
Abstract
Distance field is an important volume representation. A high
quality distance field facilitates accurate surface characterization
and gradient estimation. However, due to Nyquist’s Law, no
existing methods based on the linear sampling theory can fully
capture the sharp details, such as corners and edges in 3D space.
We propose a novel complete distance field representation
(CDFR) that does not rely on Nyquist’s sampling theory
anymore. Rather we construct a volume, in which each voxel has
a complete description of all portions of surface that affect the
local distance field. For any desired distance contour, we are able
to extract a point-based contour in true Euclidean distance, at any
error tolerance, from the CDFR. Leveraging the advantages
offered by CDFR, we can efficiently visualize any distance
contour at real-time frame rates using the point based model. We
also demonstrate applications of CDFR to CAD applications
involving high-complexity parts at un-precedented high accuracy
using very limited computational resources.

CR Categories: I.3.6 [Computer graphics]: Methodology and
techniques - Graphics data structures; I.3.5 Computational
Geometry and Object Modeling - Object modeling

Keywords: distance fields, volume modeling, polygonal
surfaces, point-based models, graphics.

1.  Introduction
Volume, as a 3D raster, holds discrete sample points repre-

senting a certain multi-dimensional entity. In an alias-free discreti-
zation, only frequency components below half the Nyquist
sampling rate can be present in the volume data set. As a solid
description of physical entities, volume has found applications in a
wide range of fields, such as medicine, mechanical engineering,
scientific computing and simulations, etc.

In order to utilize volume technologies, it has been common
to convert surface models, such as a polygonal mesh exported in
STL format by a CAD package, to a volume representation. In this
process, first, one needs to voxelize the surface model into a hol-
low volume representing the surface shape [1][5][7][8]. Second, a
distance transform is computed to construct a solid volume that
encompasses a thickness field computed based on distances to the
surface shapes. Euclidean distance has not been commonly used
due to both efficiency concerns and the fact that accuracy is
already compromised in the binary surface volume model. Instead,
most applications use less accurate distance heuristics such as
Manhattan or chessboard distance, and chaffer distance. 

Voxelization techniques that convert surface shapes into
binary volumes, with 1’s representing occupancy and 0’s repre-
senting empty space, have been developed in [5][7][8]. Those
methods are practical and commonly used nowadays. Surface
shapes are infinitely thin in space. To sample that thin shape, one
needs infinitely high sampling rates. In essence, Kaufman’s algo-
rithms [7][8] increase the thickness of a surface shape, and there-

fore, to some extent, band limit the frequency spectrum, before the
sampling, or scan-conversion process, take place. Huang et. al [5]
discovered and proved the sufficient and necessary amount of
increase in thickness of the surface shape, which is also dependent
on the resolution of the volume, that guarantees correctness in dis-
crete topology in the resulting volume representation. Unfortu-
nately, all these methods that are based on binary volume
representation, which is very susceptible to aliasing artifacts. To
address this issue, Sramek and Kaufman initiated to represent data
sets in non-binary formats [10]. In their paper, they show one has
to use higher order smoothing functions to pre-filter and band limit
the spectrum of the volume. They also provide a measure to deter-
mine the amount of preservable details in shape after applying
common smoothing filters.

Over the years, in addition to the search for optimal voxeliza-
tion, the community has also been exploring to represent surface
shapes with distance fields. Distance fields have typically been
regarded as scalar fields with each element in the 3D volume repre-
senting the minimal distance to a certain shape. It is common prac-
tice to use signed values to distinguish outside or inside of the
shape. Compared to the surface shapes that correspond to impulses
in 3D space, distance fields are much smoother. On one hand, for a
shapes free from sharp corners and edges, both the surface position
and gradient can be reconstructed relatively accurately with a dis-
tance field [1][4]. On the other hand, as soon as corners and sharp
edges, features that carve out details on the shape, are introduced,
high frequency components are also brought into the spectrum.
Exceptionally high volume resolution may be necessary to achieve
an alias-free representation. Adaptively sampled distance fields
(ADF) [3] can help in reducing volume resolution when not as
much details are locally present. But, their methods still have to
rely on limiting the bandwidth of spectrum in local neighborhoods
of corners and edges, and hence discard all details beyond the cut-
off bandwidth supported by the leaf level in their tree structure.

