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ABSTRACT

This paper presents a method of reconstructing two-
dimensional images at varying spatial resolutions while
preserving edge information and allowing for blurring.  It is
often the case that a user would like to zoom in on certain
areas of an image.  Such a zoom operation requires a
reconstruction of the data to provide values at the resampled
pixel locations.  Standard reconstruction methods use a
spatially invariant reconstruction kernel such as a Gaussian or
spline to perform this resampling.  These reconstructions
result in blurred edges and preserve noise artifacts.  The
reconstruction method described in this paper uses a spatially
varying kernel to allow preservation of edges at the various
resolutions.  In addition the reconstruction allows the user to
specify regions to blur in the reconstructed image.  This allows
the user to display magnified images in which the edge
locations are preserved and unimportant areas are de-
emphasized. This reconstruction scheme has been applied to
several test data sets.  The resulting images demonstrate the
algorithm’s ability to magnify an image while preserving
edges and blurring unwanted detail.

Keywords:  Image Reconstruction, Zoom, Edge Preservation,
Blur.

1.  INTRODUCTION

A common task in image processing is reconstructing an
image at a higher resolution than the acquired data.  Such a
zoom operation requires a resampling of the data to provide
values at each pixel location.  If the underlying continuous
function is band limited and the resulting input image is
sampled at a sufficient rate it is theoretically possible to
reconstruct the continuous function exactly.  However, such a
reconstruction requires an infinite filter which is not realizable
and a good approximation is computationally expensive.
Furthermore, for many applications the desired function is not
band limited, or has frequencies higher than those in the low-
pass image.  As a result, simpler filters are employed in
reconstruction.  Standard reconstruction methods use a
spatially invariant kernel such as a Gaussian or spline to
reconstruct the underlying continuous function and resample at
the new locations.  Additionally, the range of influence of the
reconstruction kernel is limited to allow a practical
implementation of the filter.  Max determined a reconstruction

kernel that was optimal for reconstructing a uniform image
with a spatially invariant kernel [1].   This kernel is limited in
extent and can be easily computed.

There are many ways in which an image conveys information,
but edges are perhaps the most important.  The edge between
healthy tissue and cancerous cells is just one example of the
importance of edges.  These edges may be ill-defined in the
low-passed image, and the radiologist or various edge
detection schemes may be needed to determine their locations.
Our goal is to preserve and enhance edges in a magnified
image.  Since the optimal kernels of Max and others are
designed to reconstruct a uniform image they tend to blur
edges by averaging out the discontinuity.  Here, we associate
with each data point a spatially varying reconstruction kernel,
to allow reconstruction of functions with sharp edges.

Another problem in image display is noise.  When a user
identifies noise in an image it is often intentionally blurred.
Unfortunately the intentional blur that de-emphasizes noise
will also destroy the edges.  There is a need for a display
algorithm that allows for blur, but at the same time retains the
important edge information.  Since we specify a unique
reconstruction kernel for each pixel, we can include specific
information to simultaneously preserve the edges while
blurring.

Much of the image processing literature concerning edge
enhancement with noise removal is focussed on iterative
algorithms that converge to a solution slowly [2,3,4].  These
algorithms require multiple passes through the data and are
not well suited for use in a simple zooming algorithm for
image display.  These algorithms are also concerned with edge
enhancement without prior edge identification.   Often times
the location of the edges can be determined by the user and
then display is the only issue.  In this paper we are concerned
with a simple and fast display algorithm and we assume that
the edge locations are either known, user defined or pre-
calculated by an edge detection routine.  Similarly, we assume
that the suspected noise pixels have been identified.  This
paper focuses strictly on the reconstruction and resampling of
the image using this information.

Huang, Crawfis, and Stredney have recently done work to
preserve and enhance edges in the context of volume
rendering using splats [5].  The work presented in this paper is
the practical application of the techniques developed for the
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volume rendering edge preservation, to the simpler case of 2D
image reconstruction.

2. ALGORITHM

Figure 1:  Black box depiction of  Zoom algorithm with
inputs and output.

