
1/1/2011

1

Course Title
Topic

CSE

Prof. Roger Crawfis

Real-time Rendering

Overview

CSE 781

Prof. Roger Crawfis

The Ohio State University

 Course Overview

 The OpenGL 1.0 pipeline and the

OpenGL 3.0 pipeline

 The OpenGL Shading Language – GLSL

 Simple GLSL shader examples

 Homework #1

Agenda (week1)

 History of OpenGL
 Understanding the backward capabilities and some

of the ugliness in the current specification.

 History of Shading Languages

 History of Graphics Hardware
 Understand where we came from and why some of

the literature / web sources may no longer be valid.

 Appreciate modern Stream-based Architectures.

 Review of OpenGL and basic Computer
Graphics

 Lab 1

Agenda (week 2)

 Implementing a Trackball interface

 Frame Buffer Objects

Multi-texturing and a 3D Paint application

(lab2)

 Environment Mapping

 Normal and Displacement Mapping

 Lab3.

Agenda (weeks 3 thru 5)

 The GPU vs. the CPU

 Performance trends

 Virtual Machine Architecture (DirectX 10)

 Specific Hardware Implementations

 nVidia timeline and the G80 architecture.

 XBox 360.

 Future Trends

 Mixed cores

 Intel’s Larrabee

Agenda (week 6)

1/1/2011

2

 Lab 3 specification (multiple render targets
and geometry shaders)

 Hierarchical z-buffer and z-culling

 Shadow algorithms

 Planar shadows

 Ambient occlusion

 Shadow volumes

 Shadow maps

 Aliasing and precision issues

Agenda (weeks 7 and 8)

 Final Project specifications

 Aliasing

 Fourier Theory

 Full-screen anti-aliasing

 Texture filtering and sampling

 Shadow map filtering

Agenda (week 9)

 Special topics (TBD from)

 Animation and Skinning

 OpenGL in a multi-threading context

 High-performance rendering

 Frustum culling

 Clip-mapping

 Non-photorealistic rendering

 Volume rendering

Agenda (week 10)

 Prerequisites

 CSE 581 or knowledge of OpenGL and

basic computer graphics (linear algebra,

coordinate systems, light models).

 Good programming skills (C/C++/C#/Java)

 Interested in Computer Graphics:

 Love graphics and want to learn more

 Be willing to learn things by yourself and try out

cool stuff

Course Overview

Reference

 Real-Time Rendering by

Tomas Akenine-Moller,
Eric Haines and Naty

Hoffman (3rd edition)

 High-level overview

of many algorithms

(many obsolete).

 Need to read reference

papers to truly

understand techniques.

Reference (cont’d)

 OpenGL Shading

Language by Randi J.

Rost, Addison-Wesley

 The Orange Book

 Available on-line for

free through OSU’s

Safari account.

1/1/2011

3

Reference

 Advanced Graphics

Programming Using

OpenGL by Tom

McReynolds and David

Blythe (Publisher: Morgan

Kaufmann/Elsevier)

Other References

 3D Games I/II by Alan

Watt and Fabio

Policarpo, Addison-

Wesley

 OpenGL Programming

Guide (OpenGL 2.0),

Addison-Wesley

 SIGGRAPH Tutorials

and papers

Grading Policy

 Three labs and one final project: 70%

 Three individual labs

 Small team project (grad versus undergrad)

 Exam: 20%

Misc 15%

 Homework, quizes, …

 class attendance

 Advanced real time rendering algorithms

(GPU-based)

We will use OpenGL as the API.

What is this course about?

Rendering

 Graphics rendering

pipeline

 Geometry processing

 Rasterization

 Raster ops

Application

Geometry

Rasterizer

Image

Graphics hardware platform

 All labs are to be done on Microsoft Windows
machines using Visual Studio 2008 or 2010 in C++.

 You will need a DirectX 10 or better class graphics
card (nVidia GeForce 8800 or better, or ATI Radeon
2400 or better).

 Graphics Lab – CL D has several PCs with
nVidia GeForce 8800 GTX or 450 GTS cards. These
machines are reserved for the graphics courses, so
kick other students out.

 Note: Dr. Parent’s Animation Project course is also
this quarter and they need to access to some of the
machines that have Maya installed.

1/1/2011

4

Quick Review of OpenGL

 OpenGL is:
 A low-level API

 OS independent

 Window system independent

 Consortium controlled standard

 Geometry in OpenGL consists of points, lines,
triangles, quadrilaterals and a general polygon.

 OpenGL allows (use to allow?) for different
appearances through changes in state settings
 Current color

 Current normal

 Lighting enabled / disabled

 Linear Algebra
 Coordinate Systems

 Transformations

 Projections

 Lighting
 Gourand’s lighting model and shading

 Phong’s lighting model and shading

 Note: OpenGL 1.5 can not fully implement Phong lighting.

