Introduction to Algorithms ﬁ
HID35 STATE

Quicksort D

UCKEYTESZS

CSE 680
Prof. Roger Crawfis

Sorting Review I....ﬁm

BEVUCKEYEHS

e Insertion Sort
e T(n) = 6(n%)
e In-place

e Merge Sort
e T(n) =06(nlg(n))
e Not in-place

e Selection Sort (from homewor
e T(n) = 6()
e In-place

e Heap Sort
e T(n) = ©(n Ig(n)) e 0O
e In-place

Seems pretty good.
Can we do better?

Sorting nmgm

BECEEYE

e Assumptions

1. No knowledge of the keys or numbers we
are sorting on.

2. Each key supports a comparison interface
or operator.

3. Sorting entire records, as opposed to
numbers, is an implementation detail.

4. Each key is unique (just for convenience).

Comparison Sorting

Comparison Sorting nﬂ,ﬁm

e Given a set of n values, there can be n!
permutations of these values.

e So if we look at the behavior of the
sorting algorithm over all possible n!
inputs we can determine the worst-case
complexity of the algorithm.

Decision Tree

Decision Tree Model nﬂ,ﬁm

e Decision tree model

e Full binary tree
e Afull binary tree (sometimes proper binary tree or 2-
tree) is a tree in which every node other than the leaves
has two children
e Internal node represents a comparison.
e Ignore control, movement, and all other operations, just
see comparison
e Each leaf represents one possible result (a
permutation of the elements in sorted order).

e The height of the tree (i.e., longest path) is the
lower bound.

Internal node i:j indicates comparison between a and a;.
suppose three elements < al, a2, a3> with instance <6,8,5>
Leaf node <n(1), n(2), n(3)> indicates ordering a,qy a,)
Path of bold lines indicates sorting path for <6,8,5>.

There are total 3!=6 possible permutations (paths).

Decision Tree Model nmﬁm

BECEEYE

QuickSort Design nﬂ,ﬁm

BEUCKETYEHB,

e The longest path is the worst case number of
comparisons. The length of the longest path is the
height of the decision tree.

e Theorem 8.1: Any comparison sort algorithm

requires Q(nlg n) comparisons in the worst case.
e Proof:

e Suppose height of a decision tree is h, and number of

paths (i,e,, permutations) is n!.
e Since a bhinary tree of height h has at most 2" leaves,
e n! <2 so h>lg(n!)>Q(nlg n) (By equation 3.18).

e That is to say: any comparison sort in the worst

case needs at least nlg n comparisons.

e Follows the divide-and-conquer paradigm.
e Divide: Partition (separate) the array A[p..r] into two
(possibly empty) subarrays A[p..g—1] and A[g+1..r].
e Each elementin A[p..g—1] < A[q].
e A[q] < each element in A[g+1..r].
e Index g is computed as part of the partitioning procedure.
e Conquer: Sort the two subarrays by recursive calls to
quicksort.

e Combine: The subarrays are sorted in place — no
work is needed to combine them.

e How do the divide and combine steps of quicksort
compare with those of merge sort?

Pseudocode

Quicksort(A, p, r)
if p<rthen
q := Partition(A, p, 1);
Quicksort(A, p, g —1);
Quicksort(A, g + 1,)

Alp..q—1] Alg+l..r]
Partition ‘ ’*"—5%

|
q T
<5 >5

Partition(A, p, r)
X, i :=A[r], p-1;
forj:=ptor—1do
if A[j] < xthen

i=i+1;

Ali] < A[j]
Ali + 1] & A[r];
returni+1

Example

p r
initially: 25839417106 note: pivot (x) = 6
i
next iteration: 25839417106
i Partition(A, p, 1)
X, 1 :==A[r], p-1;
next iteration: 25839417106 forj:=ptor—1do
i if A[j] < xthen
)) i=i+1;
next iteration: 25839417106 Ali] & All]
o Afi + 1] & A[t];
returni+1

next iteration: 25389417106
[j

Example (Continued)

next iteration: 25 3 8 9 41710
next iteration: 25 ; 8 Jg 4 1710
next iteration: 25 3I 4 9 E; 1 7 10
next iteration: 253 4I l 8 E; 7 10
next iteration: 2534 1I 89 7J 19
next iteration: 25314 1I 897 110
after final swap: 2 53 4 1I 6 97 10
i

Partition(A, p, r)
X, i =A[r], p-1;
forj:=ptor—1do
if A[j] £ xthen

i=i+1;

Alil < A[j]
Ali + 1] < A[r];
returni+1

Partitioning

e Select the last element A[r] in the subarray
Alp..r] as the pivot — the element around which
to partition.

e As the procedure executes, the array is
partitioned into four (possibly empty) regions.