In this paper, we present a novel scheme of representing dis-
tance field. Although the general steps of voxelization and distance
transform are still followed, we build our distance representation
based on a complete distance definition (CDD). We would rather
not use the simplistic scalar distance field representation, because
the band-limited spectrum required by the Nyquist’s Law is oppo-
site to the need of most graphics applications favoring elaborate
details of miniature sizes. Since representations of distance fields
in CDD, that is, complete distance field representation (CDFR),
can not be efficiently rendered with current rendering algorithms,
we also discuss the method to reconstruct a point-based contour of
any distance value at any error tolerance from CDFR. Such sparse
point-based models that we extract from CDFR can be efficiently
rendered with splatting [6].

The paper is organized in the following way. We give a brief
introduction to distance fields and the limitations of such represen-
tations in Section 2. In Section 3, we present complete distance
definition (CDD) and complete distance field representation
(CDFR) based on CDD. We provide a proof of correctness for our

Complete Distance Field Representation
Jian Huang+, Yan Li*, Roger Crawfis+ and Shao-Chiung Lu$

+Computer and Information Science, The Ohio State University, Columbus, OH
*Electrical Engineering, The Ohio State University, Columbus, OH

$Visteon Inc., Dearborn, MI
{huangj,crawfis}@cis.ohio-state.edu, liy@ee.eng.ohio-state.edu, slu3@visteon.com



scheme of constructing a CDFR and extracting the final point-
based contour from CDFR in Section 4. Results on simple test data
sets and real world geometric designs are shown in Section 5 and
Section 6. Finally, we conclude and discuss future work in
Section 7.

2.  Distance Fields

Traditionally, distance field is defined as, a spatial field of
distance values to a surface geometry or shape. Each element in a
distance field specifies its minimum distance to the surface shape.
Positive and negative signs are used to distinguish outside and
inside of the geometry, for instance, using negative values on the
outside, and positive on the inside. Distance fields have a number
of applications in distance mapping [1], constructive solid geome-
try operations [3], surface reconstruction and normal estimation[4],
morphing [1][2], and etc. Distance fields are also widely applied in
simulations and analysis involving interior of geometries, such as
die-casting simulation in manufacturing, thickness analysis of
mechanical parts [11].

For a non-aliased discrete sampling of a signal, Nyquist’s
Law dictates that the sampling rate must be at least two times the
highest frequency component in the signal. In spatial domain,
geometry is infinitestismally thin, and has an infinitely wide spec-
trum. The sharp details on the surface, such as corners and edges,
also reside on the high ends in the frequency spectrum. Even with
an overwhelmingly large volume resolution, one still needs exten-
sive low-pass filtering to limit the bandwidth of the geometric
shape. These low-pass filtering operations with either simple box
filters [5][7][8] or specifically designed higher order filters [10], all
inevitably cause a loss of the exact surface location and also sur-
face details. Converting the surface shape to a distance field, which
is smoother, provides a way to exactly locate the [4] during recon-
struction. But the underlying assumption of having a smooth sur-
face that is free from sharp corners and edges is too strong to hold
for practical scenarios. Geometric models, such as CAD parts, ren-
der themselves almost pointless without the high frequency details.

Frisken et. al [3] developed a nice framework for adaptively
sampled distance fields (ADF), by which one can build hierarchies
of distance fields at different levels of detail and be able to stride
over different levels of detail during rendering as needed. They
also vary sampling rates according to the amount of details that are
available locally. Because the authors limited their applications to
rendering, they went by using tri-linear interpolation to reconstruct
distances, and were able to demonstrate a suite of applications with
impressive visual quality using relatively small memory storage.