 Other major lighting models

 Texture Mapping
 Parameterization

 Sampling

 Filtering

Review of Graphics Theory

OpenGL 1.5 Quiz
The (Traditional) OpenGL 3.2

Pipeline

Vertex Shader

Rasterizer

Fragment Shader

Compositor

Display

Application

transformed vertices and data

Fragments with interpolated data

pixel color, depth, stencil (or just data)

texture

Geometry Shader
Note: All of the shaders have

access to (pseudo) constants

(more on this later).

 The pipeline diagram does not do the process justice.

 Think of an OpenGL machine as a simplified assembly line.

 To produce widget A:
 Stop assembly line

 Load parts into feed bins

 Set operations and state for the A’s process assembly

 Restart the assembly line
 Streams parts for A through the line

 To produce widget B:
 Stop assembly line

 Load parts into feed bins

 Set operations and state for the B’s process assembly

 Restart the assembly line
 Streams parts for B through the line

The Stream Model

 In reality, there are three simultaneous
assembly lines running at the same time.
Similar to plant A produces pistons, Plant B
produces engines and Plant C produces
cars.

 Yes, I am being abstract.

 Previous programming to the pipeline
required you to map data to specific
concrete objects, so it actually helps to
think of the OpenGL pipeline abstractly first.

The Stream Model

1/1/2011

5

1. The Vertex Shader

 Takes in a single vertex and associated

data (called attributes – normal, color,

texture coordinates, etc.).

 Outputs a single vertex (3D point) and

associated data (not necessarily the same

data from above).

The Stream Model

Vertex Shader

transformed vertices and data

2. The Geometry Shader

 Takes as input a primitive (e.g. a triangle) defined as a

collection of vertices, and data associated at each vertex.

 May also have access to adjacent primitives and their vertices

and data.

 Outputs either:

 Nothing - kills the primitive

 A similar primitive or set of primitives with associated data.

 A completely different primitive (e.g. a line strip) or set of

primitives and associated data.

The Stream Model

Primitive and data

Geometry Shader

Primitive(s) and data

3. The Fragment Shader (Pixel Shader in DirectX)

 Takes as input a fragment (pixel location), the depth

associated with the fragment and other data.

 Outputs either:

 Nothing – kills the fragment

 A single RGBA color and a depth value

 A collection of RGBA color values and a single depth value

 A collection of data and a single depth value

 May also include a single optional stencil value

The Stream Model

Fragment Shader

Depth with interpolated data

Color(s), depth, stencil (or just data)

 Some key points to consider / remember:
 If the wrong parts are feed into the system then the

results are meaningless or the assembly line crashes.
 For example, if ¾” hex nut bolts are needed and ½” phillips

screws are feed into the system the manifolds may fall off.

 What other resources does the system have access to?
 Something like grease may be considered an infinite

resource at one or more stations.

 The specific locations of welding sites and bolt placement.

 How do we prevent one Plant from either swamping
another plant with parts or preventing it from running
due to low inventory?

The Stream Model

The Stream Model

 So, to make a

functional OpenGL

Shader Program,

we need to connect

the three

independent shaders

together.

 But, they do not

connect!!!

Vertex Shader

Rasterizer

Fragment Shader

Compositor

Display

transformed vertices and

data

Fragments with

interpolated data

pixel color, depth, stencil

(or just data)

texture

Geometry Shader

The Real Pipeline

L
is

t<
T

>

v
e
rt

e
xS

tr
e
a
m

L
is

t<
U

>

v
e
rt

e
xS

tr
e
a
m

Top Secret

L
is

t<
T

ri
a

n
g

le
<
U
’>

>

tr
ia

n
g

le
S

tr
e

a
m

L
is

t<
P

ri
m

it
iv

e
<

V
>

>

tr
ia

n
g

le
S

tr
e
a
m

Top Secret

Top Secret

L
is

t<
V
’>

fr
a
g

m
e
n

tS
tr

e
a
m

L
is

t<
L

is
t<

D
>

>

fr
a
g

m
e
n

tS
tr

e
a
m

Top Secret

Raster Ops

Initial Vertex

data format

Transformed

Vertex data

format

Transformed

Vertex data

format

Re-Processed

Vertex data

format

Re-Processed

Vertex data

format

Final fragment

format

Process

Data
Process

Data

Process

Data

Vertex

Shader
Geometry

Shader

Fragment

Shader

1/1/2011

6

 Top Secret is not the proper term there, but
rather “Beyond Your (Current) Control”. I could
have put Primitive Assembly and
Rasterization, but there are a few more things
going on. We will look at more details of this
when go even deeper into the pipeline.

 I also used Triangle in List<Triangle<U>> to
make it clear that the primitive types do not need
to match (this is C#/.NET syntax btw).

