

glutCreateWindow(“stencil example”);

Stencil Test

• Compares reference value to pixel’s stencil buffer
value

• Same comparison functions as depth test:
– NEVER, ALWAYS
– LESS, LEQUAL
– GREATER, GEQUAL
– EQUAL, NOTEQUAL

• Bit mask controls comparison
((ref & mask) op (svalue & mask))

Stencil Operations
• Stencil side effects of

– Stencil test fails
– Depth test fails
– Depth test passes

• Possible operations
– Increment, Decrement (saturates)
– Increment, Decrement (wrap, DX6 option)
– Keep, Replace
– Zero, Invert

• Way stencil buffer values are controlled

Stencil Write Mask

• Bit mask for controlling write back of
stencil value to the stencil buffer

• Applies to the clear too!

• Stencil compare & write masks allow
stencil values to be treated as sub-fields

Very Complex Clip Window

Digital Dissolve

Creating a Mask

• gluInitDisplayMode(…|GLUT_STENCIL|…);

• glEnable(GL_STENCIL_TEST);

• glClearStencil(0x0);

• glStencilFunc(GL_ALWAYS, 0x1, 0x1);

• glStencilOp(GL_REPLACE, GL_REPLACE,
GL_REPLACE);

• draw mask

Using Stencil Mask

• Draw objects where stencil = 1
• glStencilFunc(GL_EQUAL, 0x1, 0x1)

• Draw objects where stencil != 1
• glStencilFunc(GL_NOTEQUAL, 0x1, 0x1

);

• glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP
);

•

Performance

• With today’s 32-bit graphics accelerator
modes, 24-bit depth and 8-bit stencil packed
in same memory word

• RIVA TNT is an example
• Performance implication:

if using depth testing, stenciling is at
NO PENALTY

Repeating that!

• On card like RIVA TNT2 in 32-bit mode

if using depth testing, stenciling has
NO PENALTY

• Do not treat stencil as “expensive” --
in fact, treat stencil as “free” when already
depth testing

Pseudo Global Lighting Effects
• OpenGL’s light model is a “local” model

– Light source parameters

– Material parameters

– Nothing else enters the equation

• Global illumination is fancy word for real-world
light interactions
– Shadows, reflections, refractions, radiosity, etc.

• Pseudo global lighting is about clever hacks

Planar Reflections

Dinosaur is reflected by the planar floor.
Easy hack, draw dino twice, second time has

glScalef(1,-1,1) to reflect through the floor

Compare Two Versions

Good. Bad.

Notice right image’s reflection falls off the floor!

Stencil Maintains the Floor

Clear stencil to zero.
Draw floor polygon with stencil set to one.
Only draw reflection where stencil is one.

Recursive Planar Mirrors

Basic idea of planar reflections can be applied
recursively. Requires more stencil bits.

The Trick (bird’s eye view) Next: Planar Shadows

Shadow is projected into the plane of the floor.

Constructing a Shadow Matrix
void shadowMatrix(GLfloat shadowMat[4][4], GLfloat groundplane[4], GLfloat lightpos[4])
{
GLfloat dot;
/* Find dot product between light position vector and ground plane normal. */
dot = groundplane[X] * lightpos[X] +
groundplane[Y] * lightpos[Y] +
groundplane[Z] * lightpos[Z] +
groundplane[W] * lightpos[W];
shadowMat[0][0] = dot - lightpos[X] * groundplane[X];
shadowMat[1][0] = 0.f - lightpos[X] * groundplane[Y];
shadowMat[2][0] = 0.f - lightpos[X] * groundplane[Z];
shadowMat[3][0] = 0.f - lightpos[X] * groundplane[W];
shadowMat[X][1] = 0.f - lightpos[Y] * groundplane[X];
shadowMat[1][1] = dot - lightpos[Y] * groundplane[Y];
shadowMat[2][1] = 0.f - lightpos[Y] * groundplane[Z];
shadowMat[3][1] = 0.f - lightpos[Y] * groundplane[W];
shadowMat[X][2] = 0.f - lightpos[Z] * groundplane[X];
shadowMat[1][2] = 0.f - lightpos[Z] * groundplane[Y];
shadowMat[2][2] = dot - lightpos[Z] * groundplane[Z];
shadowMat[3][2] = 0.f - lightpos[Z] * groundplane[W];
shadowMat[X][3] = 0.f - lightpos[W] * groundplane[X];
shadowMat[1][3] = 0.f - lightpos[W] * groundplane[Y];
shadowMat[2][3] = 0.f - lightpos[W] * groundplane[Z];
shadowMat[3][3] = dot - lightpos[W] * groundplane[W];

}

How to Render the Shadow
/* Render 50% black shadow color on top of whatever

the floor appearance is. */
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_LIGHTING); /* Force the 50% black. */
glColor4f(0.0, 0.0, 0.0, 0.5);

glPushMatrix();
/* Project the shadow. */
glMultMatrixf((GLfloat *) floorShadow);
drawDinosaur();

glPopMatrix();

Note Quite So Easy (1)
Without stencil to avoid double blending
of the shadow pixels:

Notice darks spots
on the planar shadow.

