Introduction to Algorithms

Sorting in Linear Time

CSE 680
Prof. Roger Crawfis

Comparison Sorting Review

- Insertion sort:
 - Pro’s:
 - Easy to code
 - Fast on small inputs (less than ~50 elements)
 - Fast on nearly-sorted inputs
 - Con’s:
 - \(O(n^2)\) worst case
 - \(O(n^2)\) average case
 - \(O(n^2)\) reverse-sorted

- Merge sort:
 - Divide-and-conquer:
 - Split array in half
 - Recursively sort sub-arrays
 - Linear-time merge step
 - Pro’s:
 - \(O(n \lg n)\) worst case - asymptotically optimal for comparison sorts
 - Con’s:
 - Doesn’t sort in place

- Heap sort:
 - Uses the very useful heap data structure
 - Complete binary tree
 - Heap property: parent key > children’s keys
 - Pro’s:
 - \(O(n \lg n)\) worst case - asymptotically optimal for comparison sorts
 - Con’s:
 - Fair amount of shuffling memory around
Comparison Sorting Review

- **Quick sort:**
 - **Divide-and-conquer:**
 - Partition array into two sub-arrays, recursively sort
 - All of first sub-array < all of second sub-array
 - **Pro’s:**
 - $O(n \log n)$ average case
 - Sorts in place
 - Fast in practice (why?)
 - **Con’s:**
 - $O(n^2)$ worst case
 - Naïve implementation: worst case on sorted input
 - Good partitioning makes this very unlikely.

Non-Comparison Based Sorting

- Many times we have restrictions on our keys
 - Deck of cards: Ace->King and four suites
 - Social Security Numbers
 - Employee ID’s
- We will examine three algorithms which under certain conditions can run in $O(n)$ time.
 - Counting sort
 - Radix sort
 - Bucket sort

Counting Sort

- Depends on assumption about the numbers being sorted
 - Assume numbers are in the range 1..k
- The algorithm:
 - Input: $A[1..n]$, where $A[j] \in \{1, 2, 3, \ldots, k\}$
 - Output: $B[1..n]$, sorted (not sorted in place)
 - Also: Array $C[1..k]$ for auxiliary storage

```
1 CountingSort(A, B, k)
2   for i=1 to k
3     C[i] = 0;
4   for j=1 to n
5     C[A[j]] += 1;
6   for i=2 to k
7     C[i] = C[i] + C[i-1];
8   for j=n downto 1
9     B[C[A[j]]] = A[j];
10    C[A[j]] -= 1;
```
Counting Sort Example

![Counting Sort Example](image)

Counting Sort

```
1 CountingSort(A, B, k)
2   for i = 1 to k
3     C[i] = 0;
4   for j = 1 to n
5     C[A[j]] += 1;
6   for i = 2 to k
7     C[i] = C[i] + C[i-1];
8   for j = n downto 1
9     B[C[A[j]]] = A[j];
10    C[A[j]] -= 1;
```

What is the running time?

- Takes time $O(k)$
- Takes time $O(n)$

- Total time: $O(n + k)$
 - Works well if $k = O(n)$ or $k = O(1)$
 - This algorithm / implementation is **stable**.
 - A sorting algorithm is **stable** when numbers with the same values appear in the output array in the same order as they do in the input array.

- **Why don’t we always use counting sort?**
 - Depends on range k of elements.

- **Could we use counting sort to sort 32 bit integers? Why or why not?**
Counting Sort Review

- **Assumption**: input taken from small set of numbers of size k
- **Basic idea**:
 - Count number of elements less than you for each element.
 - This gives the position of that number – similar to selection sort.
- **Pro's**:
 - Fast
 - Asymptotically fast - $O(n+k)$
 - Simple to code
- **Con's**:
 - Doesn’t sort in place.
 - Elements must be integers: countable
 - Requires $O(n+k)$ extra storage.