 For now, realize that the data types need to
match and other than that, the shaders are
independent.

The Real Pipeline

 To make things a little more clearer, lets look at a specific

instance of the types. This is similar to basic fixed functionality for

a lit-material. Note, the structs are for illustration only.

The Real Pipeline

T - Initial Vertex Data
struct VertexNormal {

Point vertex;

Vector normal;

}

U - Transformed Vertex Data
struct VertexColor {

Point vertex;

Color color;

}

V – Re-Processed Vertex Data
struct VertexColor {

Point vertex;

Color color;

}

D – Final Fragment Data
struct VertexColor {

float depth;

Color color;

}

 C++/C-like

 Basic data types:

 void – use for method return signatures

 bool – The keywords true and false exist (not an int)

 int – 32-bit. Constants with base-10, base-8 or base-16.

 float – IEEE 32-bit (as of 1.30).

 uint (1.30) – 32-bit.

 Variables can be initialized when declared.

GLSL – The OpenGL Shading

Language

int i, j = 45;
float pi = 3.1415;
float log2 = 1.1415f;
bool normalize = false;
uint mask = 0xff00ff00

 First class 2D-4D vector support:

 Float-based: vec2, vec3, vec4

 Int-based: ivec2, ivec3, ivec4

 Bool-based: bvec2, bvec3, bvec4

 Unsigned Int-based (1.30): uvec2, uvec3, uvec4

 Initialized with a constructor

 Overloaded operator support;

GLSL Data Types

vec3 eye = vec3(0.0,0.0,1.0);
vec3 point = vec3(eye);

vec3 sum = eye + point;
vec3 product = eye * point;
float delta = 0.2f;
sum = sum + delta;

Component-wise

multiplication

 Component access:
 A single component of a vector can be accessed using the dot

“.” operator (e.g., eye.x is the first component of the vec3).

 Since vectors are used for positions, colors and texture
coordinates, several sequences are defined:
 x, y, z, w

 r, g, b, a

 s, t, p, q

 Masking
 Can use the accessors to mask components:

 vec2 p = eye.xy;

 Swizzling
 Can also change order: eye.yx

GLSL Vectors

 First class matrix support

 Square float-based: mat2, mat3, mat4, mat2x2,
mat3x3, mat4x4

 Non-square float-based: mat2x3, mat2x4,
mat3x2, mat3x4, mat4x2, mat4x3

 Usually, multiplication is component-wise (it
is not a dot product with vectors). Matrices
are the exception. These follow the normal
mathematical rules of vector-matrix and
matrix-matrix multiplication.

GLSL Data Types

1/1/2011

7

 Here are a couple of the most minimal

vertex shaders.

 Specifying a position.

 The data for gl_Position must be set.

 What does this do?

Vertex Shader Example

void main()
{

gl_Position = (0,1,0,1);
}

 Copying over the incoming position.

 What does this accomplish?

 When might it be useful?

 What happens with the modelview and projection
matrices?

 What type is gl_Position and gl_Vertex?

 When is it called?

Vertex Shader Example

void main()
{

gl_Position = gl_Vertex;
}

in vec3 ndcPosition;
void main()
{

gl_Position = vec4(ndcPosition,1.0f);
}

 Setting the color

 What is the value of the green and alpha
components?

 Do we care about the alpha component?

 What does this shader do? When?

Fragment Shader Example

void main()
{

gl_FragColor.r = 0.8f;
gl_FragColor.b = 0.8f;

}

out vec4 background;
void main()
{

background = vec4(0.8f,0.0f,0.8f,1.0f);
}

 If all we have is the stream, then we need a new shader for
each little tweak.

 Shader’s can be parameterized before they are “turned
on” (the assembly line is restarted).

 ProcessStream will use the values of BrickColor and
MortarColor.

 We need a mechanism to copy data values from CPU
memory (main memory) to GPU memory. We do not want
to access main memory for every element in a stream.

Memory Access in Shaders

class MyShader{

public Color BrickColor { get; set; }

public Color MortarColor { get; set; }

public IEnumerable<VertexColor> ProcessStream(IEnumerable<VertexNormal> vertexStream);

}

 In OpenGL these parameterized values are
called uniform variables.

 These uniform variables/constants can be
used within a shader on the GPU.

 Setting them is done on the CPU using the
set of glUniform API methods (more later).

 The number and size of these constants is
implementation dependent.

 They are read only (aka constants) within
the shader.

Memory Access in Shaders

 Texture Memory is handled specially:
1. It is already a GPU resource, so it makes no sense to

copy it over.

2. Additional processing of the data is usually wanted to
provide wrapping and to avoid aliasing artifacts that are
prevalent with texture mapping. This latter issue is
known as texture filtering.