However, ADF [3] does not fundamentally solve the problem
of losing surface details in discrete representations. When the pri-
mary goal of an application shifts from rendering to analysis based
on the distance values, ADFs with trilinear interpolation do not sat-
isfy our accuracy needs with a guarantee anymore, simply because
distance fields are not linear as soon as corners or edges are intro-
duced into the models. Furthermore, what the hierarchies provide
is an ability to save computational and storage resources when less
details are encountered. After the leaf level of ADF is constructed,
the loss in surface details is already final and irreversible. For the
applications where accuracy in analysis is sought after more highly
than pleasing visual experiences, current ADFs based on scalar dis-
tances are not satisfactory, because they can not provide a high
level of accuracy in a finite amount of storage space. Hence, exten-
sive low pass filtering is often used. But most practical geometrical
models are rich in details at a wide range of scales and in lack of

universal smoothness. Due to the fact that a reliable and trusted
metric to characterize geometric details still remains an open ques-
tion in the field, one has to always use the highest possible resolu-
tion he can afford, but still, has no guarantee that he has captured
all the details to the accuracy he needs unless the size of each voxel
is below half of the error tolerance. Furthermore, as soon as the
user decides to increase his accuracy needs, the process to con-
struct an ADF tree in a much larger scale is un-avoidable. Applica-
tions requiring accuracy are thus hindered from using volume
technology on practical computing platforms.

3.  Complete Distance Definition (CDD) & Com-
plete Distance Field Representation (CDFR)

We believe there is in need of a paradigm shift to overcome
such overwhelming costs for achieving high accuracy guarantees
that can be modified by the user efficiently as needed. In this paper
we propose to use complete distance definition (CDD) instead of
the traditional single value distance. Not surprisingly, correspond-
ing to different ways of representing surfaces, such as parametric
surfaces, implicit surfaces or subdivision/polygonal mesh surfaces,
there could be different instantiations of CDDs. In order for a clear
elucidation of CDDs, among the several very similar CDD instanti-
ations, we opt to focus on a simple case where the surface is repre-
sented by polygonal meshes. When accuracy is asked for,
Euclidean distances are often preferred over other distance metrics,
such as chaffer distance or Manhattan distance. The CDD fields
that we discuss in this paper are all true Euclidean distances.
Before discussing CDD, we would like to show off a few simple
observations that motivated our work based on CDDs.

3.1  Some Observations

3.1.1  Observation 1

Distance field has a very interesting feature in some very sim-
ple scenarios. For instance, suppose in a 1-dimensional space, there
is an impulse. It’s frequency components extend to infinity. There
is no way that one can use a finite sampling frequency to sample
that impulse with no aliasing. But on the other hand, as illustrated
in Fig. 1, the distance field of that impulse is a linear function that
extends from negative infinity to positive infinity. Sampling this
linear function is very easy with a low sampling frequency. 

However, this feature does not hold in higher dimensions
where corners are present. Just the same as the complexity encoun-
tered in [5], as we extend into 2D or 3D, the discrepancies and dis-
continuity on corners make it difficult to preserve a faithful
distance field during sampling. 

For instance, in Fig. 2, we have a rather faithful sampling in
the blue grids, because the geometry is locally linear*, but not in
the red grids where there are corners. The non-linear distance fields
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Figure 1:  It’s impossible to sample the impulses (left), but we
can sample the distance field (right).
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within the red grids, makes it impossible to accurately recover the
right distance distribution from the samples in the grid. 

According to Nyquist’s Law, to sample such complicated dis-
tance fields, one must first band-limit the fields by performing a
low-pass filtering, which essentially smooths out the sharp corners.
With the ADF instantiations using Octree based regular grid repre-
senting distance field [3], for corners (the red grids), a higher reso-
lution would be used, whereas in blue grids, a much lower
resolution might suffice.

