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Sorting Reviewg

Insertion Sort
T(n) = Θ(n2)
In-place

Merge Sortg
T(n) = Θ(n lg(n))
Not in-place

Selection Sort (from homework)Selection Sort (from homework)
T(n) = Θ(n2)
In-place

Heap Sort
Seems pretty good.
Can we do better?Heap Sort

T(n) = Θ(n lg(n))
In-place

Can we do better?

Sorting g

AssumptionsAssumptions
1. No knowledge of the keys or numbers we 

are sorting onare sorting on.
2. Each key supports a comparison interface 

or operator.or operator.
3. Sorting entire records, as opposed to 

numbers, is an implementation detail., p
4. Each key is unique (just for convenience).

Comparison SortingComparison Sorting

Comparison Sortingp g

Given a set of n values there can be n!Given a set of n values, there can be n!
permutations of these values.
So if we look at the behavior of theSo if we look at the behavior of the 
sorting algorithm over all possible n!
inputs we can determine the worst caseinputs we can determine the worst-case 
complexity of the algorithm.



Decision Tree

Decision tree model
Full binary tree

A full binary tree (sometimes proper binary tree or 2-
tree) is a tree in which every node other than the leaves 
h t hildhas two children

Internal node represents a comparison.
Ignore control, movement, and all other operations, just 
see comparisonsee comparison

Each leaf represents one possible result (a 
permutation of the elements in sorted order).
The height of the tree (i e longest path) is theThe height of the tree (i.e., longest path) is the 
lower bound.

Decision Tree Model

1:2≤ >

2:3 1:3
≤ ≤> >

2:31:3<1,2,3>

<1,3,2> <3,1,2>

<2,1,3>

<2,3,1> <3,2,1>

≤> >≤

Internal node i:j indicates comparison between ai and aj.
suppose three elements < a1 a2 a3> with instance <6 8 5>suppose three elements < a1, a2, a3> with instance <6,8,5>
Leaf node <π(1), π(2), π(3)> indicates ordering aπ(1)≤ aπ(2)≤ aπ(3).
Path of bold lines indicates sorting path for <6,8,5>.
There are total 3!=6 possible permutations (paths).

Decision Tree Model

The longest path is the worst case number of 
comparisons. The length of the longest path is the 
height of the decision tree.
Theorem 8.1: Any comparison sort algorithm y p g
requires Ω(nlg n) comparisons in the worst case.
Proof:

Suppose height of a decision tree is h and number ofSuppose height of a decision tree is h, and number of 
paths (i,e,, permutations) is n!. 
Since a binary tree of height h has at most 2h leaves,

n! ≤ 2h , so h ≥ lg (n!) ≥ Ω(nlg n) (By equation 3.18)., g ( ) ( g ) ( y q )
That is to say: any comparison sort in the worst 
case needs at least nlg n comparisons.

QuickSort Designg

Follows the divide-and-conquer paradigm.
Divide: Partition (separate) the array A[p..r] into two 
(possibly empty) subarrays A[p..q–1] and A[q+1..r].

Each element in A[p..q–1] < A[q].
A[q] < each element in A[q+1..r].
Index q is computed as part of the partitioning procedure.

Conquer: Sort the two subarrays by recursive calls to 
i k tquicksort. 

Combine: The subarrays are sorted in place – no 
work is needed to combine them.work is needed to combine them.
How do the divide and combine steps of quicksort
compare with those of merge sort?



Pseudocode
Quicksort(A, p, r)

if p < r then P titi (A )if p < r then
q := Partition(A, p, r);
Quicksort(A, p, q – 1);
Quicksort(A, q + 1, r)

Partition(A, p, r)
x, i := A[r], p – 1;
for j := p to r – 1 do

if A[j] ≤ x thenQuicksort(A, q  1, r) if A[j]  ≤ x then
i := i + 1;
A[i] ↔ A[j]

A[i + 1] ↔ A[r];
A[p..r]

A[i + 1] ↔ A[r];
return i + 15

A[p..q – 1] A[q+1..r]

≤ 5 ≥ 5

Partition 5

≤ 5 ≥ 5

Examplep
p                                    r

initially: 2  5  8  3  9  4  1  7  10  6 note: pivot (x) = 6
i j

next iteration: 2 5  8  3  9  4  1  7  10  6
i j Partition(A p r)i j

next iteration: 2 5 8  3  9  4  1  7  10  6
i j

Partition(A, p, r)
x, i := A[r], p – 1;
for j := p to r – 1 do

if A[j] ≤ x thenj

next iteration: 2  5 8  3  9  4  1  7  10  6
i j

if A[j]  ≤ x then
i := i + 1;
A[i] ↔ A[j]