3. As we will see, textures can also be written into on the
GPU. Read-only memory semantics allow better
optimizations than read/write memory accesses in a
parallel processing scenario. As such, textures are
read-only when used in a shader.

 All three shaders can access texture maps.

Memory Access in Shaders

1/1/2011

8

 Samplers
 Samplers are equivalent to Texture Units (glActiveTexture).

 You indicate what type of texture you expect in this slot with
the sampler type (23 texture types!):

 SAMPLER 1D, SAMPLER 2D, SAMPLER 3D, SAMPLER CUBE, SAMPLER 1D SHADOW, SAMPLER 2D
SHADOW, SAMPLER 1D ARRAY, SAMPLER 2D ARRAY, SAMPLER 1D ARRAY SHADOW, SAMPLER
2D ARRAY SHADOW, SAMPLER CUBE SHADOW, INT SAMPLER 1D, INT SAMPLER 2D, INT
SAMPLER 3D, INT SAMPLER CUBE, INT SAMPLER 1D ARRAY, INT SAMPLER 2D ARRAY,
UNSIGNED INT SAMPLER 1D, UNSIGNED INT SAMPLER 2D, UNSIGNED INT SAMPLER 3D,
UNSIGNED INT SAMPLER CUBE,UNSIGNED INT SAMPLER 1D ARRAY, or UNSIGNED INT SAMPLER
2D ARRAY

 A run-time (non-fatal) error will occur if the texture type and
indicated sampler type are not the same.

 DirectX 10 is separating the concerns of a sampler from that
of a texture. Currently each texture needs its own sampler.

 Used with built-in texturing functions (more later)

 Declared as uniform variables or function parameters (read-
only).

GLSL Data Types

 GLSL allows for arrays and structs

 Arrays must be a constantly declared

size.

 The types within a struct must be

declared.

GLSL Data Types

 Const
 Used to define constants

 Used to indicate a function does not change the parameter

 Uniform
 Pseudo-constants set with glUniformXX calls.

 Global in scope (any method can access them).

 Read only.

 Set before the current stream (before glBegin/glEnd).

 Attribute

 Deprecated – Use in in the future

 The initial per vertex data

 Varying

 Deprecated – Use out in the future

 Indicates an output from the vertex shader to the fragment shader

GLSL Variable Qualifiers

 OpenGL 3.0
 Varying and Attribute is being deprecated in favor

of in, out, centroid in and centroid out.

 Function parameters can also use an inout
attribute.

 Centroid qualifier is used with multi-sampling and
ensures the sample lies within the primitive.

 Out variables from vertex shaders and in variables
from fragment shaders can also specify one of the
following:
 Flat – no interpolation

 Smooth – perspective correct interpolation

 Noperspective – linear interpolation in screen space

GLSL Variable Qualifiers

 You can define and call functions in GLSL.

 No recursion

 Regular scoping rules

 Note: Uniform variables can be specified at
the function level. They are still accessible
to all routines. If specified in two different
compile units, they are merged. Different
types for the same uniform name will result
in a link error.

GLSL Functions

 GLSL defines many built-in functions, from
simple interpolation (mix, step) to trigonometric
functions, to graphics specific functions (refract,
reflect).

 Almost all of these take either a scalar (float, int)
or a vector.

 A full complement of matrix and vector functions.

 Some of the simpler functions may be mapped
directly to hardware (inversesqrt, mix).

 See the specification or the OpenGL Shading
Language Quick Reference Guide for more
details.

GLSL Built-in Functions

OpenGL Shading Language Quick Reference Guide
http://www.opengl.org/sdk/libs/OpenSceneGraph/glsl_quickref.pdf
http://www.opengl.org/sdk/libs/OpenSceneGraph/glsl_quickref.pdf

1/1/2011

9

 All texture access return a 4-component vector,
even if the texture is only one channel.

 Prior to Shading Language 1.3, these were all float,
so it returned a vec4.

 The texture function takes a sampler as its first
input, and a texture coordinate as its second input.

 Optional bias, offset or LOD is possible in several of
the variants.

 See the spec for more details.

 OpenGL 3.0 added the ability to inquire the texture
size in texels, access a specific texel and specify the
gradient to use for filtering.

Texture Look-up Functions

 Other functions:

 The fragment shader can take the derivative

of any value being interpolated across the

triangle using the dfdx and dfdy functions.

 There is a built-in noise function for Perlin-

like noise.

GLSL Built-in Functions

Most of the state variables are being

deprecated in OpenGL 3.0

 These variables allow a shader to

communicate with the old fixed

functionality pipeline.