3.1.2  Observation 2

To capture the exact location of the impulse in Fig. 1, we do
not have to use sampling. Essentially, one only needs to have one
sample at any location, and note which side the impulse is on as
well as the distance from that sample to the impulse, unlike sam-
pling theory that requires an infinite sequence of samples above the
Nyquist’s rate, and use a sinc function to convolve and reconstruct
for the original continuous space function when needed.

3.2  Complete Distance Definition (CDD)
CDD is a set of parameters describing both a distance from a

3D point to a surface geometry primitive and the geometry primi-
tive itself. More specifically, when the shape is represented as a
mesh of surface triangles, CDD reduces to a tuple that consists of a
scalar canonical distance value, and a description of the triangle
with a vertices list and an edge list:

(1)

The value distance is the true distance of a 3D point to a finite
triangle. It is defined in the following function:

While the return value is the computed distance, the input
parameters include a triangle, tri, and a 3D point, pnt. If pnt
projects to a point within the triangle, tri, the final distance is the

orthogonal distance from pnt to the plane in which tri lies. If pnt
projects to a point out side of tri, then, we check whether pnt
projects to a point onto any one of the three edges. If yes, then the
returned distance value is shortest distance from pnt to an edge that
pnt projects orthogonal onto. In case none of the above two criteria
applies, we define the distance as the minimal distance from pnt to
each of the three vertices. This definition of distance to a finite tri-
angle can be further illustrated in Fig. 4.

3.3  CD Field Representation (CDFR)
In a conventional distance field representation, on each grid

point, only one scalar value, the minimal distance to shape, is
stored. This assumes the overall distance function to be band-lim-
ited. Based upon such an assumption, when a reconstruction of the
distance field is needed, an interpolation or a filtering operation,
such as trilinear interpolation [3], is thus sufficient. In this paper, to
capture all high frequency details, we would like to construct a rep-
resentation that do not make such strong assumptions as requiring
band-limited distance fields. In most practical cases, it is the geo-
metric details that are most interesting to users.

We use CDD to build a complete distance field representation
(CDFR) that allows us to exactly trace all geometric details, such
as sharp corners and edges, to any level of accuracy. We prove that
our CDFR is sufficient, and flexible in trading storage space for
speed, and vice versa.

Firstly, given a geometric representation of shape, such as a
triangle mesh exported from CAD software, a generally accepted
approach would be to voxelize the surface mesh into a surface vol-
ume, in which voxels on the surface are set while all the other vox-
els remain blank. For all triangles touching a surface voxel, a CDD
tuple is stored with that voxels. The end result of the modified vox-
elization approach would leave all surface voxels with a list of
CDD tuples, sorted in ascending order in distance values.

*Locally linear: perfect reconstruction is possible with linear in-
terpolation.

Figure 2:  Corners in this 2D case cause significant complexities
in the distance field, which corresponds to high frequency
components that will result in aliasing in spectrum after
sampled.

distance v1 v2 v3, ,〈 〉 e1 e2 e3, ,〈 〉, ,〈 〉

float distance (triangle tri, vec3 pnt)
{
     if (in(tri, projToPlanetri(pnt))  // pnt projects to within tri,      C1

             return (distance from pnt to the plane which tri is on);
     else if (on(any edge of tri, e, projToLinee(pnt))                  // C2

             return 

     else                                                                                   // C3

             return ;

}

mindist e pnt,( ) e tri,∀〈 〉

mindist v pnt,( ) v tri,∀〈 〉

Figure 3:  Pseudo code that defines the distance of a 3D point,
pnt, to a finite triangle, tri, positioned in a 3D space.
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Figure 4:  Illustration of the distance definition described in Fig.
3. In the diagram, we set of viewing angle in the direction of the
normal(tri). If pnt projects into the tri, then it’s case C1.
Otherwise, if pnt orthogonally projects onto an edge, then we
have one of the three C2 case. Finally, if pnt falls into neither
C1 or C2, it has to be one of the three C3 cases, where it is
closest to a vertex.



