Sorting Review

- Insertion Sort
 - $T(n) = \Theta(n^2)$
 - In-place
- Merge Sort
 - $T(n) = \Theta(n \log(n))$
 - Not in-place
- Selection Sort (from homework)
 - $T(n) = \Theta(n^2)$
 - In-place
- Heap Sort
 - $T(n) = \Theta(n \log(n))$
 - In-place

Seems pretty good. Can we do better?

Comparison Sorting

- Given a set of n values, there can be $n!$ permutations of these values.
- So if we look at the behavior of the sorting algorithm over all possible $n!$ inputs we can determine the worst-case complexity of the algorithm.

Assumptions

1. No knowledge of the keys or numbers we are sorting on.
2. Each key supports a comparison interface or operator.
3. Sorting entire records, as opposed to numbers, is an implementation detail.
4. Each key is unique (just for convenience).

Comparison Sorting
Decision Tree Model

- **Decision tree model**
 - Full binary tree
 - A **full binary tree** (sometimes proper binary tree or 2-tree) is a tree in which every node other than the leaves has two children
 - Internal node represents a comparison.
 - Ignore control, movement, and all other operations, just see comparison
 - Each leaf represents one possible result (a permutation of the elements in sorted order).
 - The height of the tree (i.e., longest path) is the lower bound.

Theorem 8.1: Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

Proof:
- Suppose height of a decision tree is h, and number of paths (i.e., permutations) is $n!$.
 - Since a binary tree of height h has at most 2^h leaves, $n! \leq 2^h$, so $h \geq \lg (n!) \geq \Omega(n \lg n)$ (By equation 3.18).
- That is to say: **any comparison sort in the worst case needs at least $n \lg n$ comparisons.**

QuickSort Design

- Follows the **divide-and-conquer** paradigm.
 - **Divide**: Partition (separate) the array $A[p..r]$ into two (possibly empty) subarrays $A[p..q-1]$ and $A[q+1..r]$.
 - Index q is computed as part of the partitioning procedure.
 - **Conquer**: Sort the two subarrays by recursive calls to quicksort.
 - **Combine**: The subarrays are sorted in place – no work is needed to combine them.
 - How do the divide and combine steps of quicksort compare with those of merge sort?
Pseudocode

Quicksort(A, p, r)
if p < r then
 q := Partition(A, p, r);
 Quicksort(A, p, q - 1);
 Quicksort(A, q + 1, r)

Partition(A, p, r)
x, i := A[r], p - 1;
for j := p to r - 1 do
 if A[j] ≤ x then
 i := i + 1;
 A[i] ↔ A[j];
A[i + 1] ↔ A[r];
return i + 1

Example

initially: p r
2 5 8 3 9 4 1 7 10 6
i j

next iteration: 2 5 8 3 9 4 1 7 10 6
i j

next iteration: 2 5 8 3 9 4 1 7 10 6
i j

next iteration: 2 5 3 8 9 4 1 7 10 6
i j

Example (Continued)

next iteration: 2 5 3 8 9 4 1 7 10 6
i j
next iteration: 2 5 3 8 9 4 1 7 10 6
i j
next iteration: 2 5 3 4 1 8 9 7 10 6
i j
next iteration: 2 5 3 4 1 8 9 7 10 6
i j
next iteration: 2 5 3 4 1 8 9 7 10 6
i j
after final swap: 2 5 3 4 1 6 9 7 10 8
i j

Partitioning

- Select the last element A[r] in the subarray A[p..r] as the pivot — the element around which to partition.
- As the procedure executes, the array is partitioned into four (possibly empty) regions.
 1. A[p..i] — All entries in this region are < pivot.
 2. A[i+1..j-1] — All entries in this region are > pivot.
- The above hold before each iteration of the for loop, and constitute a loop invariant. (4 is not part of the loop.)
Correctness of Partition

- Use loop invariant.
- **Initialization:**
 - Before first iteration
 - \(A[p..i]\) and \(A[i+1..j-1]\) are empty – Conds. 1 and 2 are satisfied (trivially).
 - \(r\) is the index of the pivot
 - Cond. 3 is satisfied.
- **Maintenance:**
 - **Case 1:** \(A[j] > x\)
 - Increment \(j\) only.
 - Loop Invariant is maintained.
 - **Case 2:** \(A[j] \leq x\)
 - Increment \(i\)
 - Swap \(A[i]\) and \(A[j]\)
 - Condition 1 is maintained.
 - \(A[r]\) is unaltered.
 - Condition 3 is maintained.