GLSL Built-in Variables

 Special Vertex Built-in variables

GLSL Built-in Variables

in int gl_VertexID; // may not be define in all cases

out vec4 gl_Position; // must be written to

out float gl_PointSize; // may be written to
out float gl_ClipDistance[]; // may be written to
out vec4 gl_ClipVertex; // may be written to, deprecated

 Special Fragment Built-in variables

 Special Notes:
1. If gl_FragColor is written to, you can not write to gl_FragData and vice versa.

2. If gl_FragDepth is assigned inside a conditional block, it needs to be assigned for
all execution paths.

3. If a user-define out variable is assigned to, then you can not use gl_FragColor or
gl_FragData

4. User defined outputs are mapped using glBindFragDataLocation (more later)

GLSL Built-in Variables

in vec4 gl_FragCoord;
in bool gl_FrontFacing;
in float gl_ClipDistance[];

out vec4 gl_FragColor; // deprecated
out vec4 gl_FragData[gl_MaxDrawBuffers]; // deprecated
out float gl_FragDepth;

 Vertex Shader Built-in Attributes (Inputs)

 These have all been deprecated to

streamline the system.

GLSL Built-in Attributes

in vec4 gl_Color; // deprecated
in vec4 gl_SecondaryColor; // deprecated
in vec3 gl_Normal; // deprecated
in vec4 gl_Vertex; // deprecated
in vec4 gl_MultiTexCoord0; // deprecated
in vec4 gl_MultiTexCoord1; // deprecated
in vec4 gl_MultiTexCoord2; // deprecated
in vec4 gl_MultiTexCoord3; // deprecated
in vec4 gl_MultiTexCoord4; // deprecated
in vec4 gl_MultiTexCoord5; // deprecated
in vec4 gl_MultiTexCoord6; // deprecated
in vec4 gl_MultiTexCoord7; // deprecated
in float gl_FogCoord; // deprecated

Notes on texture mapping:

1. Will use the current texture coordinate.

2. You do not need to specify any texture coordinates

3. For multiple textures you do not need to specify the

same number of texture coordinates

In other words, texture coordinates and texture units are

completely decoupled.

1/1/2011

10

 All of the State (except the near and far

plane) have been deprecated.

 These were a nice convenience, but…

GLSL Built-in State

uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords];
// Derived state
uniform mat3 gl_NormalMatrix; // transpose of the inverse of the

// upper leftmost 3x3 of gl_ModelViewMatrix
uniform mat4 gl_ModelViewMatrixInverse;
uniform mat4 gl_ProjectionMatrixInverse;
uniform mat4 gl_ModelViewProjectionMatrixInverse;
uniform mat4 gl_TextureMatrixInverse[gl_MaxTextureCoords];
uniform mat4 gl_ModelViewMatrixTranspose;
uniform mat4 gl_ProjectionMatrixTranspose;
uniform mat4 gl_ModelViewProjectionMatrixTranspose;
…

 OK, I must admit, that the spec has these in a different section

from the specials. Not clear why these are different than

gl_ClipDistance for instance, except that those values would be

used by the fixed-function clipping.

 Vertex varying variables

 Fragment varying variables

GLSL Vertex to Fragment

Vars

out vec4 gl_FrontColor;
out vec4 gl_BackColor;
out vec4 gl_FrontSecondaryColor;
out vec4 gl_BackSecondaryColor;
out vec4 gl_TexCoord[]; // Deprecated
out float gl_FogFragCoord; // Deprecated

in vec4 gl_Color;
in vec4 gl_SecondaryColor;
in vec2 gl_PointCoord;
in float gl_FogFragCoord; // Deprecated
in vec4 gl_TexCoord[]; // Deprecated

 Vertex Shader

 Compute projected position

 Compute vertex color

 Compute vertex texture coordinates

Example (old 3.0)

void main()
{

// transform vertex to clip space coordinates
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
// Copy over the vertex color.
gl_FrontColor = gl_Color;
// transform texture coordinates
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;

}

 Fragment Shader

 Look-up (sample) the texture color

 Multiply it with the base color and set the

final fragment color.

 Note: The depth is not changed

 gl_FragDepth = gl_FragCoord.z

Example

uniform sampler2D texture;
void main()
{

vec4 color = texture2D(texture, gl_TexCoord[0].st);
gl_FragColor = gl_Color * color;

}

 Some things to note:

1. There is a main() for both the vertex and the fragment shader

2. There is no concept of the stream

3. Data can not be shared between instances

4. There is little to no difference between the built-in state and

user defined uniform variables.

 These are really kernels. There are applied to the

stream (similar to the Select clause in LINQ or SQL).

Example

class MyShader{

public Color BrickColor { get; set; }

public Color MortarColor { get; set; }

public IEnumerable<VertexColor> ProcessStream(IEnumerable<VertexNormal> vertexStream,

Func<VertexNormal,VertexColor> kernel);

}

 OK, we can define these kernels, but how do we tell the
system (OpenGL) to use them?