Solution: Clear stencil to zero. Draw floor with stencil
of one. Draw shadow if stencil is one. If shadow’s
stencil test passes, set stencil to two. No double blending.

Note Quite So Easy (2)
There’s still another problem even if using
stencil to avoid double blending.

depth buffer Z
fighting artifacts

Shadow fights with depth values from the
floor plane. Use polygon offset to raise shadow
polygons slightly in Z.

Everything All At Once

Lighting, texturing, planar shadows, and
planar reflections all at one time. Stencil &
polygon offset eliminate aforementioned artifacts.

Pseudo Global Lighting

• Planar reflections and shadows add more than
simplistic local lighting model

• Still not really global
– Techniques more about hacking common cases based

on knowledge of geometry
– Not really modeling underlying physics of light

• Techniques are “multipass”
– Geometry is rendered multiple times to improve the

rendered visual quality

Bonus Stenciled Halo Effect

Halo does not obscure
or blend with the

haloed object.

Halo is blended
with objects behind

haloed object.

Clear stencil to zero. Render object, set stencil
to one where object is. Scale up object with
glScalef. Render object again, but not where
stencil is one.

Other Stencil Uses

• Digital dissolve effects
• Handling co-planar geometry such as decals
• Measuring depth complexity
• Constructive Solid Geometry (CSG)

Digital Dissolve

Stencil buffer holds dissolve pattern.
Stencil test two scenes against the pattern

Co-planar Geometry

Shows “Z fighting” of
co-planar geometry

Stencil testing fixes
“Z fighting”

Visualizing Depth Complexity

Use stencil to count pixel updates,
then color code results.

Dithering

• glEnable(GL_DITHER)

• Dither colors for better looking results
– Used to simulate more available colors

Logical Operations on Pixels

• Combine pixels using bitwise logical operations
• glLogicOp(mode)

– Common modes
• GL_XOR – Rubberband user-interface.
• GL_AND

– Others
• GL_CLEAR, GL_SET , GL_COPY,
• GL_COPY_INVERTED, GL_NOOP, GL_INVERT
• GL_AND, GL_NAND, GL_OR
• GL_NOR, GL_XOR, GL_AND_INVERTED
• GL_AND_REVERSE, GL_EQUIV, GL_OR_REVERSE
• GL_OR_INVERTED

Imaging and Raster Primitives

• Describe OpenGL’s raster primitives:
bitmaps and image rectangles

• Demonstrate how to get OpenGL to read
and render pixel rectangles

CPUCPU DLDL

Poly.Poly. Per
Vertex

Per
Vertex

RasterRaster FragFrag FBFB

PixelPixel

TextureTexture

Pixel-based primitives

• Bitmaps
– 2D array of bit masks for pixels

• update pixel color based on current color

• Images
– 2D array of pixel color information

• complete color information for each pixel

• OpenGL doesn’t understand image formats

May 22-26, 2000 Dagstuhl Visualization

Frame
Buffer

Rasterization
(including

Pixel Zoom)

Per Fragment
Operations

Texture
Memory

Pixel-Transfer
Operations

(and Pixel Map)
CPU

Pixel
Storage
Modes

glReadPixels(), glCopyPixels()

glBitmap(), glDrawPixels()

glCopyTex*Image();

Pixel Pipeline

• Programmable pixel storage
and transfer operations

Positioning Image Primitives

• glRasterPos3f(x, y, z)

– raster position transformed like geometry
– discarded if raster position

is outside of viewport
• may need to fine tune

viewport for desired
results

Raster Position

Rendering Bitmaps
• glBitmap(width, height, xorig, yorig,

xmove, ymove, bitmap)

– render bitmap in current color
at

– advance raster position by
after

rendering

   ()yorigyxorigx −−

()ymovexmove

width

he
ig

ht

xorig

yorig

xmove

Rendering Fonts using Bitmaps

• OpenGL uses bitmaps for font rendering
– each character is stored in a display list

containing a bitmap
– window system specific routines to access

system fonts
•glXUseXFont()

•wglUseFontBitmaps()

Rendering Images

• glDrawPixels(width, height, format,
type, pixels)

– render pixels with lower left of
image at current raster position

– numerous formats and data types
for specifying storage in memory

• best performance by using format and type that
matches hardware

Reading Pixels

• glReadPixels(x, y, width, height, format,
type, pixels)

