
Introduction to AlgorithmsIntroduction to Algorithms
Solving RecursionsSolving Recursions

CSE 680
Prof. Roger Crawfis

Material adapted from Prof. Shafi Goldwasser, MITMaterial adapted from Prof. Shafi Goldwasser, MIT

Substitution method

The most general method:The most general method:
1. Guess the form of the solution.
2. Verify (or refine) by induction.
3. Solve for constants.
Example: T(n) = 4T(n/2) + 100n
[Assume that T(1) = Θ(1).]
Guess O(n3) . (Prove O and Ω separately.)
A th t T(k) k3 f kAssume that T(k) ≤ ck3 for k < n .
Prove T(n) ≤ cn3 by induction.

Example of substitutionp

)2/(4)(100nnTnT +=

)2/(

)32/(4

)()(

100nn3c

100nnc

+=

+≤

desired – residual
desired

))2/((

)2/(

cn3

100nn3ccn3

100nnc

≤

−−=

whenever (c/2)n3 – 100n ≥ 0, for example, if c ≥ 200 and n ≥ 1.

desiredcn3≤

residual

Example (continued)p ()

• We must also handle the initial
conditions, that is, ground the induction
with base cases.

• Base: T(n) = Θ(1) for all n < n0, where
n0 is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if
we pick c big enough.

This bound is not tight!g

A tighter upper bound?g pp

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)2/(4)(

100ncn2

100nnTnT

+≤

+=

cn2≤

for no choice of c > 0. Lose!

A tighter upper bound!g pp

IDEA: Strengthen the inductive hypothesis.g yp
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

))2/() 22/((4

)2/(4)(

100nnc2nc1

100nnTnT

+−≤

+=

)(

2

))()((

-100nnc2nc2n2c1

100nnc2n2c1

21

−−=

+−=

if c2 > 100.

)(

nc2n2c1

-100nnc2nc2nc1

−≤

Pick c1 big enough to handle the initial conditions.

Recursion-tree method

A recursion tree models the costs (time) of ()
a recursive execution of an algorithm.
The recursion tree method is good for
generating guesses for the substitutiongenerating guesses for the substitution
method.
The recursion-tree method can beThe recursion tree method can be
unreliable, just like any method that uses
ellipses (…).
Th i t th d tThe recursion-tree method promotes
intuition, however.

Example of recursion treep

Solve T(n) = T(n/4) + T(n/2) + n2:Solve T(n) = T(n/4) + T(n/2) + n2:

Example of recursion treep

Solve T(n) = T(n/4) + T(n/2) + n2:

T(n)

Example of recursion treep

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

T(n/4) T(n/2)

Example of recursion treep

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)T(n/16) T(n/8) T(n/8) T(n/4)

Example of recursion treep

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

Example of recursion treep

Solve T(n) = T(n/4) + T(n/2) + n2:

2nn2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

Example of recursion treep

Solve T(n) = T(n/4) + T(n/2) + n2:

5
2nn2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2 2
16
5 n

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

Example of recursion treep

Solve T(n) = T(n/4) + T(n/2) + n2:

5
2nn2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 2
16
5 n

225

(n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2 2
256
25 n

…

Θ(1)

Example of recursion treep

Solve T(n) = T(n/4) + T(n/2) + n2:

5
2nn2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 2
16
5 n

225

(n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2 2
256
25 n

…

Θ(1) () ()() 1 3
16
52

16
5

16
52 L++++nTotal = () ()()161616

= Θ(n2) geometric series

Appendix: geometric seriespp g

11
1

2 xxxx
n

n −=++++
+

L for x ≠ 1

1

1
1

x
xxx

−
++++

1

11 2
x

xx
−

=+++ L for |x| < 1

The master method

The master method applies to recurrences of
the form

T(n) = a T(n/b) + f (n) ,
where a ≥ 1 b > 1 and f is asymptoticallywhere a ≥ 1, b > 1, and f is asymptotically
positive.

Idea of master theorem

Recursion tree:
f ()

f (n/b)f (n/b) f (n/b)…

f (n)
a

f (n)

a f (n/b)()() ()

f (n/b2)f (n/b2) f (n/b2)…

a
h = logbn

a2 f (n/b2)()

…#leaves = ah

l l ()
Τ (1)

= alogbn

= nlogba

nlogbaΤ (1)

Three common cases

Compare f (n) with nlogba:Compare f (n) with n :
1. If f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba (byf (n) grows polynomially slower than n gb (by
an nε factor).

Solution: T(n) = Θ(nlogba) .() ()

Idea of master theorem

Recursion tree:
f ()

f (n/b)f (n/b) f (n/b)…

f (n)
a

f (n)

a f (n/b)()() ()

f (n/b2)f (n/b2) f (n/b2)…

a
h = logbn

a2 f (n/b2)()

…

l ()
CCASE 1: The weight increases

Τ (1)
nlogbaΤ (1)

g
geometrically from the root to the
leaves. The leaves hold a constant
fraction of the total weight. Θ(nlogba)g Θ(n)

Three common cases
Compare f (n) with nlogba:Compare f (n) with n gb :

2 If f (n) = Θ(nlogba)2. If f (n) = Θ(nlogba)
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgn) .

Idea of master theorem

Recursion tree:
f ()

f (n/b)f (n/b) f (n/b)…

f (n)
a

f (n)

a f (n/b)()() ()

f (n/b2)f (n/b2) f (n/b2)…

a
h = logbn

a2 f (n/b2)()

…

l ()CCASE 2: The weight is
Τ (1)

nlogbaΤ (1)CASE 2: The weight is
approximately the same on
each of the logbn levels.

Θ(nlogbalg n)Θ(n lg n)

Three common cases (cont.)()

Compare f (n) with nlogba:p ()

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.
f (n) grows polynomially faster than nlogba (by• f (n) grows polynomially faster than nlogba (by
an nε factor),

d f () ti fi th l it diti th tand f (n) satisfies the regularity condition that
a f (n/b) ≤ c f (n) for some constant c < 1.

Solution: T(n) = Θ(f (n)) .

Idea of master theorem

Recursion tree:
f ()

f (n/b)f (n/b) f (n/b)…

f (n)
a

f (n)

a f (n/b)()() ()

f (n/b2)f (n/b2) f (n/b2)…

a
h = logbn

a2 f (n/b2)()

…

l ()
CCASE 3: The weight decreases

Τ (1)
nlogbaΤ (1)

g
geometrically from the root to the
leaves. The root holds a constant
fraction of the total weight. Θ(f (n))g Θ(f (n))

Examplesp

E T(n) 4T(n/2) + nEx. T(n) = 4T(n/2) + n
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.

f (n) = O(n2 – ε) for ε = 1 => Case 1() ()
∴ T(n) = Θ(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
f (n) = Θ(n2) => Case 2f (n) Θ(n) > Case 2

∴ T(n) = Θ(n2lg n).

Examplesp

Ex. T(n) = 4T(n/2) + n3

4 b 2 logba 2 f () 3a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
f (n) = Ω(n2 + ε) for ε = 1 => Case 3
and 4(cn/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

Ex. T(n) = 4T(n/2) + n2/lg n
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/lg n.
Master method does not apply. In particular, for every constant ε > 0, weMaster method does not apply. In particular, for every constant ε 0, we
have nε = ω(lg n).