 Two new objects in OpenGL
 Shader Routine – a compilation unit

 Shader Program – a linked unit

 Setting up your shader program then takes a few steps:
1. Create object handlers for each routine.

2. Load the source into each routine.

3. Compile each routine.

4. Create object handler for the shader program

5. Attach each routine to the program

6. Link the program

7. Use the program

OpenGL and GLSL

1/1/2011

11

 Let’s look at some of my C# code for doing

this. Below are some of the pertinent snippets.

OpenGL and GLSL

namespace OhioState.Graphics

{

/// <summary>

/// This interface represents a shader routine;

/// </summary>

public interface IShaderRoutine

{

/// <summary>

/// Get or set shader content.

/// </summary>

string ShaderContent { get; set; }

/// <summary>

/// Compile the shader.

/// </summary>

/// <param name="resourceManager">Resource manager.</param>

/// <returns>Whether or not compilation succeeded.</returns>

bool Compile(IRenderPanel panel);

}

}

Key Interfaces

1 namespace OhioState.Graphics

2 {

3 /// <summary>

4 /// Represents a shader program used for rendering.

5 /// </summary>

6 public interface IShaderProgram

7 {

8 /// <summary>

9 /// Make the shader active.

10 /// </summary>

11 /// <param name="panel">The <typeparamref name="IRenderPanel"/>

12 /// for the current context.</param>

13 void MakeActive(IRenderPanel panel);

14 /// <summary>

15 /// Deactivate the shader.

16 /// </summary>

17 void Deactivate();

18 }

19 }

Key Interfaces

namespace OhioState.Graphics

{

public interface IHardwareResource<T>

{

T GUID { get; }

}

public interface IOpenGLResource : IHardwareResource<uint>

{

}

}

Shader Routines

protected ShaderRoutineGL()

{

// The constructor should not make any OpenGL calls

}

public bool Compile(IRenderPanel panel) {

if (!created) {

Create();

}

if (needsCompiled) {

LoadSource();

// Create the Handle (GUID) for the shader

Gl.glCompileShader(guid);

int compileStatus;

Gl.glGetShaderiv(guid, Gl.GL_COMPILE_STATUS,

out compileStatus);

isCompiled = (compileStatus == Gl.GL_TRUE);

SetCompilerLog();

needsCompiled = false;

}

return isCompiled;

}

Shader Routines

private void Create()

{

// Since OpenGL wants to return an unsigned int and unsigned int's

// are not CLR compliant, we need to cast this. ATI was giving me

// some signed numbers, so we need to prevent a conversion here.

unchecked

{

// Create the Handle (GUID) for the shader

guid = (uint)Gl.glCreateShader(shaderType);

}

created = true;

}

private void LoadSource()

{

int length = currentContent[0].Length;

string[] content = new string[1];

int[] lengthArray = { length };

// load the source code into the shader object

Gl.glShaderSource(guid, 1, currentContent, lengthArray);

}

Shader Programs
namespace OhioState.Graphics.OpenGL {

public class ShaderProgramGL : IShaderProgram,

IOpenGLResource, IDisposable

{
public ShaderProgramGL()

{

// Do not make OpenGL calls here

}

public void MakeActive(IRenderPanel panel)

{

if (!created)

{

Create();

}

if (needsLinked)

{

if (!Link())

return;

needsLinked = false;

}

Gl.glUseProgram(guid);

}

public void Deactivate()

{

//disable the program object

Gl.glUseProgram(0);

}

1/1/2011

12

Shader Programs

private void Create()

{

unchecked

{

guid = (uint)Gl.glCreateProgram();

}

created = true;

}

Shader Programs

public void AttachShader(IShaderRoutine shader)

{

if (!created)

{

Create();

}

if (!shaderList.Contains(shader))

{

shaderList.Add(shader);

Gl.glAttachShader(guid, (shader as IOpenGLResource).GUID);

needsLinked = true;

}

}

Shader Programs

public bool Link()

{

int linkInfo;

int maxLength;

Gl.glLinkProgram(guid);
//

// The status of the link operation will be stored as part of the program object's state.

// This value will be set to GL_TRUE if the program object was linked without errors and

// is ready for use, and GL_FALSE otherwise. It can be queried by calling glGetProgramiv

// with arguments program and GL_LINK_STATUS.

//

Gl.glGetProgramiv(guid, Gl.GL_LINK_STATUS, out linkInfo);

linkStatus = (linkInfo == Gl.GL_TRUE);

Gl.glGetProgramiv(guid, Gl.GL_INFO_LOG_LENGTH, out maxLength);

linkLog.EnsureCapacity(maxLength);

Gl.glGetProgramInfoLog(guid, maxLength, out maxLength, linkLog);

return linkStatus;

}

Shader Programs

public void Dispose()

{

Dispose(true);

}

private void Dispose(bool disposing)

{

if (disposing)

{

this.RemoveAllRoutines();

}

if (created)

{

Gl.glDeleteProgram(guid);

}

GC.SuppressFinalize(this);

}

 To use these, I wrap them in a Composite interface
called IMaterial.