Figure 1 is a black box representation of the zoom algorithm.
The algorithm requires several inputs in order to produce the
output zoomed image.  The input image is the image for which
enlargement is desired.  In addition to this image four (or
more) two dimensional arrays are also necessary.  The
necessary arrays are edge location, edge orientation, kernel
type, blur level, and possibly edge strength.  These arrays
correspond to parameters used in the zoom algorithm and each
is described below.  Additionally the level of zoom must be
specified.  The zoom level is the magnification factor and was
fixed at a level of three for the images in this paper.

It is assumed that the input parameter arrays are available to
the zoom algorithm.   Edge location and orientation can be
determined using standard image processing algorithms for
edge detection or the user can manually trace the edges.
Kernel type and blur level assignments can also be done
manually or auxiliary algorithms can be used to automatically
make such assignments.   For sharp transitions in 2D contour
filling algorithms, the edge information can be approximated
using the gradient of the input field.

The edge location and orientation information is then used to
vary the kernel used for reconstruction of the higher resolution
image.  The kernels near an edge are modified to artificially
enhance the edge by re-mapping a standard kernel using a
non-linear transformation.  The non-linear mapping function
used is that presented by Huang, Crawfis and Stredney [5].  A
detailed analysis of this non-linear stretching function is given
in the reference and is beyond the scope of this paper.

Huang used the optimal reconstruction kernel for splatting, as
presented by Crawfis et. al. [6], as the base kernel.  This
kernel is optimized to reconstruct a uniform 3D volume.
Since this paper is concerned with 2D images, the Crawfis
kernel is not appropriate.   Figure 2 shows a similar optimal
2D kernel as presented by Max [1], which we have used as the
base kernel for the reconstructions. This basic kernel is
modified by a stretching function to create new kernels for
edge enhancement.

There are four modified edge kernels in the implementation
used for the reconstructions in this paper.  In the language of
Hunag, Crawfis and Stredney [1], the kernels are labeled as
primary or secondary and  high or low.  A primary kernel is

associated with a pixel that is within a single pixel length of
the edge.  A secondary kernel is associated with a  pixel

located more than one pixel length but less than two pixel
lengths from the edge.  These secondary kernels are necessary
to ensure proper reconstruction in the regions where the
reconstruction kernels overlap.  Pixels greater than two units
away are assumed to have negligible contributions to edge and
have unaltered kernels associated with them. Since and edge
represents the transition from a region of relatively high
intensity to a region of relatively low intensity, we use high or
low to designate which side of the edge the pixel associated
with the kernel is located.  Figure 3 summarizes these
designations.

Figure 3:  Kernel designations

The modified kernels are controlled by three parameters:  edge
location, edge strength, and edge orientation.  Edge location
refers to the position of the edge relative to the original image
samples.  Edge location is specified as a positive or negative
distance to indicate whether the pixel is on the “high” or
“low” side of the edge.  Edge strength determines how much
of an influence the edge has on the reconstruction. That is, it
determines how sharp or crisp the resulting edge will be.  This
allows for a variety of edge profiles.  Edge orientation refers to
the direction of the edge in the plane of the image.   Arrays of
each of these parameters are used as input to the zooming
algorithm.

A blur  function was also added to allow the user to blur noise
while preserving the edge.   A blur is achieved by
redistributing the energy in the kernel over a larger region of
the final image.  For this paper, the blur was done by
stretching the optimal kernel prior to applying the edge
stretching function.  The base kernel is radially symmetric,
thus the stretching is just a rescaling of the radial axis.  If g(r)
is our kernel function, we use g(r’) where r’ is a constant
times r.  The constant is chosen for each level of blur.   Since
the constant is chosen to be less than one, the energy of the
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kernel is spread out over a larger number of pixels in the
image.

