Motivation

- Arrays provide an indirect way to access a set.
- Many times we need an association between two sets, or a set of keys and associated data.
- Ideally we would like to access this data directly with the keys.
- We would like a data structure that supports fast search, insertion, and deletion.
 - Do not usually care about sorting.
- The abstract data type is usually called a Dictionary or Partial Map
 - float googleStockPrice = stocks[“Goog”].CurrentPrice;

Dictionaries

- What is the best way to implement this?
 - Linked Lists?
 - Double Linked Lists?
 - Queues?
 - Stacks?
 - Multiple indexed arrays (e.g., data[key[i]])?
- To answer this, ask what the complexity of the operations are:
 - Insertion
 - Deletion
 - Search

Direct Addressing

- Let’s look at an easy case, suppose:
 - The range of keys is 0..m-1
 - Keys are distinct
- Possible solution
 - Set up an array T[0..m-1] in which
 - $T[i] = x$ if $x \in T$ and key[x] = i
 - $T[i] = \text{NULL}$ otherwise
 - This is called a direct-address table
 - Operations take $O(1)$ time!
 - So what’s the problem?
Direct Addressing

- Direct addressing works well when the range m of keys is relatively small.
- But what if the keys are 32-bit integers?
 - Problem 1: direct-address table will have 2^{32} entries, more than 4 billion entries.
 - Problem 2: even if memory is not an issue, the time to initialize the elements to NULL may be a concern.
- Solution: map keys to a smaller range $0..p-1$.
 - Desire $p = O(m)$.

Hash Table

- Hash Tables provide $O(1)$ support for all of these operations!
- The key is rather than index an array directly, index it through some function, $h(x)$, called a hash function.
 - $myArray[h(index)]$
- Key questions:
 - What is the set that the x comes from?
 - What is $h()$ and what is its range?

Hash Table

- Consider this problem:
 - If I know a priori the m keys from some finite set U, is it possible to develop a function $h(x)$ that will uniquely map the m keys onto the set of numbers $0..m-1$?

Hash Functions

- In general a difficult problem. Try something simpler.
Hash Functions

- A collision occurs when \(h(x) \) maps two keys to the same location.

\[h(x) = x \mod N \]

is a hash function for integer keys.

- The integer \(h(x) \) is called the hash value of \(x \).

- A hash table for a given key type consists of:
 - Hash function \(h \)
 - Array (called table) of size \(N \)
 - The goal is to store item \((k, o)\) at index \(i = h(k) \)

Example

- We design a hash table storing employees records using their social security number, SSN as the key.
 - SSN is a nine-digit positive integer

- Our hash table uses an array of size \(N = 10,000 \) and the hash function \(h(x) = \) last four digits of \(x \).

Our hash table uses an array of size \(N = 100 \).

- We have \(n = 49 \) employees.
 - Need a method to handle collisions.
 - As long as the chance for collision is low, we can achieve this goal.

- Setting \(N = 1000 \) and looking at the last four digits will reduce the chance of collision.
Collisions

- Can collisions be avoided?
 - In general, no. See perfect hashing for the case where the set of keys is static (not covered).
- Two primary techniques for resolving collisions:
 - **Chaining** – keep a collection at each key slot.
 - **Open addressing** – if the current slot is full use the *next open* one.

Chaining

- Chaining puts elements that hash to the same slot in a linked list:

 ![Diagram of Chaining]

 - How do we insert an element?
 - How do we delete an element?
 - Do we need a doubly-linked list for efficient delete?
Chaining

- How do we search for an element with a given key?

Open Addressing

- Basic idea:
 - To insert: if slot is full, try another slot, …, until an open slot is found (**probing**)
 - To search, follow same sequence of probes as would be used when inserting the element
 - If reach element with correct key, return it
 - If reach a NULL pointer, element is not in table
- Good for fixed sets (adding but no deletion)
 - Example: spell checking

Open Addressing

- The colliding item is placed in a different cell of the table.
 - No dynamic memory.
 - Fixed Table size.
- **Load factor**: n/N, where n is the number of items to store and N the size of the hash table.
 - Clearly, $n \leq N$, or $n/N \leq 1$.
 - To get a reasonable performance, $n/N < 0.5$.

Probing

- They key question is what should the next cell to try be?
- Random would be great, but we need to be able to repeat it.
- Three common techniques:
 - Linear Probing (useful for discussion only)
 - Quadratic Probing
 - Double Hashing
Linear Probing

- **Linear probing** handles collisions by placing the colliding item in the *next* (circularly) available table cell.
- Each table cell inspected is referred to as a **probe**.
- Colliding items lump together, causing future collisions to cause a longer sequence of probes.