 IMaterial contains an IShaderProgram, settings for the
Raster Operations, other OpenGL state (material
colors, etc.) and a set of UniformVariable name/value
mappings. More than you need now.

 The uniform variables can either be part of a material
or part of a shader program. Different trade-offs. With
materials, we can re-use the shaders, but are required
to re-set the uniform vars each frame.

 When the material is made active, it simply calls the
IShaderProgram’s MakeActive() method.

Materials Some Demos

1/1/2011

13

 Pre-1992
 2D Graphics – GTK

 3D – IRIS GL, ANSI/ISO PHIGS, PEX

 1992 – OpenGL 1.0
 PHIGS killer

 Controlled by the ARB (Architecture Review Board)

 1995 – OpenGL 1.1
 Texture Objects

 Vertex Arrays

 1998 – OpenGL 1.2
 3D Textures

 Imaging Subset

 1998 – OpenGL 1.2.1
 ARB extension mechanism

 Multi-texturing ARB extension

History of OpenGL

3D Graphics start to flourish

on the PC at about this time

 2000 – OpenGL 1.3
 Multi-texturing

 Texture Combiners (Yuck!)

 Multi-sampling

 Compressed textures and cube-map textures

 2001 – OpenGL 1.4
 Depth Textures

 Point Parameters

 Various additional states

 2003 – OpenGL 1.5
 Occlusion Queries

 Texture comparison modes for shadows

 Vertex Buffers

 Programmable Shaders introduced as an ARB extension.

History of OpenGL

 2004 – OpenGL 2.0

 Programmable Shaders

 Multiple Render Targets

 Point Sprites

 Non-Power of Two Textures

 2006 – OpenGL 2.1

 Shader Language 1.2

 sRGB Textures

History of OpenGL

 2008 – OpenGL 3.0
 Deprecation model!

 Frame Buffer Objects

 Shader Language 1.3

 Texture Arrays

 Khronos Group controlled

 2009 – OpenGL 3.2
 Geometry Shaders

 2010 – OpenGL 3.3, 4.0 and 4.1
 Tesselation

 OpenCL support / inter-op

 OpenGL ES 2.0 compatibility

History of OpenGL

The OpenGL 1.0 Pipeline

Vertex

Shader

Light

Transform

Project

Triangle

Setup

Combine

vertices into

triangle,

Convert to

fragments,

Interpolate

Frame-

buffer

Raster

Operations

Depth-test

Alpha-test

Blending

Fragment

Shader

Texture

Map

Texture map,

Final color

 RenderMan

 Cg

 HLSL

 GLSL 1.0

 GLSL 1.2
 Automatic integer to float conversion

 Initializers on uniform variables

 Centroid interpolation

 GLSL 1.3
 Integer support

 Texel access (avoid sampler)

 Texture arrays

History of Shading Languages

1/1/2011

14

 Shade Trees by Robert Cook (SIGGRAPH 1984)

 Uses a tree structure to determine what operations to perform.

 Really took off with Perlin’s and Peachey’s Noise functions and

shading results at SIGGRAPH 1985.

Renderman

 Still heavily used in feature film

productions.

 Entire careers focused around shader

development.

Renderman

[Proudfoot 2001]

 Cg was developed by nVidia

 HLSL was developed by Microsoft

 They worked very closely together. As such there is

little difference between the two languages.

 Difference is in the run-time.

struct VERT_OUTPUT {

float4 position: POSITION;

float4 color : COLOR;

};

VERT_OUTPUT green(float2 position : POSITION)

{

VERT_OUTPUT OUT;

OUT.position = float4(position, 0, 1);
OUT.color = float4(0, 1, 0, 1);

return OUT;

}

Cg and HLSL

 OpenGL’s belated entry.

GLSL

 There have been many other shading

languages, targeting different

capabilities.

 Sh

 Brooks

 CUDA

 OpenCL

 Ashli

Other Shading Languages

 Early History
 Flight-Simulators – Evans and Sutherland

 CAD – Workstations – SGI, DEC, HP, Apollo

 Visualization
 Stellar (1989?)

 Ardent

 SGI

 Entertainment (Hollywood)
 Cray

 Custom Hardware – Pixar Image Computer

 It is important to note, that this early excitement in
3D graphics in the late 1980’s and early 1990’s set
the stage for the PC boom.