A[i + 1] ↔ A[r];

next iteration: 2  5 3 8 9  4  1  7  10  6
i j

[ ] [ ];
return i + 1

Example (Continued)p ( )

next iteration: 2  5 3 8 9  4  1  7  10  6
i ji j

next iteration: 2  5 3 8  9 4  1  7  10  6
i j

next iteration: 2 5 3 4 9 8 1 7 10 6 Partition(A p r)next iteration: 2  5 3 4 9  8 1  7  10  6
i j

next iteration: 2  5 3 4 1 8  9 7  10  6
i j

Partition(A, p, r)
x, i := A[r], p – 1;
for j := p to r – 1 do

if A[j] ≤ x theni j
next iteration: 2  5 3 4 1 8  9  7  10  6

i j
next iteration: 2  5 3 4 1 8  9  7  10  6

if A[j]  ≤ x then
i := i + 1;
A[i] ↔ A[j]

A[i + 1] ↔ A[r];
i j

after final swap: 2  5 3 4 1 6 9  7  10  8
i j

[ ] [ ]
return i + 1

Partitioningg

Select the last element A[r] in the subarray
A[p..r] as the pivot – the element around which 
to partition.
As the procedure executes, the array is p , y
partitioned into four (possibly empty) regions.

1. A[p..i ] — All entries in this region are < pivot.
2. A[i+1..j – 1] — All entries in this region are > pivot.2. A[i 1..j 1] All entries in this region are   pivot.
3. A[r] = pivot.
4. A[j..r – 1] — Not known how they compare to pivot.
The above hold before each iteration of the forThe above hold before each iteration of the for
loop, and constitute a loop invariant. (4 is not part 
of the loopi.)



Correctness of Partition
Use loop invariant.
I iti li tiInitialization:

Before first iteration
A[p i] and A[i+1 j 1] are empty Conds 1 and 2 are satisfiedA[p..i] and A[i+1..j – 1] are empty – Conds. 1 and 2 are satisfied 
(trivially).
r is the index of the pivot 

Cond 3 is satisfied

Partition(A, p, r)
x i := A[r] p – 1;Cond. 3 is satisfied.

Maintenance:
Case 1: A[j] > x

x, i :  A[r], p 1;
for j := p to r – 1 do

if A[j]  ≤ x then
i := i + 1;Case 1: A[j]  x

Increment j only.
Loop Invariant is maintained.

;
A[i] ↔ A[j]

A[i + 1] ↔ A[r];
return i + 1

Correctness of Partition
Case 1:

>x x
p i j r

≤ x > x
p i j r

x
p i j r

≤ x > x

Correctness of Partition

Case 2: A[j] ≤ x Increment j[j]
Increment i
Swap A[i] and A[j]

Condition 1 is

Condition 2 is 
maintained.

A[r] is unaltered.
Condition 1 is 
maintained. Condition 3 is 

maintained.

≤ x x
p i j r

≤ x x

≤ x > x

x
p i j r

≤ x > x

Correctness of Partition

Termination:
When the loop terminates, j = r, so all elements 
in A are partitioned into one of the three cases: 

A[p i] ≤ pivotA[p..i] ≤ pivot
A[i+1..j – 1] > pivot
A[r] = pivot

The last two lines swap A[i+1] and A[r]The last two lines swap A[i+1] and A[r].
Pivot moves from the end of the array to 
between the two subarrays.
Thus, procedure partition correctly performs 
the divide step.



Complexity of Partitionp y

PartitionTime(n) is given by the numberPartitionTime(n) is given by the number 
of iterations in the for loop.
Θ(n) : n = r p + 1Θ(n) :  n = r – p + 1.

Partition(A, p, r)
x, i := A[r], p – 1;
for j := p to r – 1 dofor j :  p to r 1 do

if A[j]  ≤ x then
i := i + 1;
A[i] ↔ A[j][ ] [j]

A[i + 1] ↔ A[r];
return i + 1

Quicksort Overview

T t [l ft i ht]To sort a[left...right]:
1. if left < right:

1 1 P titi  [l ft i ht] h th t1.1. Partition a[left...right] such that:
all a[left...p-1] are less than a[p], and
all a[p+1...right] are >= a[p]

1.2. Quicksort a[left...p-1]
1.3. Quicksort a[p+1...right]

2. Terminate

Partitioning in Quicksortg

A key step in the Quicksort algorithm isA key step in the Quicksort algorithm is 
partitioning the array

We choose some (any) number p in the ( y) p
array to use as a pivot
We partition the array into three parts:

p

numbers less 
than p

numbers greater than or 
equal to p

p

Alternative Partitioningg

Choose an array value (say, the first) to use y ( y, )
as the pivot
Starting from the left end, find the first 
element that is greater than or equal to theelement that is greater than or equal to the 
pivot
Searching backward from the right end, findSearching backward from the right end, find 
the first element that is less than the pivot
Interchange (swap) these two elements
Repeat, searching from where we left off, 
until done



Alternative Partitioningg

T titi [l ft i ht]To partition a[left...right]:
1. Set pivot = a[left], l = left + 1, r = right;
2  while l < r  do2. while l < r, do

2.1. while l < right & a[l] < pivot , set l = l + 1
2 2  hil    l ft & [ ]  i t  t    12.2. while r > left & a[r] >= pivot , set r = r - 1
2.3. if l < r, swap a[l] and a[r]