The second step is distance transformation. Initially, we use
an outside flooding to eliminate all outside voxels from our com-
putational pipeline. For voxels that still remains, a contour-by-con-
tour CDD propagation is performed from outside to inside. During
this process, a voxel keeps looking for CDD tuples that have been
newly propagated to anyone of its 26-neighbors [5]. It inherits all
new CDD tuples from its neighbors, and for each triangle, it com-
putes the true Euclidean distance from its own position. The
updated list of CDD tuples are then sorted into ascending order
again, so that the first CDD tuple in list contains the current dis-
tance, cur_distance, from this voxel to the closest surface triangle.
All the updated CDD tuples that correspond to a distance value that
is within the range:

       [cur_distance, cur_distance + *voxel size] 
are stored with that voxel. At the mean time, those CDD

tuples that fall out of this range are discarded. This whole process
of distance transformation iterates until no voxels can find new
CDD tuples from its 26-neighbors that affects its own minimal dis-
tance to the surface geometry.

3.4  Reconstructing A Distance Contour
The most frequent way in which a distance field is used is by

reconstructing an iso-distance contour. For instance a user may
specify, “Show me the zero distance contour with at an error toler-
ance of 0.5mm”. Sometimes, the corresponding gradients are also
needed on that iso-distance contour. The conventional way of
reconstructing the distance field in-between voxels, i.e. at sub-
voxel resolution, is to use an interpolation scheme [3], such as tri-
linear interpolation. While this works well for some data sets, there
is no guarantee on the ascertained level of accuracy. We opt to use
a different method, which provides much more leverage in accu-
racy based on CDFR.

Given a requested thickness, t, we traverse the whole volume,
and go through the inter-voxel regions, marked by 8 corner voxels,
one by one. We look for those inter-voxel regions whose 8 corner
voxels have a minimal thickness that is less than or equivalent to t,
and maximal thickness above or equivalent to t. The requested iso-
contour goes through these inter-voxel regions that are identified
as such. We then subdivide the inter-voxel region into sub-voxels.
In order to support the error tolerance picked by the user, we need
to make sure:

(2)

For each sub-voxel, we compute the true distance value
according to all the CDD tuples resident on anyone of the 8 corner-
ing voxels. The sub-voxels that have a minimal true distance value
within the range [t - E/2, t + E/2] are deemed to be on the contour.

The normal of each sub-voxel is the same as the normal of its clos-
est triangle. High quality per sub-voxel shading is thus provided.

4.  Proof of Sufficiency
To prove the correctness of CDFR, we first need a proof of

sufficiency, that is, when we need to reconstruct the local distance
field in any inter-voxel region, all the surface primitives affecting
this local area are present on at least one of the 8 cornering voxels. 

A surface primitive, such as triangle, affects a local field in
3D space, by being the closest surface triangle to at least one posi-
tion in this local area. Based upon this observation, we devise our
proof of sufficiency with a proof by contradiction: 

Suppose in the CDFR, R, there exist a local inter-voxel
region, L, in which exists at least one point, P(x,y,z), to which the
closest surface triangle, T, is not resident on any of the 8 corners of
L. We label the 8 corners as, Ci, i = 1, 2... 8.

Without loss of generality, we write the distance from P to T
as D. All distance fields are continuous functions, although they
m a y  n o t  h a v e  c o n t i n u o u s  d e r i v a t i v e s .  F o r  a  p o i n t ,
P’(x+dx,y+dy,z+dz), that is closely neighboring P in 3D, the dis-
tance from P’ to T is bounded by:

 (3)
Due to deduction, when P’ incrementally moves towards any

one of the 8 corners of L, say, Ci, it logically follows that the dis-
tance from Ci to T is bounded by:

(4)

Equation (4) can be rewritten as:

(5)
In a very similar way in which Equation (3), (4) and (5) are set

up, we can also find out that the minimum distance on P, which is
D, must be smaller than , with minDi denot-
ing the minimum distance on Ci. Therefore, the distance of T to Ci,
must be within the following range:

(6)
Since for a corner voxel that is the closest to P, the maximum

distance is  voxel size, Equation (6) is actually a subset of:

(7)
Contradiction. Since during our distance propagation process,

Equation (7) is exactly the range that we maintain on each voxel.
Proof completed.