Image reconstruction involves stepping over each of the
original image samples, selecting the appropriate kernel and
then adding that kernel to the new image buffer.  One
advantage of the spatially invariant kernels used in standard
reconstruction is that the kernel can be calculated once and
then used for every sample in the image.  This allows for very
fast reconstruction.  In order to obtain similar reconstruction
times using the spatially varying kernels, they must also be
pre-calculated.  This requires that kernels be calculated for
discrete values of the controlling parameters.  If done for a
sufficiently large number of samples in the parameters, the
discretization does not significantly affect the quality of the
reconstruction.  The pre-calculated kernels are then stored in a
lookup table indexed by edge location, edge strength, and blur.
A section of the lookup table is shown in the Figure 4.

Figure 4 shows the five kernels (non-edge, secondary low,
primary low, primary high, and secondary high) for several
levels of blur.  Blur increases from right to left.  Only a single
edge strength and edge location is depicted in the figure.  The
table for this paper was built to provide a three times
magnification.

Additionally, rotations of the kernels can be pre-calculated or
done using texture mapping hardware.  Reconstruction is
performed by selecting the correct kernel from the table based
on the calculated and user specified parameters for each
sample in the original image.  This kernel is then weighted by
the sample value, shifted to the appropriate location,
resampled to the desired resolution, and added to the output
image.  The final image is obtained by repeating this process
for each of the original image samples.

3.  SIMPLE EXAMPLE

Figures 5 through 11 show a simple example of a
reconstruction that illustrates the ability of the algorithm to
preserve edges while allowing for simultaneous blur.  Figure 5
shows an example data set exhibiting a strong edge.  The
image consists of a dark and light band.  The dark region has a

Non-edge

Secondary-high

Primary-high

Primary-low

Secondary-low

Figure 4:  Portion of kernel lookup table

Figure 6: Reconstruction with single optimal kernel

Figure 7:  Reconstruction with enhanced edge kernels

Figure 5:  Simple example image (8 x 8 pixels)



pixel intensity of 10 and the light region has a pixel intensity
of 100.  This continuous function is sampled to only 8 x 8
pixels, or discrete data points, and used as input for the
subsequent tests.

Magnifying the image three times and reconstructing results in
a 24 x 24 pixel version of the image.  Figure 6 shows the
reconstruction if the spatially invariant optimal kernel is used.
Note that distortion around the periphery is expected because
the reconstruction used zeros for values of samples outside the
original image.  Figure 6 reveals that the edge is smeared by
the simple single kernel reconstruction.

Figure 7 shows the reconstruction with the modified edge
kernels.  It was assumed that the edge was located half way

between the pixels in the original image for the reconstruction.
The effect of edge strength was not explored in this example.
Mach banding is present in the image as a result of
discontinuities in the higher order derivatives.  The edge
kernels were designed to be only C1.  The figure reveals that
the edge is crisper with the edge enhanced kernels.

To simulate noise in the image we place a spike with a value
of 80 in the dark region of our sample image at pixel location
(4,4).  Figures 8 and 9 are the reconstructions using the single
spatially invariant kernel and edge kernels respectively,  for
the sample data set with a single spike.

The single kernel reconstruction blurs the noise and edge.
This blurring results from the averaging nature of the

Figure 9:  Reconstruction of spike image with
enhanced edge kernels

Figure 10:  Single kernel reconstruction of spike
image with blur

Figure 8: Reconstruction of spike image with single
optimal kernel

Figure 11:  Edge kernel reconstruction of spike
image with blur



magnification processes.  When the edge kernels are used the
edge is maintained while the spike is blurred by the averaging
process.

In addition to the natural blur caused by the magnification
process, the user may wish to blur certain regions of the
image.  This additional blur is achieved by spreading the
energy of the kernel over a larger region and was described
previously.    Figures 10 and 11  show the spike image with
additional blur specified at the spike pixel location.  Figure 10
uses the single kernel reconstruction and Figure 11 uses the
edge kernels.

These images reveal the ability of the reconstruction technique
to maintain the edge and to blur the noise.