3 S t [l ft]  [ ]  [ ]  i t 3. Set a[left] = a[r], a[r] = pivot 
4. Terminate

Example of partitioningp p g
choose pivot: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6
search: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6
swap: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6
search: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6
swap: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6
search: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6
swap: 4 3 3 1 2 2 3 1 4 9 8 9 6 5 6
search: 4 3 3 1 2 2 3 1 4 9 8 9 6 5 6
swap with pivot: 1 3 3 1 2 2 3 4 4 9 8 9 6 5 6

Partition Implementation (Java)

static int Partition(int[] a, int left, int right) {
i t   [l ft]  l  l ft  1    i htint p = a[left], l = left + 1, r = right;
while (l < r) {

while (l < right && a[l] < p) l++;
while (r > left && a[r] >= p) r ;while (r > left && a[r] >= p) r--;
if (l < r) {

int temp = a[l]; a[l] = a[r]; a[r] = temp;
}}

}
a[left] = a[r];
a[r] = p;[ ] p;
return r;

}

Quicksort Implementation (Java)

static void Quicksort(int[] array, int left, int right) Q ( [] y, , g )
{

if (left < right) {
int p = Partition(array  left  right);int p = Partition(array, left, right);
Quicksort(array, left, p - 1);
Quicksort(array, p + 1, right);

}}
}



Analysis of quicksort—best case

Suppose each partition operationSuppose each partition operation 
divides the array almost exactly in half
Then the depth of the recursion in log nThen the depth of the recursion in log2n

Because that’s how many times we can 
halve nhalve n

We note that
Each partition is linear over its subarray
All the partitions at one level cover the 
array

Partitioning at various levelsg

Best Case Analysisy

We cut the array size in half each timeWe cut the array size in half each time
So the depth of the recursion in log2n
At each level of the recursion all theAt each level of the recursion, all the 

partitions at that level do work that is linear 
in n
O(log2n) * O(n) = O(n log2n)
Hence in the best case, quicksort has time 
complexity O(n log2n)
What about the worst case?

Worst case

In the worst case, partitioning alwaysIn the worst case, partitioning always 
divides the size n array into these three 
parts:

A length one part, containing the pivot itself
A length zero part, and
A l th 1 t t i i thi lA length n-1 part, containing everything else

We don’t recur on the zero-length part
R i th l th n 1 t iRecurring on the length n-1 part requires 
(in the worst case) recurring to depth n-1



Worst case partitioningp g Worst case for quicksortq

In the worst case, recursion may be n levels deep 
(f f i )(for an array of size n)
But the partitioning work done at each level is still n
O(n) * O(n) = O(n2)O(n)  O(n)  O(n )
So worst case for Quicksort is O(n2)
When does this happen?

There are many arrangements that could make thisThere are many arrangements that could make this 
happen
Here are two common cases:

When the array is already sortedWhen the array is already sorted
When the array is inversely sorted (sorted in the opposite 
order)

Typical case for quicksortyp q

If the array is sorted to begin with, 
Quicksort is terrible: O(n2)
It is possible to construct other bad casesp
However, Quicksort is usually O(n log2n)
The constants are so good that Quicksort isThe constants are so good that Quicksort is 
generally the faster algorithm.
Most real-world sorting is done byMost real world sorting is done by 
Quicksort

Picking a better pivotg p

Before, we picked the first element of the 
b t i t

p
subarray to use as a pivot

If the array is already sorted, this results in
O(n2) behavior
It’s no better if we pick the last element

We could do an optimal quicksort
(guaranteed O(n log n)) if we always picked(guaranteed O(n log n)) if we always picked 
a pivot value that exactly cuts the array in 
half

Such a value is called a median: half of theSuch a value is called a median: half of the 
values in the array are larger, half are smaller
The easiest way to find the median is to sort
the array and pick the value in the middle (!)y p ( )



Median of three

Obviously, it doesn’t make sense to sort theObviously, it doesn t make sense to sort the 
array in order to find the median to use as a 
pivot.p
Instead, compare just three elements of our 
(sub)array—the first, the last, and the middle( ) y , ,

Take the median (middle value) of these three as 
the pivot
It’s possible (but not easy) to construct cases which 
will make this technique O(n2)

Quicksort for Small Arraysy

For very small arrays (N<= 20) quicksortFor very small arrays (N<= 20), quicksort
does not perform as well as insertion sort
A good cutoff range is N=10A good cutoff range is N=10
Switching to insertion sort for small 

b t 15% i tharrays can save about 15% in the 
running time

Mergesort vs Quicksortg

Both run in O(n lgn)Both run in O(n lgn)
Compared with Quicksort, Mergesort has 
less number of comparisons but largerless number of comparisons but larger 
number of moving elements
In Java, an element comparison isIn Java, an element comparison is 
expensive but moving elements is 
cheap.  Therefore, Mergesort is used in p g
the standard Java library for generic 
sorting

Mergesort vs Quicksortg

In C++ copying objects can be expensiveIn C++, copying objects can be expensive 
while comparing objects often is 
relatively cheap Therefore quicksort isrelatively cheap.  Therefore, quicksort is 
the sorting routine commonly used in 
C++ librariesC++ libraries