We do not claim our scheme is minimal, in that, we might
have kept more surface primitives on each voxel than necessary.
However, it is obvious that minimality criteria would introduce
more complexity. As long as we use a triangle index in CDD tuples
instead of complete description of each triangle, the extra storage
cost that we spend in storing extra CDD tuples is low, with which
we have traded for simplicity in implementation and speed in exe-
cution.

5.  Experimental Results
With CDFR, the initial resolution of the volume does not dic-

tate the accuracy of the distance field any more. The conventional
single closely coupled pipeline, involving voxelization, distance
transform and graphics operations, is now broken into a two inde-
pendent steps, constructing a CDFR and reconstruction of a certain
distance or a set of distances contours as a point-based model at a
given level of accuracy.
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d2
d1

V

CDD Tuple List of V:
{d2, T2}
{d1, T1}
{d3, T3}
// in ascending order

Figure 5:  An illustration of building a CDD tuple list for a surface
voxel, V. The CDD tuple list is organizes in ascending distance
order, with the minimal distance of V being d2, in the above case.

3

3
2

-------subvoxelsize E<

D dx2 dy2 dz2
+ +– D dx2 dy2 dz2

+ ++[ , ]

D sd
p'

c i∫– D sd
p'

ci∫+[ , ]

D dist Ci P',( )– D dist Ci P',( )+[ , ]

minDi dist Ci P,( )+

minD i minDi 2dist Ci P',( )+[ , ]

3( ) 2⁄

minDi minDi 3voxelsize+[ , ]



We first present some simple cases to justify the correctness
of our algorithm with experimental results, in addition to our theo-
retical proof in Section 4.

Cube and tetrahedral cells are the simplest possible examples.
They are convex and can be symmetric. With true Euclidean dis-
tance field, the thickness contours of different values are still in the
shape of the outer surfaces throughout the whole range of thick-
ness, Fig. 6.

Concaveness causes much complexity in distance fields. To
demonstrate our methods, we use two sample models in Fig. 7, a
two-ended tooth and a 6-star. For the two-ended tooth, we chose a
very small thickness value and extracts a shell close to the surface
mesh, while for the 6-star, a large thickness value, corresponding
to a distance deep into the core of the model, is chosen. In doing so,
we would like to demonstrate the interesting evolving effects that
can only be shown with a true Euclidean distance field representa-
tion.

In the distance field, small thickness contours are closer to the
surfaces, and retain much detail of the surface shape or topology.
The larger the thickness gets, the more effects of smoothing are
introduced. The shape of the thickness contours start to manifest
more global features of the shape than small-scale details.

All four data models are voxelized at a resolution of
. In reconstructing the thickness contour that we

show in Fig. 6 and 7, we set the accuracy to one 1000th of the size
of each of the geometric model. Due to the space saving advantage
of our method, we only reconstruct, store and render the subvoxels
exactly on the desired thickness contour, within our acceptable

error tolerance. In this case, for all 4 models, there are only several
thousand subvoxels, or points, to render. We achieved 30 frames/
second rendering of our high accuracy point-based representation
of the distance contour, which would throttle most rendering
engines if traditional simple scalar distance field is instead used. At
a volume resolution of 1000, it is overwhelmingly difficult to
stream the huge volumetric distance field otherwise needed by tra-
ditional approaches into the system and render at real time, even
with ADF hierarchies.

6.  Real-world Application Results

Computer Aided Design and Computer Aided Manufacturing
(CAD/CAM) has become an important field. CAD techniques play
indispensable roles in shortening time to market, early detection of
design artifacts, and so on. But, traditional surface graphics based
CAD/CAM systems lack the ability to efficiently carry out projects
involving the interior of part designs. Volume techniques have
been considered. But due to the limitation in achievable accuracy
with current computing resources, the application of volume
graphics has been limited to where only a trend of change is of
interest, and accuracy is not too much of a concern. While we have
demonstrated both the correctness and efficiency that we can
achieve with CDFR on some simple test data sets, we also tested
on large real-world models, for which both accuracy and high
frame rates are highly sought after.