Case 1:

\[
x, i := A[r], p - 1;
\]
\[
\text{for } j := p \text{ to } r - 1 \text{ do}
\]
\[
\text{if } A[j] \leq x \text{ then}
\]
\[
i := i + 1;
\]
\[
A[i] \leftrightarrow A[j];
\]
\[
A[i + 1] \leftrightarrow A[r];
\]
\[
\text{return } i + 1
\]

Case 2:

- Increment \(j\)
 - Condition 2 is maintained.
- \(A[r]\) is unaltered.
 - Condition 3 is maintained.

Termination:

- When the loop terminates, \(j = r\), so all elements in \(A\) are partitioned into one of the three cases:
 - \(A[p..i] \leq \text{pivot}\)
 - \(A[i+1..j-1] > \text{pivot}\)
 - \(A[r] = \text{pivot}\)
- The last two lines swap \(A[i+1]\) and \(A[r]\).
 - **Pivot** moves from the end of the array to between the two subarrays.
 - Thus, procedure \(\text{partition}\) correctly performs the divide step.
Complexity of Partition

- **PartitionTime**\((n)\) is given by the number of iterations in the for loop.
- **\(\Theta(n)\)**: \(n = r - p + 1\).

```plaintext
Partition(A, p, r)
  x, i := A[r], p – 1;
  for j := p to r – 1 do
    if A[j] ≤ x then
      i := i + 1;
  A[i + 1] ↔ A[r];
  return i + 1
```

QuickSort Overview

- To sort \([\text{left}...\text{right}]\):
 - if \(\text{left} < \text{right}\):
 - Partition \([\text{left}...\text{right}]\) such that:
 - all \([\text{left}...\text{p-1}]\) are less than \(\text{a[p]}\), and
 - all \([\text{p+1}...\text{right}]\) are \(\geq \text{a[p]}\)
 - QuickSort \([\text{a[left]}...\text{p-1]}\)
 - QuickSort \([\text{a[p+1]}...\text{right]}\)
 - Terminate

Partitioning in QuickSort

- A key step in the QuickSort algorithm is **partitioning** the array
 - We choose some (any) number \(p\) in the array to use as a **pivot**
 - We **partition** the array into three parts:

```
numbers less than p p numbers greater than or equal to p
```

Alternative Partitioning

- Choose an array value (say, the first) to use as the pivot
- Starting from the left end, find the first element that is greater than or equal to the pivot
- Searching backward from the right end, find the first element that is less than the pivot
- Interchange (swap) these two elements
- Repeat, searching from where we left off, until done
Alternative Partitioning

- **To partition a[left...right]:**
 - Set pivot = a[left], l = left + 1, r = right;
 - while l < r, do
 - while l < right & a[l] < pivot, set l = l + 1
 - while r > left & a[r] >= pivot, set r = r - 1
 - if l < r, swap a[l] and a[r]
 - Set a[left] = a[r], a[r] = pivot
 - Terminate

Example of partitioning

- **choose pivot:** 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6
- **search:** 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6
- **swap:** 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6
- **search:** 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6
- **swap:** 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6
- **search:** 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6
- **swap:** 4 3 3 1 2 2 3 1 4 9 8 9 6 5 6
- **search:** 4 3 3 1 2 2 3 4 9 8 9 6 5 6
- **swap with pivot:** 1 3 3 1 2 2 3 4 9 8 9 6 5 6