1. Alp..i] — All entries in this region are < pivot.

2. AJi+1l..]— 1] — All entries in this region are > pivot.
3. AJr] = pivot.

4. AJj..r — 1] — Not known how they compare to pivot.

e The above hold before each iteration of the for

loop, and constitute a loop invariant. (4 is not part
of the loopi.)

Correctness of Partition

e Use loop invariant.

e Initialization:
e Before first iteration

ﬂlﬂgﬂE

B ¥NCEEYEHE

e Alp..i] and A[i+1..j — 1] are empty — Conds. 1 and 2 are satisfied

(trivially).
e ris the index of the pivot
o Cond. 3 is satisfied.
e Maintenance:
e Case 1: A[j]>x
e Increment j only.
e Loop Invariant is maintained.

Partition(A, p, 1)

X, i =A[r], p-1;

forj:=ptor—1do
if A[j] < xthen

i=i+1;

Ali] © AJj]
Ali + 1] < A[r];
returni+1

Correctness of Partition

_/
vV
p I I r
X
— _/

Correctness of Partition

ﬂlﬂgﬂ

Correctness of Partition

e Case 2: A[jl<x
e Incrementi ¢
e Swap A[i] and A[j]

e Condition 1 is

maintained. ¢

BECEEYE

e Increment j

Condition 2 is
maintained.

e A[r] is unaltered.

Condition 3 is
maintained.

e Termination:
e When the loop terminates, j = r, so all elements
in A are partitioned into one of the three cases:
e Alp..i] < pivot
e Afi+1..j— 1] > pivot
e Alr] = pivot
e The last two lines swap A[i+1] and AJr].

e Pivot moves from the end of the array to
between the two subarrays.

e Thus, procedure partition correctly performs
the divide step.

Complexity of Partition

e PartitionTime(n) is given by the number
of iterations in the for loop.

e®OMN): n=r—p+1. -
Partition(A, p, 1)
X, i =A[r], p-1;
forj:=ptor—1do
if A[j] < xthen
i=i+1;
Ali] © A[j]
Ali + 1] & A[rl;
returni+1

Quicksort Overview

e To sort a[left...right]:
if left < right:
Partition a[left...right] such that:
all a[left...p-1] are less than a[p], and
all a[p+1...right] are >= a|[p]
Quicksort a[left...p-1]

Quicksort a[p+1...right]
Terminate

Partitioning in Quicksort nmgm

BECEEYE

e A key step in the Quicksort algorithm is
partitioning the array

e We choose some (any) number p in the
array to use as a pivot

e We partition the array into three parts:

LI Pl PP
- JLY_}\ _
R N
numbers less p numbers greater than or

than p equal to p

Alternative Partitioning nﬂlﬁh :

BEUCKETYEHB,

e Choose an array value (say, the first) to use
as the pivot

e Starting from the left end, find the first
element that is greater than or equal to the
pivot

e Searching backward from the right end, find
the first element that is less than the pivot

e Interchange (swap) these two elements

e Repeat, searching from where we left off,
until done

ﬂlﬂgﬂE

B ¥NCEEYEHE

Alternative Partitioning

e To partition afleft...right]:

Set pivot = a[left], | = left + 1, r = right;

while I <r, do
while | <right & a[l] < pivot , setl=1+1
while r > left & a[r] >=pivot , setr=r-1
if | <r, swap a[l] and a[r]