Example:
- \[h(x) = x \mod 13 \]
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Search with Linear Probing

- Consider a hash table \(A \) that uses linear probing
- **get**\((k)\)
 - We start at cell \(h(k) \)
 - We probe consecutive locations until one of the following occurs
 - An item with key \(k \) is found, or
 - An empty cell is found, or
 - \(N \) cells have been unsuccessfully probed
 - To ensure the efficiency, if \(k \) is not in the table we want to find an empty cell as soon as possible. The load factor can NOT be close to 1.

```
Algorithm
    i ← h(k)
p ← 0
repeat
    c ← A[i]
    if c = ∅
        return null
    else if c.key() = k
        return c.element()
    else
        i ← (i + 1) mod N
        p ← p + 1
until p = N
return null
```

Linear Probing

- Search for key=20.
 - \(h(20) = 20 \mod 13 = 7 \).
 - Go through rank 8, 9, ..., 12, 0.
- Search for key=15
 - \(h(15) = 15 \mod 13 = 2 \).
 - Go through rank 2, 3 and return null.

Example:
- \[h(x) = x \mod 13 \]
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, 12, 20 in this order

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Updates with Linear Probing

- To handle insertions and deletions, we introduce a special object, called **AVAILABLE**, which replaces deleted elements
- **remove**\((k)\)
 - We search for an entry with key \(k \)
 - If such an entry \((k, o)\) is found, we replace it with the special item **AVAILABLE**
 - Have to modify other methods to skip available cells.
- **put**\((k, o)\)
 - We throw an exception if the table is full
 - We start at cell \(h(k) \)
 - We probe consecutive cells until one of the following occurs
 - A cell \(i \) is found that is either empty or stores **AVAILABLE**, or
 - \(N \) cells have been unsuccessfully probed
 - We store entry \((k, o)\) in cell \(i \)
Primary clustering occurs with linear probing because the same linear pattern:
- if a bin is inside a cluster, then the next bin must either:
 - also be in that cluster, or
 - expand the cluster
- Instead of searching forward in a linear fashion, consider searching forward using a quadratic function

Suppose that an element should appear in bin h:
- if bin h is occupied, then check the following sequence of bins:
 $h + 1, h + 4, h + 9, h + 16, h + 25, \ldots$
 $h + 1^2, h + 2^2, h + 3^2, h + 4^2, h + 5^2, \ldots$
- For example, with $M = 17$:

If one of $h + i^2$ falls into a cluster, this does not imply the next one will

For example, suppose an element was to be inserted in bin 23 in a hash table with 31 bins
- The sequence in which the bins would be checked is:
 23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0
Quadratic Probing

- Even if two bins are initially close, the sequence in which subsequent bins are checked varies greatly.
- Again, with $M = 31$ bins, compare the first 16 bins which are checked starting with 22 and 23:

 22, 23, 26, 0, 7, 16, 27, 9, 24, 10, 29, 19, 11, 5, 1, 30
 23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0

Quadratic Probing

- Thus, quadratic probing solves the problem of primary clustering.
- Unfortunately, there is a second problem which must be dealt with.
- Suppose we have $M = 8$ bins:

 $1^2 \equiv 1$, $2^2 \equiv 4$, $3^2 \equiv 1$

- In this case, we are checking bin $h + 1$ twice having checked only one other bin.

Quadratic Probing

- Unfortunately, there is no guarantee that $h + i^2 \mod M$ will cycle through 0, 1, ..., $M - 1$.
- Solution:
 - require that M be prime
 - in this case, $h + i^2 \mod M$ for $i = 0, ..., (M - 1)/2$ will cycle through exactly $(M + 1)/2$ values before repeating.

Quadratic Probing

- Example with $M = 11$:

 0, 1, 4, 9, 16 \equiv 5, 25 \equiv 3, 36 \equiv 3

- With $M = 13$:

 0, 1, 4, 9, 16 \equiv 3, 25 \equiv 12, 36 \equiv 10, 49 \equiv 10

- With $M = 17$:

 0, 1, 4, 9, 16, 25 \equiv 8, 36 \equiv 2, 49 \equiv 15, 64 \equiv 13, 81 \equiv 13
Quadratic Probing

- Thus, quadratic probing avoids primary clustering
- Unfortunately, we are not guaranteed that we will use all the bins
- In reality, if the hash function is reasonable, this is not a significant problem until λ approaches 1

Secondary Clustering

- The phenomenon of primary clustering will not occur with quadratic probing
- However, if multiple items all hash to the same initial bin, the same sequence of numbers will be followed
- This is termed secondary clustering
- The effect is less significant than that of primary clustering

Double Hashing

- Use two hash functions
- If M is prime, eventually will examine every position in the table
- `double_hash_insert(K)`
 - if(table is full) error
 - probe = $h1(K)$
 - offset = $h2(K)$
 - while (table[probe] occupied)
 - probe = (probe + offset) mod M
 - table[probe] = K

- Many of same (dis)advantages as linear probing
- Distributes keys more uniformly than linear probing does
- Notes:
 - $h2(x)$ should never return zero.
 - M should be prime.
Double Hashing Example

- \(h_1(K) = K \mod 13 \)
- \(h_2(K) = 8 - K \mod 8 \)
 - we want \(h_2 \) to be an offset to add
 - 18 41 22 44 59 32 31 73

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
44 & 41 & 73 & 18 & 32 & 53 & 31 & 22 & & & & & \\
\end{array}
\]