4.  CIRCLE EXAMPLE

The example in the previous section had only horizontal edges
and thus no rotation of the kernels was necessary.  In this
section a more complicated but still constrained example is
presented.  In this section the image is a circle with a 25 pixel
radius centered in a 100 x 100 pixel image.  The pixel
intensities inside the circle are 100 and the pixel intensites
outside the circle are 10.

The circle data set reveals some of the challenges of
implementing the edge kernel algorithm in data sets with
varying edge directions.   All images are cropped for display.

Figure 12 shows how the edge kernels were chosen for the
reconstructions that follow.  The rings from the inside to out
are:  secondary high, primary high, primary low, and
secondary low.  There is some ambiguity in the assignment of
these kernels.  Since the edge is not a straight line, artifacts
are introduced into the reconstructions.

In addition to the kernel types, the edge location and edge
direction must be specified for each pixel in the original
image.  These specifications can be determined for this
artificial experiment, but can be difficult for experimental data
or acquired images. Where manual traces exist, or an image is
contoured, accurate edge information is available.

After magnification the resulting images are 300 x 300 pixels.
A reconstruction using the single optimal kernel is shown in
Figure 13.  The edge of the circle is fuzzy in this image.
Figure 14 shows the reconstruction using the edge kernels.
The edge is crisp, but artifacts from the kernel selection
ambiguity are seen as bright and dark regions along the edge.
Correcting these is the subject of future investigations.

Next we added Gaussian noise with zero mean and a standard
deviation of approximately 35  to our original image.
Additionally two levels of noise were explored simultaneously
in the single image.  The left half of the image has a 30%
probability of noise and the right half has a 70% probability of

Figure 12:  Edge kernels assignments.   Rings from
inside to out (dark to light) are:  secondary high, primary
high, primary low, and secondary low.

Figure 13:  Reconstruction of circle with single kernel

Figure 14:  Reconstruction of circle using edge kernels



noise.  This means that in left half of the image each pixel  has
a 30% chance of having noise added to that pixel value.
Similarly the each pixel in the right half of the image has a
70% chance of having noise added to the image.  Figure 15
shows this noise infected image.

The magnified reconstructions of this image using the single
kernel  and the edge kernel show results similar to the simple
example in the previous section.  The edge is better
represented by the edge kernels and the noise is somewhat
blurred by the averaging process.   To lessen the effect of the
noise an additional blur is again used.  If the blur level is
chosen to be very large the effect of the edge kernels is
diminished, but for moderate blur levels the edge kernels
allow for noise blurring with edge preservation.

Figure 16 shows the noisy image magnified using the single
optimal kernel with some additional blur.  Figure 17 shows
the same image made using the edge kernels.  The blurring
has de-emphasized the noise in both images.  The edge is crisp
in the image made using the edge kernels.  This further
demonstrates the reconstruction algorithm’s ability to allow
simultaneous blur and edge preservation.

5.  PROBLEMS AND FUTURE WORK

The examples in this paper have demonstrated the ability of
the edge kernels to provide sharp edges in zoom images.
Additionally the examples showed simultaneous blur and edge
preservation in these zoomed images.   It should be noted that
this procedure can be used to allow magnification to any level.

The algorithm uses edge location and orientation information
that may not be easily obtained.  For the contrived examples in
this paper the edge location and orientation could be easily
calculated.  In a real image this is not the case.  The user may
specify the edge location, but orientation must still be

calculated.  A robust orientation calculation needs to be
investigated.

The effect of using different edge strengths was not explored
in the examples in this paper.  The edge strength parameter is
part of the stretching functions developed by Huang et. al. [5].
A single value was used for all the reconstructions in this
paper.  Varying this parameter may allow for more control
over the edge and may allow higher levels of blur with
simultaneous edge preservation.

Finally, the reconstruction process assumes linear edges, or C1

curves with low curvature.  Corners are not addressed here.
The artifacts in the circle images are due to the fact that

Figure 15:  Noise infected image of circle Figure 16:  Reconstruction using blur and single kernel

Figure 17:  Reconstruction with blur using edge kernels



curvature is not included in the kernel designs.  Including such
curvature information in the kernels is an area for future
research.
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