Set a[left] = a[r], a[r] = pivot

Terminate

Example of partitioning n“,gm

CKEYEHS

36924312189356

e choose pivot:

e search: 36924312189356
e swap: 33924312189656
e search: 33924312189656
e swap: 33124312989656
e search: 33124312989656
e swap: 33122314989656
e search: 33122314989656

e swapwithpivott 133122374989656

Partition Implementation (Java) nmﬁm

BECEEYE

static int Partition(int[] a, int left, int right) {
int p = afleft], | = left + 1, r = right;
while (I<r) {
while (I < right && a[l] < p) [++;
while (r > left && a[r] >=p) r--;
if(I<r){
int temp = a[l]; a[l] = a[r]; a[r] = temp;
}
}
a[left] = a[r];
afr] = p;
returnr;

Quicksort Implementation (Java) m"ﬁh

BEUCKETYEHB,

static void Quicksort(int[] array, int left, int right)
{
if (left < right) {
int p = Partition(array, left, right);
Quicksort(array, left, p - 1);
Quicksort(array, p + 1, right);
}
}

Analysis of quicksort—best case umgm

B ¥NCEEYEHE

e Suppose each partition operation
divides the array almost exactly in half
e Then the depth of the recursion in log,n

e Because that's how many times we can
halve n

e \We note that
e Each partition is linear over its subarray

e All the partitions at one level cover the
array

Partitioning at various levels nﬂ,ﬁm

BEVUCKEYEHS

Best Case Analysis nmﬁm

Worst case

BECEEYE

e \We cut the array size in half each time
e So the depth of the recursion in log,n

e At each level of the recursion, all the
partitions at that level do work that is linear
inn

e O(log,n) * O(n) = O(n log,n)

e Hence in the best case, quicksort has time
complexity O(n log,n)

e \What about the worst case?

e In the worst case, partitioning always
divides the size n array into these three
parts:

e A length one part, containing the pivot itself
e A length zero part, and
e Alength n-1 part, containing everything else

e \We don't recur on the zero-length part

e Recurring on the length n-1 part requires
(in the worst case) recurring to depth n-1

Worst case partitioning 0 ﬁm

CEEYE

Worst case for quicksort nﬂ,ﬁm

CKEYEHS

e In the worst case, recursion may be n levels deep
(for an array of size n)

e But the partitioning work done at each level is still n
e O(n) * O(n) = 0O(n?
e So worst case for Quicksort is O(n?)

e When does this happen?

e There are many arrangements that could make this
happen
e Here are two common cases:
o When the array is already sorted

e When the array is inversely sorted (sorted in the opposite
order)

Typical case for quicksort nmgm

BECEEYE

e If the array is sorted to begin with,
Quicksort is terrible: O(n?)

e It is possible to construct other bad cases
e However, Quicksort is usually O(n log,n)

e The constants are so good that Quicksort is
generally the faster algorithm.

e Most real-world sorting is done by
Quicksort

Picking a better pivot nﬂ,ﬁm

L]
BEUCKETYEHB,

e Before, we picked the first element of the
subarray to use as a pivot
e If the array is already sorted, this results in

0(n?) behavior

e It's no better if we pick the last element

e \We could do an optimal quicksort _
(guaranteed O(n log n)? it we always picked
ﬂ %vot value that exactly cuts the array in

a

e Such a value is called a median: half of the
values in the array are larger, half are smaller

e The easiest way to find the median is to sort
the array and pick the value in the middle (!)

Median of three

e Obviously, it doesn’'t make sense to sort the
array in order to find the median to use as a
pivot.

e Instead, compare just three elements of our
(sub)array—the first, the last, and the middle

e Take the median (middle value) of these three as
the pivot

e It's possible (but not easy) to construct cases which
will make this technique O(n?)

Quicksort for Small Arrays

e For very small arrays (N<= 20), quicksort
does not perform as well as insertion sort

e A good cutoff range is N=10

e Switching to insertion sort for small
arrays can save about 15% in the
running time

Mergesort vs Quicksort nmﬁm

BECEEYE

e Both run in O(n Ign)

e Compared with Quicksort, Mergesort has
less number of comparisons but larger
number of moving elements

e In Java, an element comparison is
expensive but moving elements is
cheap. Therefore, Mergesort is used in
the standard Java library for generic
sorting

Mergesort vs Quicksort ,,,,,ﬁn

L]
BEUCKETYEHB,

In C++, copying objects can be expensive
while comparing objects often is
relatively cheap. Therefore, quicksort is
the sorting routine commonly used in
C++ libraries