We tested our algorithm on several real application data sets,
Connector, Brevi, and Engine, each of a different amount of com-
plexity. We present both the timing of construction and size of
CDFR storage, with regard to different initial resolution. We also
present the timing in reconstructing the final distance shell for
usage, at a number of final thickness values, accuracy level, and of
course, at different initial CFDR resolution.

In Fig. 8, we show results of the Connector part. It is a rela-
tively simple part, with only 327 triangles on its surface. Choosing
a different initial CDFR resolution results in different timings in
both constructing CDFR and extracting a distance shell after that.

Figure 6:  A sample model cube and a sample model of a
tetrahedral cell, with the surface mesh shown in semi-
transparency, and the inner shell at a distance value that is half
the size of the cube, shown in red.

Figure 7:  Two more complicated examples, a 6-star and a two-
ended tooth. As we can see, when the thickness value picked is
fairly small (close to the surface, the case for the two-ended
tooth) the distance field remains very close to the shape of the
surface, retaining most corners and sharp edges, with some
smoothing. When the thickness value increases and the distance
field evolves into core of the model, the true Euclidean distance
field shows more smoothing effects, losing most surface details
and but still obviously showing the global feature of the shape.

32 32× 32×

Figure 8:  Results of a part design, Connector, with 327
triangles. The surface mesh is shown in semi-transparency, and
the inner distance shell picked are at thickness 0.6 and 0.5, both
at an accuracy of 1000th the size of the part’s length. Picking a
different initial resolution of CDFR, does not affect the final
results, but results in different timings.

Figure 9:  Brevi. With the final results being picked at different
thickness.



We also tried our algorithm out on a very large design part,
Engine, with more than 130K triangles on its surface. When built,
it should be of 40KGs in weight, and cm in size. A
very interesting feature of this part is that the maximal thickness in
this part is only 11mm. To heavy sections in the part, for instance,
thicker than 10mm, at the designer’s required accuracy, e.g.
0.1mm, one would need to build a floating-point volume at least

 in size using the traditional approach. With
CDFR representation, we use an initial CDFR resolution of 300,
and extract the distance shell at 10mm thickness, at 0.1 mm accu-
racy, in 30 seconds, and render the results, Fig. 10, at 30 frames/
sec.

7.  Discussions and Future Work

In conclusion, in this paper we propose to use CDFR to effi-
ciently and accurately describe distance fields resulting from a sur-
face shape. Unlike the linear sampling theory based on Nyquist’s
law, our volume representation of distance field does not have to
abide by the requirements of limiting bandwidth. We can exactly
capture details that have infinite bandwidth in the 3D space. Spe-
cifically, we demonstrate the advantages offered by CDFR on sur-
face meshes represented with triangles. In addition to providing a
proof of correctness, timing and storage issues have been presented
and discussed as well. In general, we believe CDFR is an accurate
way to represent a distance field. 

For the first time, the initial resolution of the volume repre-
sentation does not affect the accuracy that is achievable later on
any more. Rather, the initial resolution provides a measure of trad-
ing storage for speed or vice versa. One good extension that we
have not implemented is to use hierarchical data structures to orga-
nize CDFR. Such a scheme could expedite the reconstruction pro-
cess without causing a significant increase in storage needs. It
would be straightforward to use number of triangles resident on a
voxel as a measure of determining whether further subdivision
should be carried out. Combined with hierarchical frameworks,
such as ADF [3], CDFR would become a practical representation
for use in both the general graphics domains and highly applied
fields, such as CAD/CAM.
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Figure 10:  The thickness shell of the Engine, at 10mm thickness
and 0.1mm error tolerance. This image can be rendered at
30frames/sec.