– read pixels from specified (x,y) position in framebuffer
– pixels automatically converted from framebuffer format

into requested format and type

• Framebuffer pixel copy
• glCopyPixels(x, y, width, height, type)

Raster
Position

glPixelZoom(1.0, -1.0);

Pixel Zoom

• glPixelZoom(x, y)

– expand, shrink or reflect pixels
around current raster position

– fractional zoom supported

• glPixelZoom(x, y)

– expand, shrink or reflect pixels
around current raster position

– fractional zoom supported

Storage and Transfer Modes

• Storage modes control accessing memory
– byte alignment in host memory
– extracting a subimage

• Transfer modes allow modify pixel values
– scale and bias pixel component values
– replace colors using pixel maps

Immediate Mode versus Display
Listed Rendering

• Immediate Mode Graphics
– Primitives are sent to pipeline and display right away
– No memory of graphical entities

• Display Listed Graphics
– Primitives placed in display lists
– Display lists kept on graphics server
– Can be redisplayed with different state
– Can be shared among OpenGL graphics contexts

Display Lists

CPUCPU DLDL

Poly.Poly. Per
Vertex

Per
Vertex

RasterRaster FragFrag FBFB

PixelPixel

TextureTexture

Immediate Mode versus
Display Lists

Immediate Mode

Display Listed

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Texture
Memory

CPU

Pixel
Operations

Frame
Buffer

Display Lists

• Creating a display list
GLuint id;
void init(void)
{

id = glGenLists(1);
glNewList(id, GL_COMPILE);
/* other OpenGL routines */
glEndList();

}

• Call a created list
void display(void)
{

glCallList(id);
}

Display Lists

• Not all OpenGL routines can be stored in display
lists

• State changes persist, even after a display list is
finished

• Display lists can call other display lists
• Display lists are not editable, but you can fake it

– make a list (A) which calls other lists (B, C, and D)
– delete and replace B, C, and D, as needed

Display Lists and Hierarchy

• Consider model of a car
– Create display list for chassis
– Create display list for wheel

• glNewList(CAR, GL_COMPILE);
• glCallList(CHASSIS);
• glTranslatef(…);
• glCallList(WHEEL);
• glTranslatef(…);
• glCallList(WHEEL);
• …
• glEndList();

Advanced Primitives

• Vertex Arrays• Vertex Arrays

CPUCPU DLDL

Poly.Poly. Per
Vertex

Per
Vertex

RasterRaster FragFrag FBFB

PixelPixel

TextureTexture

Vertex
Arrays

• Pass arrays of vertices, colors, etc. to OpenGL in a
large chunk
glVertexPointer(3, GL_FLOAT, 0, coords)

glColorPointer(4, GL_FLOAT, 0, colors)

glEnableClientState(GL_VERTEX_ARRAY)

glEnableClientState(GL_COLOR_ARRAY)
glDrawArrays(GL_TRIANGLE_STRIP, 0, numVerts);

• All active arrays are used in rendering

• Pass arrays of vertices, colors, etc. to OpenGL in a
large chunk
glVertexPointer(3, GL_FLOAT, 0, coords)

glColorPointer(4, GL_FLOAT, 0, colors)

glEnableClientState(GL_VERTEX_ARRAY)

glEnableClientState(GL_COLOR_ARRAY)
glDrawArrays(GL_TRIANGLE_STRIP, 0, numVerts);

• All active arrays are used in rendering

Color
data

Vertex
data

Why use Display Lists or Vertex
Arrays?

• May provide better performance than immediate
mode rendering
– Avoid function call overheads and small packet sends.

• Display lists can be shared between multiple
OpenGL context
– reduce memory usage for multi-context applications

• Vertex arrays may format data for better memory
access

Alpha: the 4th Color Component

• Measure of Opacity
– simulate translucent objects

• glass, water, etc.

– composite images
– antialiasing
– ignored if blending is not enabled

glEnable(GL_BLEND)

CPUCPU DLDL

Poly.Poly. Per
Vertex

Per
Vertex

RasterRaster FragFrag FBFB

PixelPixel
TextureTexture

Blending

• Combine pixels with what’s in already
in the framebuffer
• glBlendFunc(src, dst)

FramebufferFramebuffer
PixelPixel
((dstdst))

Blending
Equation

Blending
Equation

FragmentFragment
((srcsrc))

BlendedBlended
PixelPixel

pfr CdstCsrcC +=

Multi-pass Rendering

• Blending allows results from multiple
drawing passes to be combined together
– enables more complex rendering algorithms

Example of bump-mapping
done with a multi-pass

OpenGL algorithm