History of Graphics

Hardware

1/1/2011

15

History of PC Graphics

Hardware

http://accelenation.com/?ac.id.123.2

Generation I: 3dfx Voodoo (1996)

• One of the first true 3D game cards

• Add-on for a standard 2D video card.

• Vertex transformations on the CPU

• Texture mapping and z-buffering.

• PCI bus becomes the bottleneck

Primitive
Assembly

Vertex
Transforms

Frame
Buffer

Fragment
Operations

Rasterization
and

Interpolation

CPU GPU
PCI

History of PC Graphics Hardware

http://accelenation.com/?ac.id.123.5

Generation II: GeForce/Radeon 7500 (1998)

• Hardware-based transformation and lighting (TnL)

calculations.

• Multi-texturing support.

• AGP bus

• nVidia coins the term GPU, ATI counters with the

term VPU (Visual Processing Unit).

• Device driver becomes a bottleneck

AGP

Primitive
Assembly

Vertex
Transforms

Frame
Buffer

Fragment
Operations

Rasterization
and

Interpolation

GPU

History of PC Graphics Hardware

http://accelenation.com/?ac.id.123.7

Generation III: GeForce3/Radeon 8500(2001)

• For the first time, allowed limited amount of

programmability in the vertex pipeline

• Also allowed volume texturing and multi-sampling

(for anti-aliasing)

Small vertex
shaders

AGP

Primitive
Assembly

Vertex
Transforms

Frame
Buffer

Fragment
Operations

Rasterization
and

Interpolation

GPU

History of PC Graphics Hardware

http://accelenation.com/?ac.id.123.8

Generation IV: Radeon 9700/GeForce FX (2002)

• Fully-programmable graphics cards

• Different resource limits on fragment and vertex

programs

Texture Memory

AGP

Vertex
Transforms

Frame
Buffer

Rasterization
and

Interpolation

GPU

Programmable
Fragment
Processor

Programmable
Vertex shader

Generation V: GeForce6/X800 (2004)
• Simultaneous rendering to multiple buffers

• True conditionals and loops

• Texture access by vertex shader

• PCI-e bus

• More memory/program length/texture accesses

• GPU is idle, move towards smarter fragments, rather
than more and more geometry.

History of PC Graphics Hardware

Programmable
Fragment
Processor

Texture Memory

PCI-Express

Vertex
Transforms

Frame
Buffer

Rasterization
and

Interpolation

GPU

Texture Memory

Programmable
Vertex shader

PC Graphics Hardware

GeForce 7800 GTX GeForce 7900 GTX ATI Radeon X1800 ATI Radeon X1900

Transistor Count 302 million 278 million 321 million 384 million

Die Area 333 mm2 196 mm2 288 mm2 352 mm2

Core Clock Speed 430 MHz 650 MHz 625 MHz 650 MHz

Pixel Shaders 24 24 16 48

Pixel Pipes 24 24 16 16

Texturing Units 24 24 16 16

Vertex Pipes 8 8 8 9

Memory Interface 256 bit 256 bit 256 bit ext (512 int) 256 bit ext (512 int)

Mem Clock Speed 1.2 GHz GDDR3 1.6 GHz GDDR3 1.5 GHz GDDR3 1.55 GHz GDDR3

Peak Mem Bwdth 38.4 GB/sec 51.2 GB/sec 48.0 GB/sec 49.6 GB/sec

1/1/2011

16

PCI-Express

History of PC Graphics Hardware

Generation V: GeForce8800/HD2900 (2006)
 Redesign of the GPU (more later)

 Support for DirectX 10 (more later)

 Geometry Shader

 Madness continues– and you get to be part of it!

Input
Assembler

Programmable
Pixel

Shader

Raster
Operations

Programmable
Geometry

Shader

Programmable
Vertex shader

Output
Merger

 Normal mapping (Direct3D 9)

Geometry Shader Example

 Displacement Mapping (Direct3D 10)

Geometry Shader Example

 Where are we now in this rapid era of mind-blowing
performance with unleashed creativity?
 The latest nVidia offering, the GeForce GTX280, has upwards

of 1.4 Billion transistors!

 OpenGL 4.0 adds three new stages between the vertex
shader and the geometry shader.
 Hull Shader – takes in the control points for a patch and tells

the tessellator how much to generate (OnTessellating?).

 Tessellator – Fixed function unit that take

 Domain Shader – Post tessellator shader (OnTessellated?)

 Rumors of access to the frame and depth buffers in the
future.

State of the Art – 2008/2009

 The next few images are actually a little old, but show off the

DirectX 10 class hardware.

Crysis

1/1/2011

17

Thief

Age of Conan

Stormrise

1/1/2011

18

Cool Stuff

By the end of this course you will

have the knowledge and skills to

accomplish all of this!

3D Paint

 Look at Crawfis’ slides for his Game

course!!!

CPU versus GPU