Partition Implementation (Java)

```java
static int Partition(int[] a, int left, int right) {
    int pivot = a[left], l = left + 1, r = right;
    while (l < r) {
        while (l < right & a[l] < pivot, set l = l + 1
        while (r > left & a[r] >= pivot, set r = r - 1
        if (l < r) {
            int temp = a[l]; a[l] = a[r]; a[r] = temp;
        }
    }
    a[left] = a[r];
    a[r] = pivot;
    return r;
}
```

Quicksort Implementation (Java)

```java
static void Quicksort(int[] array, int left, int right) {
    if (left < right) {
        int pivot = Partition(array, left, right);
        Quicksort(array, left, pivot - 1);
        Quicksort(array, pivot + 1, right);
    }
}
```
Analysis of quicksort—best case

- Suppose each partition operation divides the array almost exactly in half
- Then the depth of the recursion in $\log_2{n}$
 - Because that’s how many times we can halve n
- We note that
 - Each partition is linear over its subarray
 - All the partitions at one level cover the array

Best Case Analysis

- We cut the array size in half each time
- So the depth of the recursion in $\log_2{n}$
- At each level of the recursion, all the partitions at that level do work that is linear in n
- $O(\log_2{n}) \times O(n) = O(n \log_2{n})$
- Hence in the best case, quicksort has time complexity $O(n \log_2{n})$
- What about the worst case?

Worst case

- In the worst case, partitioning always divides the size n array into these three parts:
 - A length one part, containing the pivot itself
 - A length zero part, and
 - A length $n-1$ part, containing everything else
- We don’t recur on the zero-length part
- Recurring on the length $n-1$ part requires (in the worst case) recurring to depth $n-1$
Worst case partitioning

- In the worst case, recursion may be \(n \) levels deep (for an array of size \(n \))
- But the partitioning work done at each level is still \(n \)
- \(O(n) \times O(n) = O(n^2) \)
- So worst case for Quicksort is \(O(n^2) \)
- When does this happen?
 - There are many arrangements that could make this happen
 - Here are two common cases:
 - When the array is already sorted
 - When the array is inversely sorted (sorted in the opposite order)

Worst case for quicksort

Typical case for quicksort

- If the array is sorted to begin with, Quicksort is terrible: \(O(n^2) \)
- It is possible to construct other bad cases
- However, Quicksort is \textit{usually} \(O(n \log_2 n) \)
- The constants are so good that Quicksort is generally the faster algorithm.
- Most real-world sorting is done by Quicksort

Picking a better pivot

- Before, we picked the \textit{first} element of the subarray to use as a pivot
 - If the array is already sorted, this results in \(O(n^2) \) behavior
 - It’s no better if we pick the \textit{last} element
- We could do an \textit{optimal} quicksort (guaranteed \(O(n \log n) \)) if we always picked a pivot value that exactly cuts the array in half
 - Such a value is called a \textbf{median}; half of the values in the array are larger, half are smaller
 - The easiest way to find the median is to sort the array and pick the value in the middle (!)
Median of three

- Obviously, it doesn’t make sense to sort the array in order to find the median to use as a pivot.
- Instead, compare just three elements of our (sub)array—the first, the last, and the middle.
 - Take the median (middle value) of these three as the pivot.
 - It’s possible (but not easy) to construct cases which will make this technique $O(n^2)$.

QuickSort for Small Arrays

- For very small arrays ($N \leq 20$), quicksort does not perform as well as insertion sort.
- A good cutoff range is $N=10$.
- Switching to insertion sort for small arrays can save about 15% in the running time.

Mergesort vs QuickSort

- Both run in $O(n \log n)$.
- Compared with QuickSort, Mergesort has less number of comparisons but larger number of moving elements.
- In Java, an element comparison is expensive but moving elements is cheap. Therefore, Mergesort is used in the standard Java library for generic sorting.

Mergesort vs QuickSort

- In C++, copying objects can be expensive while comparing objects often is relatively cheap. Therefore, quicksort is the sorting routine commonly used in C++ libraries.