Open Addressing Summary

- In general, the hash function contains two arguments now:
 - Key value
 - Probe number
 \(h(k,p), \ p=0,1,...,m-1 \)
- Probe sequences
 \(<h(k,0), h(k,1), ..., h(k,m-1)> \)
 - Should be a permutation of \(<0,1,...,m-1> \)
 - There are \(m! \) possible permutations
 - Good hash functions should be able to produce all \(m! \) probe sequences

Open Addressing Summary

- None of the methods discussed can generate more than \(m^2 \) different probing sequences.
- Linear Probing:
 - Clearly, only \(m \) probe sequences.
- Quadratic Probing:
 - The initial key determines a fixed probe sequence, so only \(m \) distinct probe sequences.
- Double Hashing
 - Each possible pair \((h_1(k),h_2(k)) \) yields a distinct probe, so \(m^2 \) permutations.

Choosing A Hash Function

- Clearly choosing the hash function well is crucial.
 - What will a worst-case hash function do?
 - What will be the time to search in this case?
- What are desirable features of the hash function?
 - Should distribute keys uniformly into slots
 - Should not depend on patterns in the data
From Keys to Indices

- A hash function is usually the composition of two maps:
 - hash code map: key \rightarrow integer
 - compression map: integer \rightarrow $[0, N - 1]$
- An essential requirement of the hash function is to map equal keys to equal indices
- A “good” hash function minimizes the probability of collisions

Java Hash

- Java provides a `hashCode()` method for the Object class, which typically returns the 32-bit memory address of the object.
- This default hash code would work poorly for `Integer` and `String` objects
- The `hashCode()` method should be suitably redefined by classes.

Popular Hash-Code Maps

- **Integer cast**: for numeric types with 32 bits or less, we can reinterpret the bits of the number as an `int`
- **Component sum**: for numeric types with more than 32 bits (e.g., `long` and `double`), we can add the 32-bit components.

Polynomial accumulation: for strings of a natural language, combine the character values (ASCII or Unicode) $a_0 + a_1 x + ... + x_{n-1} a_{n-1}$
Popular Hash-Code Maps

- The polynomial is computed with \textit{Horner's rule}, ignoring overflows, at a fixed value x:

 \[
 a_0 + x (a_1 + x (a_2 + \ldots x (a_{n-2} + x a_{n-1}) \ldots))
 \]

- The choice $x = 33, 37, 39, \text{or} 41$ gives at most 6 collisions on a vocabulary of 50,000 English words

- Why is the component-sum hash code bad for strings?

Random Hashing

- Random hashing
 - Uses a simple random number generation technique
 - Scatters the items “randomly” throughout the hash table

Popular Compression Maps

- \textbf{Division}: $h(k) = \lvert k \rvert \mod N$
 - the choice $N = 2k$ is bad because not all the bits are taken into account
 - the table size N is usually chosen as a prime number
 - certain patterns in the hash codes are propagated

- \textbf{Multiply, Add, and Divide (MAD)}:
 - $h(k) = \lvert ak + b \rvert \mod N$
 - eliminates patterns provided $a \mod N \neq 0$
 - same formula used in linear congruential (pseudo) random number generators

The Division Method

- $h(k) = k \mod m$
 - In words: hash k into a table with m slots using the slot given by the remainder of k divided by m

 - \textit{What happens to elements with adjacent values of k?}

 - \textit{What happens if m is a power of 2 (say 2^p)?}

 - \textit{What if m is a power of 10?}

 - Upshot: pick table size $m = \text{prime number}$ not too close to a power of 2 (or 10)
The Multiplication Method

- For a constant A, $0 < A < 1$:
 - $h(k) = \lfloor m (kA - \lfloor kA \rfloor) \rfloor$

 What does this term represent?

 - Fractional part of kA
 - Choose $m = 2^p$
 - Choose A not too close to 0 or 1
 - Knuth: Good choice for $A = (\sqrt{5} - 1)/2$

Analysis of Chaining

- Assume simple uniform hashing: each key in table is equally likely to be hashed to any slot.
- Given n keys and m slots in the table:
 the load factor $\alpha = n/m = \text{average \# keys per slot}$

 What will be the average cost of an unsuccessful search for a key?

 - $O(1 + \alpha)$
Analysis of Chaining

- What will be the average cost of an unsuccessful search for a key?
- O(1+α)

- What will be the average cost of a successful search?
- O(1 + α/2) = O(1 + α)

Analysis of Chaining

- So the cost of searching = O(1 + α)
- If the number of keys n is proportional to the number of slots in the table, what is α?
- A: α = O(1)
 - In other words, we can make the expected cost of searching constant if we make α constant

Analysis of Open Addressing

- Consider the load factor, α, and assume each key is uniformly hashed.
- Probability that we hit an occupied cell is then α.
- Probability that we the next probe hits an occupied cell is also α.
- Will terminate if an unoccupied cell is hit: α(1- α).
- From Theorem 11.6, the expected number of probes in an unsuccessful search is at most 1/(1- α).
- Theorem 11.8: Expected number of probes in a successful search is at most:
 \[
 \frac{1}{α} \ln \left(\frac{1}{1-α} \right)
 \]