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Substitution method

The most general method:The most general method:
1. Guess the form of the solution.
2. Verify (or refine) by induction.
3. Solve for constants.
Example: T(n) = 4T(n/2) + 100n
[Assume that T(1) = Θ(1).]
Guess O(n3) .  (Prove O and Ω separately.)
A th t T(k) k3 f kAssume that T(k) ≤ ck3 for k < n .
Prove T(n) ≤ cn3 by induction.
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whenever  (c/2)n3 – 100n ≥ 0, for example, if c ≥ 200 and n ≥ 1.
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Example (continued)p ( )

• We must also handle the initial 
conditions, that is, ground the induction 
with base cases.

• Base: T(n) = Θ(1) for all n < n0, where 
n0 is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if 
we pick c big enough.

This bound is not tight!g



A tighter upper bound?g pp

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:
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for no choice of c > 0.  Lose!

A tighter upper bound!g pp

IDEA:  Strengthen the inductive hypothesis.g yp
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.
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Pick c1 big enough to handle the initial conditions.

Recursion-tree method

A recursion tree models the costs (time) of ( )
a recursive execution of an algorithm.
The recursion tree method is good for 
generating guesses for the substitutiongenerating guesses for the substitution 
method.
The recursion-tree method can beThe recursion tree method can be 
unreliable, just like any method that uses 
ellipses (…).
Th i t th d tThe recursion-tree method promotes 
intuition, however.

Example of recursion treep

Solve T(n) = T(n/4) + T(n/2) + n2:Solve T(n) = T(n/4) + T(n/2) + n2:
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Appendix: geometric seriespp g
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The master method

The master method applies to recurrences of 
the form

T(n) = a T(n/b) + f (n) , 
where a ≥ 1 b > 1 and f is asymptoticallywhere a ≥ 1, b > 1, and  f is asymptotically 
positive.

Idea of master theorem

Recursion tree:
f ( )
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Three common cases

Compare f (n) with nlogba:Compare f (n) with n :
1. If f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba (byf (n) grows polynomially slower than n gb (by 
an nε factor).

Solution: T(n) = Θ(nlogba) .( ) ( )
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Three common cases
Compare f (n) with nlogba:Compare f (n) with n gb :

2 If f (n) = Θ(nlogba)2. If f (n) = Θ(nlogba)
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgn) .
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Three common cases (cont.)( )

Compare f (n) with nlogba:p ( )

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.
f (n) grows polynomially faster than nlogba (by• f (n) grows polynomially faster than nlogba (by 
an nε factor),

d f ( ) ti fi th l it diti th tand f (n) satisfies the regularity condition that 
a f (n/b) ≤ c f (n) for some constant c < 1.

Solution: T(n) = Θ( f (n) ) .
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Examplesp

E T(n) 4T(n/2) + nEx. T(n) = 4T(n/2) + n
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.

f (n) = O(n2 – ε) for ε = 1 => Case 1( ) ( )
∴ T(n) = Θ(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
f (n) = Θ(n2) => Case 2f (n)  Θ(n ) > Case 2

∴ T(n) = Θ(n2lg n).

Examplesp

Ex. T(n) = 4T(n/2) + n3

4 b 2 logba 2 f ( ) 3a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
f (n) = Ω(n2 + ε) for ε = 1    => Case 3
and 4(cn/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

Ex. T(n) = 4T(n/2) + n2/lg n
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/lg n.
Master method does not apply. In particular, for every constant ε > 0, weMaster method does not apply.  In particular, for every constant ε  0, we 
have nε = ω(lg n).


