Motivation

- For insertion sort (and other problems) as n doubles in size, the quadratic quadruples!
- Can we decrease n?
- What if we **Divide** the sort into smaller pieces?
- We can then solve those (**Conquer** them).
- We need to be able to combine the pieces in a manner simpler than quadratic.

Divide and Conquer

- Divide (into two equal parts)
- Conquer (solve for each part separately)
- Combine separate solutions
- Merge sort
 - Divide into two equal parts
 - Sort each part using merge-sort (recursion!!!)
 - Merge two sorted subsequences

Merge Sort

```c
MergeSort(A, left, right) {
    if (left < right) {
        mid = floor((left + right) / 2);
        MergeSort(A, left, mid);
        MergeSort(A, mid+1, right);
        Merge(A, left, mid, right);
    }
}
```

// Merge() takes two sorted subarrays of A and // merges them into a single sorted subarray of A // (how long should this take?)
Merge Sort: Example

- Show `MergeSort()` running on the array

```java
A = {10, 5, 7, 6, 1, 4, 8, 3, 2, 9};
```

Analysis of Merge Sort

Statement

```java
MergeSort(A, left, right) {
    if (left < right) {
        mid = floor((left + right) / 2);
        MergeSort(A, left, mid);
        MergeSort(A, mid+1, right);
        Merge(A, left, mid, right);
    }
}
```

Effort

- So \(T(n) = \Theta(1) \) when \(n = 1 \), and
- \(2T(n/2) + \Theta(n) \) when \(n > 1 \)
- So what (more succinctly) is \(T(n) \)?

Recurrences

- The expression:

 \[
 T(n) = \begin{cases}
 c & n = 1 \\
 2T\left(\frac{n}{2}\right) + cn & n > 1
 \end{cases}
 \]

 is a recurrence.

 Recurrence: an equation that describes a function in terms of its value on smaller functions

Recursion Tree

- n comparisons per level
- \(\log n \) levels
- total runtime = \(n \log n \)
Recurrence Examples

\[T(n) = \begin{cases}
0 & n = 0 \\
1 + T(n-1) & n > 0
\end{cases} \]

Recurrence Examples

\[T(n) = \begin{cases}
1 & n = 0 \\
1 + T(n-1) & n > 0
\end{cases} \]

Recurrence Examples

\[T(n) = \begin{cases}
2T\left(\frac{n}{2}\right) + c & n > 1
\end{cases} \]

Recurrence Examples

\[T(n) = \begin{cases}
c & n = 1 \\
aT\left(\frac{n}{b}\right) + cn & n > 1
\end{cases} \]
Chapter 4 will look at several methods to solve these recursions:
- Substitution method
- Recursion-tree method
- Master method