Radix Sort

- **How did IBM get rich originally?**
 - **Answer**: punched card readers for census tabulation in early 1900's.
 - In particular, a card sorter that could sort cards into different bins
 - Each column can be punched in 12 places
 - Decimal digits use 10 places
 - **Problem**: only one column can be sorted on at a time

Radix Sort

- Intuitively, you might sort on the most significant digit, then the second msd, etc.
- **Problem**: lots of intermediate piles of cards (read: scratch arrays) to keep track of
- **Key idea**: sort the least significant digit first

  ```
  RadixSort(A, d)
  for i=1 to d
      StableSort(A) on digit i
  ```

Radix Sort Example

![Image of Radix Sort Example](image_url)

Figure 8.3 The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is the input. The remaining columns show the list after successive sorts on increasingly significant digit positions. Shading indicates the digit position sorted on to produce each list from the previous one.
Radix Sort Correctness

- Sketch of an inductive proof of correctness (induction on the number of passes):
 - Assume lower-order digits \(\{ j : j < i \} \) are sorted
 - Show that sorting next digit \(i \) leaves array correctly sorted
 - If two digits at position \(i \) are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
 - If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

Radix Sort

- **What sort is used to sort on digits?**
- Counting sort is obvious choice:
 - Sort \(n \) numbers on digits that range from 1..\(k \)
 - Time: \(O(n + k) \)
- Each pass over \(n \) numbers with \(d \) digits takes time \(O(n+k) \), so total time \(O(dn+dk) \)
 - When \(d \) is constant and \(k=O(n) \), takes \(O(n) \) time

Radix Sort Review

- **Assumption:** input has \(d \) digits ranging from 0 to \(k \)
- **Basic idea:**
 - Sort elements by digit starting with least significant
 - Use a stable sort (like counting sort) for each stage
- **Pro’s:**
 - Fast
 - Asymptotically fast (i.e., \(O(n) \) when \(d \) is constant and \(k=O(n) \))
 - Simple to code
 - A good choice
- **Con’s:**
 - Doesn’t sort in place
 - Not a good choice for floating point numbers or arbitrary strings

- Problem: sort 1 million 64-bit numbers
 - Treat as four-digit radix 2\(^{16} \) numbers
 - Can sort in just four passes with radix sort!
 - Performs well compared to typical \(O(n \lg n) \) comparison sort
 - Approx \(\lg(1,000,000) \approx 20 \) comparisons per number being sorted
Bucket Sort

Assumption: input elements distributed uniformly over some known range, e.g., \([0, 1)\), so all elements in A are greater than or equal to 0 but less than 1. (Appendix C.2 has definition of uniform distribution)

Bucket-Sort(A)
1. \(n = \text{length}[A]\)
2. for \(i = 1\) to \(n\)
3. \(\text{do insert } A[i] \text{ into list } B[\text{floor of } nA[i]]\)
4. for \(i = 0\) to \(n-1\)
5. \(\text{do sort list } i \text{ with Insertion-Sort}\)
6. Concatenate lists \(B[0], B[1], \ldots, B[n-1]\)

Running time of bucket sort: \(O(n)\) expected time

Step 1: \(O(1)\) for each interval = \(O(n)\) time total.

Step 2: \(O(n)\) time.

Step 3: The expected number of elements in each bucket is \(O(1)\)

(see book for formal argument, section 8.4), so total is \(O(n)\)

Step 4: \(O(n)\) time to scan the \(n\) buckets containing a total of \(n\) input elements

Bucket Sort Example

![Bucket Sort Diagram](image)

Bucket Sort Review

- **Assumption:** input is uniformly distributed across a range
- **Basic idea:**
 - Partition the range into a fixed number of buckets.
 - Toss each element into its appropriate bucket.
 - Sort each bucket.
- **Pro’s:**
 - Fast
 - Asymptotically fast (i.e., \(O(n)\) when distribution is uniform)
 - Simple to code
 - Good for a rough sort.
- **Con’s:**
 - Doesn’t sort in place
Non-Comparison Based Sorts

<table>
<thead>
<tr>
<th></th>
<th>Running Time</th>
<th></th>
<th></th>
<th>in place</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>worst-case</td>
<td>average-case</td>
<td>best-case</td>
<td></td>
</tr>
<tr>
<td>Counting Sort</td>
<td>$O(n + k)$</td>
<td>$O(n + k)$</td>
<td>$O(n + k)$</td>
<td>no</td>
</tr>
<tr>
<td>Radix Sort</td>
<td>$O(d(n + k'))$</td>
<td>$O(d(n + k'))$</td>
<td>$O(d(n + k'))$</td>
<td>no</td>
</tr>
<tr>
<td>Bucket Sort</td>
<td>$O(n)$</td>
<td></td>
<td></td>
<td>no</td>
</tr>
</tbody>
</table>

Counting sort assumes input elements are in range $[0, 1, 2, \ldots, k]$ and uses array indexing to count the number of occurrences of each value.

Radix sort assumes each integer consists of d digits, and each digit is in range $[1, 2, \ldots, k']$.

Bucket sort requires advance knowledge of input distribution (sorts n numbers uniformly distributed in range in $O(n)$ time).